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in semiconductors: A test of impurity wave-function theories
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A new method for studying the wave functions associated with defect levels is presented. The method is

based on a model that includes the role of intrinsic lattice phonons in indirect electron-hole recombination
at impurity sites in semiconductors; the model contains information about the impurity-phonon matrix ele-

ments and the intrinsic phonon dispersion relations as well. In particular, it can be used in conjunction with

experimental data as a test of the accuracy of impurity wave-function models. As an illustration, an applica-

tion to the acoustic-phonon sidebands in the low-temperature luminescence spectrum of the N-bound exci-
ton in GaP is described wherein the method is used to test the Koster-Slater one-band one-site approxima-
tion for the electron wave function.

The need for accurate theoretical descriptions of localized
traps, and with it the need for experimental verification of
the models, is widely recognized. ' To date, the application
of luminescence spectra to this problem has been primarily
limited to the comparison of calculated energy levels with
those inferred from the direct, no-phonon transitions.
However, some of the same spectra contain further infor-
mation in the phonon sidebands, related to the defect wave
functions. The considerable information implicitly con-
tained in such spectra strongly encourage the consideration
of models that describe in detail the interactions responsible
for the phonon sidebands.

In this paper, we consider indirect radiative transitions (at
T = 0 K) involving an impurity level in the forbidden ener-
gy gap of a semiconductor, and present an expression for
the resulting line shape of the associated phonon sideband.
It is shown that the derived phonon sideband line shape is a
sensitive function of the impurity wave function, and hence
can be used as a test of impurity wave-function models.
We also show that these spectra can provide information
about the electron-phonon matrix elements and the phonon
density of states and dispersion relations.

We emphasize that the phonon sidebands in luminescence
spectra due to impurities in indirect-band-gap semiconduc-
tors such as GaP may contain contributions from both direct
and indirect electronic transitions. Direct transitions and
electron-phonon coupling within the configuration coordi-
nate (CC) model have been studied extensively. ' On the
other hand, indirect transitions, in which a carrier is scat-
tered from one part of the Brillouin zone to another by
emission or absorption of a.phonon with the appropriate
wave vector while simultaneously emitting or absorbing a
photon, have not received as much attention. While some
impurity-related luminescence features have been recog-
nized as being due to indirect transitions, to our knowledge
no quantitative analysis of the line shapes has thus far been
given.

From a perturbation-theory approach, the fundamental
distinction between indirect and direct transitions is in the
order of the electron-hole interaction. Direct transitions are
described by first-order time-dependent perturbation theory,
while indirect transitions are a second-order effect. For a
band-to-band indirect transition, aided by emission of a
phonon with wave vector Q, the transition rate is4 6
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where @vk and $ „are the initial and final states in the
I

valence and conduction bands, respectively. The sum over i
includes in principle all electronic bands and $;k and P „areik
intermediate scattering states. The quantity (H~) is the ma-
trix element for a direct optical transition (the photon wave
vector is assumed negligible) and (H ) is the matrix ele-
ment due to scattering emission or absorption of a phonon
from branch a. Finally, Q=k —k', and hv (Q) is the cor-

t

responding phonon energy.
It is straightforward to generalize Eq. (I) to the case of

transitions involving one or two impurity levels. Upon ex-
panding the localized wave function(s) in terms of perfect-
crystal band states one obtains'

y,.„(r)= g ~.(k)@„,(r), (2)
n, k

where $„k(r) is the Bloch wave function for band n and
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wave vector k. The luminescence spectrum due to indirect transitions between, for example, an impurity electron level and.
a free or weakly bound hole level is

=2
'
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where E„„the no-phonon energy, is the difference between
the bound-electron and hole energies, E, —Eq. In Eq. (3)
we sum over lattice vibrational modes only. Although a
sum over the impurity-related modes should also be includ-
ed, the luminescence features due to a localized mode are
often distinguishable from those due to lattice modes. It is
thus usually practical to ignore the sidebands due to such lo-
cal modes, at least in the application of Eq. (3). Quasilocal-
ized impurity modes, which are resonant with the lattice
phonon bands, typically appear where the intrinsic phonon
density of states is low, making it possible to distinguish
them from the lattice modes as well. No quasilocalized
modes have been identified in the GaP:N spectra which are
considered here.

The spectrum calculated from Eq. (3) depends critically
on several factors, including the bound-electron wave func-
tion, which is represented by the coefficients A„(k). These
must be calculated according to a wave-function model, and
inserted into Eq. (3) along with expressions for the matrix
elements, phonon energies, and band energies. The calcu-
lated line shape can then be compared with the measured
spectrum, thus providing a test for the impurity wave func-
tion. The other critical factors in Eq. (3) are the phonon
dispersion relations and the k dependence of the matrix ele-
ments. Lattice-dynamical models which accurately repro-
duce neutron scattering data are available for most materials
of interest. Furthermore, optical matrix elements can be
calculated using Bloch functions obtained from pseudopo-
tential or other types of empirical band-structure calcula-
tions. 'o However, the perturbation H (k) corresponding to
creation or absorption of a phonon is not well known. In
this paper a simple model for 0 (k) is used, and the rela-
tive strengths of the LA and TA scattering are adjusted to
obtain the best fit to the measured luminescence spectrum.
It is seen below that, even without detailed knowledge of
these matrix elements, Eq. (3) provides a sensitive test for
the accuracy of impurity wave-function models.

This method is not limited to the case of recombination
between a bound electron and a free hole; it is general, and
may be applied to other radiative transitions involving de-
fect levels. However, in some cases the indirect-transition
spectrum is too weak to measure. Another practical con-
sideration is that the formalism does not include configura-
tion coordinate (CC) interactions, ""2which also produce
phonon sidebands that may overlap with the indirect-
transition spectrum. In practice, it will therefore be neces-
sary either to deconvolve the CC contribution from the
measured spectrum, "' or to study spectra in which the
overlap of CC and indirect-transition sidebands is not signi-
ficant. Whether any deconvolution method is accurate
enough to remove all CC interactions without distorting the
indirect-transition spectrum, particularly when the CC cou-
pling is strong, is not clear. Apart from the CC interaction,
any mechanism which broadens the no-phonon line (such
as the Coulomb interaction in donor-acceptor recombina-

tion, '3 or broadening due to alloying' ) also broadens the
phonon sideband features. Thus, for the present we limit
ourselves to a discussion of spectra due to bound excitons
which include GaP:N (luminescence' ) and GaP:0 (absorp-
tion spectrum due to creation of an exciton bound to neu-
tral oxygen. '6) .

A further application for consideration is to the impurity
potential, V(r). In the Koster-Slater defect model the wave
function is insensitive to the detailed form of the poten-
tial, '7 so that knowledge of the A„(k) does not guarantee
knowledge of V(r). However, the phonon scattering matrix
elements in Eq. (3) contain additional information about the
potential. Instead of assuming a simple k dependence for
the matrix elements, as we do in our illustration below, they
could be calculated in the rigid-ion approximation, where
the phonon scattering potential is

H. (k)=/VV(r —R») aR»(k) . (4)

where E, (k) is the lowest conduction-band energy at wave
vector k, and N is the normalization factor. It is assumed

Here the 5R,& are the displacements of the atoms from their
equilibrium positions. The procedure in this case would be
to assume a form for the potential V(r), calculate the pho-
non scattering matrix elements and A„(k), and then adjust
the potential to obtain the best fit of the calculated indirect
spectrum to the measured spectrum. A more complete dis-
cussion will be published elsewhere.

The nitrogen-bound exciton state in GaP (Ref. I5) was
selected as a test case for our indirect-transition model.
Although it is a shallow level, the impurity potential is high-
ly localized, as in the case of a deep level. Furthermore,
this defect state has been extensively studied, and several
theoretical models for the wave function are available. '

Presented here are the results for the Koster-Slater'7 model
for the electron wave function. Clearly, the method is not
limited to this type of wave function, and can be applied to
any model wave function.

We are not concerned here with the no-phonon line or
the LO-I phonon replicas, which are unambiguously due to
direct recombination and CC interaction, respectively. We
consider only those parts of the spectrum which may con-
tain a significant contribution from indirect transitions. It is
shown below that the acoustic-phonon sidebands can be fit
moderately well with the measured indirect-transition spec-
trum given by Eq. (3), using reasonable models for the
electron wave function, phonon dispersion relations, band
structure, and matrix elements.

In the Koster-Slater model a simple form is chosen for
the highly localized impurity potential and only one band is
used in the expansion of the electron wave function [Eq.
(2)]. The resulting k-space coefficients of the wave func-
tion are

2 (k) = N/[E, —E, (k) 1
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that the hole is weakly bound by a Coulomb potential, so
that in k space the hole state is localized at k=0. Thus, Eq.
(3) may be used.

The GaP phonon-dispersion relations used in these calcu-
lations are obtained using the second-neighbor ionic model
developed by Banerjee and Varshni, ' with one modifica-
tion. The dynamical matrix consists of a short-range force-
constant part and a long-range Coulomb part; the latter part
mainly affects the optic phonons. However, the line shapes
of the optic-phonon sidebands in the luminescence spec-
trum are narrow because of the small dispersion in the optic
branches, and consequently are not very sensitive to
changes in the wave function. They are not included in this
calculation, and the Coulomb interaction in the phonon
model is neglected. In principle, however, the optic-phonon
branches can be included.

The optical matrix elements are assumed to be constant
functions of. k, and the following k dependence is assumed
for both the TA and LA phonon scattering matrix elements.

(H (k)) = C [sin(Iklr, ) —Iklr, cos(lk lr, )1/Ik I'

where r, is the radius of the signer-Seitz cell. This expres-
sion has been used to describe LA phonon scattering of
electrons in metals; it is flat at the zone edge, and drops
smoothly to zero at the zone center. The C are relative
strengths for LA and TA phonon scattering, scaled to fit the
relative heights of the LA and TA peaks in the measured
spectrum. Finally, the semiempirical sp3s" tight-binding
model of Vogl, Hjalmarson, and now'o is used to obtain the
electronic band structure needed to calculate the wave-
function coefficients in Eq. (5) and the energy denomina-
tors in Eq. (3). Because of the energy differences in
denominators in Eq. (3), the lowest conduction band at
k = 0 is the dominant intermediate scattering state, and only
this state is included in the sum over i. The electronic bind-
ing energy is treated as an adjustable parameter. The sum
over the Brillouin zone, which is necessary to evaluate the
spectrum of Eq. (3), has been done numerically using a
technique for evaluating generalized densities of states
developed originally by Lehmann and Taut2 and later modi-
fied by Hjalmarson.

The results are shown in Fig. l. Assuming an electron
binding energy of 10 meV, and including only the LA and
uppermost TA phonon branches, one obtains the spectrum
shown in Fig. 1(a). The relative electron-phonon scattering
strengths chosen are CLA/CTA=0. 35. The positions and
widths of the LA and TA peaks are approximately the same
as those in the measured acoustic-phonon sideband, which
is shown in Fig. 1(b). In Figs. 1(c) and 1(d) the sensitivity
of the spectral shape to change in the charge density is
demonstrated. The calculated charge density is changed by
varying the electron binding energy in Eq. (5). It is. clear
that the spectral line shape is very sensitive to the spread in
k space of the electron charge density, and therefore to the
degree of localization of the wave function in real space.

In summary, a general formalism for the contribution of
indirect transitions to impurity-related luminescence in a
semiconductor has been derived. Specifically, the formalism
provides a relationship between the impurity charge density
in k space and the phonon sidebands in the luminescence
spectrum. Using the relation to test the Koster-Slater model
for the nitrogen-bound exciton wave function in GaP, we
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FIG. l. Acoustic-phonon sidebands in Gap:N luminescence. (a)
(top) Sidebands calculated from Eq. (3) using electron binding ener-

gy of 10 meV. (b) Typical low-temperature spectrum measured by
one of us (M.A.G.), shown for comparison. No-phonon line (not
shown) is at 2.316 eV. (c) and (d) (bottom) Sideba'nds calculated
using binding energies of 3 and 30 meV, respectively. Insets show
corresponding Koster-Slater electron charge densities along k„. In-
tensity scales for (a) —(d) are -not equivalent. The peak that is a
strong function of the trap depth in (a) and (d) increases as a result
of delocalization of the wave function in k space.

find that the shape of the calculated acoustic-phonon side-
band is sensitive to the electron charge density spread in k
space. %e also find that the Koster-Slater model fits the
luminescence data moderately well when an electron binding
energy of about 10 meV is used. Beyond these specific
results, the indirect-transition formalism promises to pro-
vide a new and general method for obtaining information
about deep level wave functions and potentials from mea-
sured spectra.



2688 SNYDER, MYLES, DAI, AND GUNDERSEN 32

See, for example, M. Jaros, Deep Levels in Semiconductors (Hilger,
Bristol, 1982).

P. Snyder, M. A. Gundersen, and C. W. Myles, J. Lumin. (to be
published).

A. T. Vink, R. L. A. van der Heijden, and A. C. van Amstel, J.
Lumin. 9, 180 (1974).

4J. O. Dimmock, in Semiconductors and Semimetals, edited by R. K.
Willardson and A. C. Beer (Academic, New York, 1967), Vol. 3
p. 296.

R. H. Bube, Electronic Properties of Crystalline Solids (Academic,
New York, 1974), p. 427.

60. J. Glembocki and F. H. Pollak, Phys. Rev. B 25, 1179 (1982);
25, 1193 (1982).

P. G. Snyder, Ph. D. dissertation, University of Southern Califor-
nia, 1983 (unpublished).

H. Bilz and W. Kress, Phonon Dispersion Relations in Semiconductors
(Springer-Verlag, New York, 1979).

9J. R. Chelikowsky and M. L. Cohen, Phys. Rev. B 14, 556 (1976).
OP. Vogl, H. P. Hjalmarson, and J. D. Dow, J. Phys. Chem. Solids

44, 365 (1983).
B. Monemar and L. Samuelson, J. Lumin. 12, 507 (1976); Phys.
Rev. B 17, 809 (1978).

H, P. Hjalmarson, L. A, Romero, D. C. Ghiglia, E. D. Jones, and
C. B. Norris (unpublished).
D. G. Thomas, J. J. Hopfield, and %. M. Augustyniak, Phys. Rev.
140, A202 (1965).

~D. J, Wolford, B. G. Streetman, and J. Thompson, J. Phys. Soc.
Jpn. 49, 223 (1980).
D, G. Thomas and J. J. Hopfield, Phys. Rev. 150, 680 (1966).

6P. J. Dean, M. S. Skolnick, Ch. Uihlein, and D. C. Herbert, J.
Phys. C 16, 2017 (1983).
R. A. Faulkner, Phys. Rev. 175, 991 (1968).
M. Jaros and S. Brand, J. Phys. C 12, 525 (1979).

~sP. W. Banks and M. Jaros, J. Phys. C 14, 2333 (1981).
W. T. Masselink and Yia-Chung Chang, Phys. Rev. Lett. 51, 509
(1983).

R. Banerjee and Y. P. Varshni, Can. J. Phys, 47, 451 (1969); J.
Phys. Soc. Jpn. 30, 1015 (1971).
R. H. Bube, Electronic Properties of Crystalline Solids (Academic,
New York, 1974), p. 268.
M. Lehmann and R. Taut, Phys. Status Solidi B 54, 469 (1972).
H. P. Hjalmarson, Ph. D. dissertation, University of Illinois at
Urbana-Champaign, 1979 (unpublished).


