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One-dimensional density of states and the phase of the transmission amplitude
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We derive a relationship between the one-dimensional density of states at energy E and the phase of the
transmission amplitude at that energy by developing the two-channel S-matrix scattering theory for one-
dimensional scattering and employing the relationship between traces of Green's-function operators and the
on-shell S matrix.

The single-particle density of states is a central quantity in
understanding many phenomena in a large number of physi-
cal systems. Interpretation of experimental spectra is in
many cases directly tied to the density of states. The well-
known algorithm for evaluating density of states, 1V(E), is
based on the trace of the Green's function G(E),
W(E) = (2vr) 'Im TrG(E). ' 3 However the integral over
the diagonal elements of the Green's function is often not
simple to evaluate. Dashen, Ma, and Bernstein (DMB) re-
lated the trace of the Green's function, and therefore the
density of states, to a quantity which is much simpler to cal-
culate and relate to experiment, the on-shell S matrix
S(E).4

In some problems, one-dimensional models are of great
utility in visualizing the physics of the phenomena under in-
vestigation. In particular, the one-dimensional density of
states is of interest in many applications. ' In order to use
the DMB relation to calculate the one-dimensional density
of states, the on-shell S matrix must be in hand. In this
work we formulate one-dimensional scattering problems in
the S-matrix language of formal scattering theory. After
this is achieved, the derivation of the one-dimensional den-
sity of states is straightforward. We find that the density of
states at energy E, N(E), is directly proportional to the
derivative with respect to energy of the phase of the
transmission amplitude t (E). Unfortunately, our deriva-
tion cannot be generalized to obtain the local. density of
states in a restricted spatial (or momentum) coordinate re-
gion.

It should be emphasized that our result is different from
the well-known relationship between the density of states
and the scattering phase shift in single-channel scattering
problems, such as elastic scattering in a spherically sym-
metric potential. In such problems the S matrix is a uni-
modular complex number, and its physical significance is
the amplitude of the outgoing wave. The one-dimensional
problem must be treated as a two-channel scattering prob-
lem (if no inelastic processes are considered), and the S ma-
trix is a 2&& 2 matrix. Thus, strange as it may seem, the S-
matrix formulation of one-dimensional scattering problems
is less trivial than single-channel scattering problems.

For simplicity, consider a one-dimensional potential V(x)
which goes to zero as x goes to plus or minus infinity. We
define channels 1 and 2 as waves traveling to the right and

left, respectively, and the channel states I m, k), m = 1, 2:

11,k) = exp(ikx)

12,k) = exp( —ikx)

where k =
I J2mE I, and where atomic units are used.

These states satisfy orthogonality and completeness. It is
essential that the channel states be complete but not over-
complete, since only then can one define an S operator
whose on-shell matrix elements (m, k IS I n, k) = S~„(k)
form a unitary 2X 2 matrix. 6 Here S~„(k) is the amplitude
of the channel state Im, k) after the interaction, assuming
the state before the interaction is In, k). With the use of
these conventions for enumerating channels, it is evident
that the S-matrix elements are related to the. familiar
transmission amplitudes t(E), and reflection amplitudes
from the left, r(E), and from the right, r'(E), namely,

r

Si] S]2 t r'

S2) S22 r t

The transmission and reflection amplitudes are constrained
by conservation of flux and time-reversal invariance

I r!'+ I r I'= Ir I'+ Ir'I'= I,
(3)

t'r+ tr"=0

which ensure the unitarity of the on-shell S matrix S~„(k).
Writing the quantities t, r, r' in terms of their magnitude and
phases,

t =
I t I

e'~, r =
I
r I

e'@

(4)
r' =

I r! exp (i [28 —
qb + m (2m + 1)]!

and using the results of DMB, we can express the density of
states in terms of the quantity d0jdE. We note in passing
that the form of the S matrix appearing in Eq. (3) is dif-
ferent from the one used elsewhere. 7 Here S reduces to the
unit matrix when the interaction is switched off. The S ma-
trix defined in Eq. (3) is easily seen to be the on-shell re-
striction of the matrix elements of an S operator which is re-
lated to the Toperator and the Green's function operator by
the standard expressions of formal scattering theory, as we
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shall now show. This is essential for implementation of the
DMB algorithm.

Consider a one-dimensional scattering problem with Ham-
iltonian H=Hp+ V, We shall work in configuration space
—~ & x & ~ and for convenience use the same letter for
an operator 0 and its representation (xIOIx') = O(x,x').
Thus

(x IHo I
x') = —5 (x —x') d'/dx'

and for a local potential

(xI VIx') =5(x —x') V(x)

We now define the free Green's-function operator Gp(E)
= (E—Hp), which in position representation takes the
form

fined by Eq. (11)] whose on-shell matrix elements are the
transmission and reflection amplitudes as asserted in Eq.
(3).

Equipped with these identities we can now use the result
of DMB:

—1—4i Im Tr[G(E) —Gp(E)] = Tr S ' — S . (13)
dE dE

An important step in DMB is the proof that Eq. (13) is true
not only in operator form, but also that the right-hand side
can be replaced by the on-shell S matrix, which in our case
is given by Eq. (3). Since, on shell, S '=St, we can use
Eqs. (2) and (4) to evaluate the right-hand side of Eq. (13).
The result is simply 4i d8/dE. Thus, our final result is

Go(x x''E& = (xI Go(E& Ix') = exp(ik Ix x'I &/2ik

the full Green's-function operator G, and the T operator,
or

Im Tr [ G (E) —Gp(E) ] = —d0/dE (14)

G = Go+ Go VG = Go+ Go TGo

T= V+ VGpT= V+ VGV

(6)

In what follows the energy dependence of Go, T, and G will
sometimes be dropped. The T operator is easily related to
the transmission and reflection amplitudes:

r = 1+ (2ik) '(l, kI TI1,k)
= 1+ (2ik) '(2, k I T12,k)

r = (2ik) '(2, kI TI 1,k)
r'= (2ik) '(l, k I TI2,k)

(8)

Il, k) [1+(2ik)-'(l, kl Vl1, k) l ll, k) (10a)

Il, k) Il, k) + [(2 k) '(2, kI VIl, k)]I2,k) . (10b)

By definition, the quantities appearing in the square brack-
ets are t and r Substituting .the integral equation (9) for
Il, k) into Eqs. (10) proves the first half of Eqs. (8). The
second half of the proof is similar, starting from the asymp-
totic form of I2, k).

Now we define the S operator

S = 1 2wig(E —Hp) T

and inspect its matrix elements in the momentum represen-
tation. On shell, it is easy to show that

(n, kISlm, k) =8„,~+(2ik) '(n, kITIm, k) (12)

Hence, we have proved the existance of an S operator [de-

To prove Eqs. (8), consider two solutions of the Schrod-
inger equation resulting from channel states traveling into
the interaction region from the right and from the left,

Ilk) = Il, k) + Go VI I,k)

I2, k) = 12,k) + Go VI2, k)

Using Eq. (6) and taking the limits as x goes to ~ and —oo,
we find8

m[W(E) —Np(E)] = d[argr(E&]//dE

We should perhaps mention that the Hamiltonian Hp can
contain a piece of the potential, and the proof here goes
through unchanged, but the difference N —%p represents
the change in the density of states as a result of the addi-
tional potential H —Hp.

In conclusion, we compare the present method of calcula-
tion of one-dimensional density of states, and changes in
the density of states due to a change in the potential, to oth-
er methods. The standard technique involves determination
of the diagonal elements of the Green's function G(x,x;E),
and evaluation of the imaginary part of the trace

f dx G(x,x;E).2 3 Determination of G(x,x;E) for all x
and the integration over x is much more involved than the
determination of the transmission amplitude at energy E
and at E+dE, from which d0/dE can be obtained. The
method developed by Edwards and Beeby, which can be
used to calculate the density of states also for disordered
systems, assumes that the potential is spherically symmetric
within nonoverlapping spheres around each atom and con-
stant between spheres. It is difficult to apply this method to
determine the density of states due to the presence of a sur-
face, or due to the addition of an adsorbed surface layer of
adatoms. For the reduction of such surface problems to
one-dimensional idealizations where only the coordinate
normal to the surface is considered, the present method is
vastly simpler. The method of Moliner and Rubio using
factorization to obtain the Green's function for surface
problems, and its generalization by Inglesfield and Velicky
and Bartos has been used by a number of authors to study
interface problems and electron structure of adatoms ab-
sorbed on metals. Band and Efrima generate the Green's
function by a direct technique employing two linearly in-
dependent eigenfunctions at energy E with the appropriate
boundary conditions at the two ends of the sample. Kalk-
stein and Soven' and Allan and Lenghart" used a
Wannier-Bloch mixed representation to generate the
Green's function for the surface of a cleave plane in the in-
finite crystal. Kambe' described a surface layer usirig
Green's-function techniques. All of these methods are con-
siderably more complicated than the present technique when
applied to the one-dimensional idealization.
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