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Kinetic energy of an electron gas
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We derive a simple expression for the correlation part of the kinetic energy of an inhomogeneous elec-
tron gas from density-functional theory. We show that in the local density approximation, this expression
reduces to the virial theorem result t„,=3vxc —46xc. We also derive the correction for an inhomogeneous

gas using Langreth and Mehl's expression for the exchange-correlation energy from a nonuniform density.

The correlation contribution to the kinetic energy plays a
special role in assessing the quality of approximations used
in applications of the density-functional theorem. A gen-
eral expression for the complete kinetic energy in the
density-functional formalism has not previously been avail-
able.

Bauer2 has recently shown that the ground-state expecta-
tion value of any operator 0, can be evaluated in the
Hohenberg-Kohn-Sham density-functional scheme, sub-
ject to a generalized V-representability condition. He
showed that if the Hamiltonian is augmented by the opera-
tor 0 via a scalar field X,

m= m(g=O)+no,
and the exchange-correlation energy is computed for small
values of the field X, then the correction to the expectation
value calculated using the Kohn-Sham single-determinant
wave function is the derivative of the exchange-correlation
energy with respect to the field, X:
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One case where this result can be applied directly and needs
no extra V-representability condition is to the calculation of
the correlation part of the kinetic energy. In this case the
augmented Hamiltonian becomes
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to find the exchange-correlation contribution to the kinetic
energy as
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where T is the kinetic-energy operator, 8';„t is the electron-
electron interaction operator, and ao is the Bohr radius. As
the Hamiltonian depends on A. and ao only through the
combination (1+X)ao, it is immediately obvious that the
exchange-correlation energy depends on these parameters
only through the same combination. We then use the
resulting identity

where we are now setting X=O in all formulae. This is the
primary result in this paper.

In an homogenous electron gas, the exchange-correlation
energy density can be written in terms of ao as

~xc= &xg (aort )3 (6)

where e„= —0.75e2(3n/rr)'t3 does not depend explicitly on
ao. Since we can write
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and
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we see that the correlation kinetic-energy density can be
written as

(9)

where v„, is the exchange-correlation potential,
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in agreement with the virial theorem result.
We can also apply Eq. (5) to an inhomogeneous electron

gas by writing the exchange-correlation energy density in
terms of g(a03n, a04 I'7n I,

aors'

n, . . . ), so that Langreth
and Mehl's expression for the extra exchange-correlation
energy due to inhomogeneity yields an extra exchange-
correlation kinetic-energy contribution,

b, T„,=J d3r nest„, , (10)

where; in atomic units,
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and

F = 0.262
n 7/3
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