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It is shown that for sufficiently strong magnetic fields the Feynman path-integral method can give a
ground-state energy lying below the exact ground-state energy of the two-dimensional polaron.

In an important paper, ' henceforth denoted I, Peeters and
Devreese employed the Feynman path-integral method to
devise an algorithm for practical numerical calculations of
the ground state (and free energy) of a polaron in magnetic
fields of arbitrary strength. By minimizing the ground-state
energy with respect to parameters characterizing their trial
action, they found, remarkably, discontinuities in the
ground-state polaron wave function which occurred at suffi-
ciently large values of the dimensionless magnetic field P

and of the Frohlich coupling constant 0, , both in two2 and
— three dimensions. ' Peeters and Devreese recognized that a

potential logical difficulty arises in justifying their minimiza-
tion procedure for a polaron in a magnetic field since they
were unable to prove that their ground-state energy (GSE)
is an upper bound to the exact GSE. If, in fact, some of
the minima of energy found in I were to lie below the exact
energy, then it would seem difficult to attach any particular
physical significance to such minima.

In this Rapid Communication we show that for two-
dimensional polarons and for sufficiently strong magnetic
fields, the GSE of I lies below the exact GSE and, in the
weak-coupling limit, we give an upper bound to the magnet-
ic field strength at which the GSE of I drops below the exact
GSE.

The Hamiltonian H for a polaron moving in the x-y plane
with a uniform magnetic field in the z direction, can be writ-
ten

f

00= Px 3' + Py +

H= Ho+ g bqbk+ Xuk(e '" ~bq + e'" ~'bq)
k k

where uk = (4mn/II )' '/k, 0 is the volume of the crystal in
which the LO phonons are confined, bk is the creation
operator for an LO phonon of wave vector k, X'=co, /coLo,
co, = eB/mc is the electron cyclotron frequency when 0. =0,
cuLo is the LO-phonon frequency, and p is the electron dis-
placement in the plane, p= (x,y). All lengths are in units
of the polaron radius, (t/2mcoLo)' and energies are in
units of tcoLo.

In general, the GSE of 0, EG, has the form
EG = EG(o. , A.2), but, for the very high fields defined by

)&1andk &&o. (2)

E~ becomes a function of the single dimensionless parame-
ter ah. .

%e begin by sho~ing that the GSE as calculated in I nev-
er can be greater than the second-order perturbation-theory
energy, EUBF, given by

E„,„=~) ' — r(I/z')/r(I/~'+ T)
2X

g2~ 2
(3)

—k D(u) —k D (N)Be eke e
42 "o

In writing Eq. (4) we have replaced the integral of Eq. (60)
in I by the more general expression from which it ori-

kz D (u)
ginates. If we now omit the factor e ' and take the
limit as both v| and wt vanish, we obtain, using Eqs. (58),
(33), (49b), and (36) of I,

—+
as

du e
CX EUBF ~

(I/21'')(1 —e "")

%e then present various cases in which the exact GSE is
greater than EUBF.

To demonstrate that EUBF is an upper bound to the GSE
of I we specialize the results of I to two dimensions by
omitting all contributions to the energy from motion parallel
to z, and then showing that EUBF is the GSE, which results
in I when the variational parameters ~ q and ~ j are set
equal to zero. Our starting point is Eq. (60) of I, from
which we omit terms proportional to so, ~ll, and c~l', those
terms arise from motion along z. The resulting equation is

3 2 2 3E„=—, X s„—w|+ g tisj/But
Ug —Kg

u=1 4v|
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Next, consider the limit of the exact energy as I,
aX ~, and the inequalities of (2) hold. Then only the
lowest-lying (n =0) Landau levels contribute to leading or-
der in A. ', and the strong-coupling (SC) condition aA. ~ ~
leads to a product wave function for the ground state of H.
The n = 0 eigenstates of Ho have the form, omitting nor-
malization,

M A 28(x /y)life —x P /8

where the z angular momentum quantum number M is 0 or
a positive integer. For M=0 P~ is most strongly localized,
and the trial function QoCL, (0), where L denotes the lattice,
produces a lower GSE than that of any other trial function
PM@r (M) by an energy of order nA. . The required GSE is
easily found by taking the expectation value

ycHyc yf%
= A. /2+ g bkby+ g vke (bg + bk)J J k

where kt= (k„,k~, 0), and diagonalizing the lattice Hamil-
tonian in the usual way, leading to the GSE Esc, given by

—2k~/X2 2

Esc rk = —X vke
k

O. I 2—
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2k 2/i2= —n„dkeJp 242

(6)

[One can show that the leading correction to Esc is of order
(nA, )o. A variational estimate of this term gives —1.06,
although the exact result is probably closer to —1.2.]

Comparison of Esc with lim„& EuaF from (3) indicates

that Esc lies above EUqF.
In the opposite limit, A. ~, n A. 0, the electron-

phonon interaction can be treated as a perturbation using in-
itial unperturbed states of the form

where i0) is the LO-phonon vacuum state. Carrying out
the perturbation theory to fourth order gives, independent
of M,

EG Euap+ ] m/4 —E (0.5)/ J8]
2

=EUaF + 0.064 941 9 (o& )

where K(z) is the complete elliptic function of the first
kind, defined by

pm/2

E(z) = J dH(l —z sin'8)

Variational calculations which interpolate between small and
large nh. strongly indicate (but, admittedly, do not prove)
that for all nA.

11m EG ~ EUgF
g~~ OO

At what value of A. does the exact GSE rise above EUBF
for given n? We have examined this question in the weak-
coupling limit (u « 1, nA. « 1). By a novel method to be
described elsewhere, we have succeeded in evaluating nu-
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2
2

FIG. 1. The fourth-order Rayleigh-Schrodinger perturbation
correction to the unperturbed energy of a two-dimensional polaron
vs the dimensionless magnetic field strength X . The fourth-order
correction is plotted in units of u hcoLo. The horizontal dashed line
represents EuaF [Eq. (3)] or, equivalently, the second-order pertur-
bation correction.

merically the fourth-order perturbation correction to the
ground-state energy of the two-dimensional polaron for ar-
bitrary magnetic field strength. The results are shown in
Fig. 1, where the fourth-order correction goes positive and
hence the exact energy exceeds EUBF at A. —1.9. Our calcu-
lation confirms the recently reported' correction of
—0.064n' at X~ =0 and approaches 0.064941 9(nh)~ as.

in accord with Eq. (7). Since EUaF exceeds the
ground-state energy given by the algorithm of I, the actual
value of X~ at which the GSE of I lies below the true energy
is less than 1.9. We would expect that for stronger coupling
the GSE of I crosses belo~ the true energy at higher fields,
but the methods employed here do not allow us to make re-
liable estimates for larger n values.

Details of the variational and perturbation calculations al-
luded to in this Rapid Communication will be discussed
elsewhere.
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