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The high value of deformation potential D =13.5 eV proposed in the preceding Comment of Price is in-
correct, since it contradicts low-temperature mobility data on high-purity GaAs crystals. ' We show that
overestimation of the acoustic-mode scattering by Price results from incorrect analysis of the ionized-
impurity scattering in modulation-doped heterostructures.

The preceding Comment of Price! is quantitatively in-
correct. The proposed high value of GaAs deformation po-
tential D=13.5 eV is not in agreement with the extensive
low-temperature mobility data on high-purity crystals.2? We
show that overestimation of the acoustic-mode scattering by
Price results from an analysis which incorrectly neglects the
temperature dependence of ionized-impurity scattering in
modulation-doped heterostructures (MDH). The analysis
presented in the Comment after Mendez, Price, and Heib-
lum* involves an assumption that for MDH with electron
density N;=1x10"! to 6x 10! cm~2 ionized-impurity mo-
bility is independent of temperature in the temperature
range 4—-40 K.

In order to illustrate that indeed there is a temperature
dependence of ionized-impurity mobility, we consider the
example of remote impurities. It can be shown that for a
spacer width larger than 100 A, the temperature dependence
of remote impurity mobility u, can be written in the form®
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where a =1 Nyi%/ m*kT, n= Er/ kT is the reduced Fermi en-
ergy, and Fy,(n) is the Fermi-Dirac integral of the order
“—%—. For highly degenerate electron gas, n >> 1, a->> 1, and
w,=ur ie., it is independent of temperature. However, in
the low density limit (¥;~ 10" cm~2) n~0, a ~1, and
the temperature dependence becomes significant.® In the
temperature range 4-40 K, u, for N;=10!" c¢cm~2 increases
with temperature by as much as 60%. This change cannot
be neglected in the analysis of the total electron mobility,
since ionized-impurity scattering plays a dominant role in
limiting the electron mobility in MHD with low electron gas
density.*’

The inaccuracy of the treatment discussed by Price! is ap-
parent from Fig. 1. Here, a=d(1/n)/dT is presented as a
function of electron density. The results indicated with x
were obtained by taking into consideration the temperature
dependence of w,; i.e., ag=a—«a, All other points
represent results by the analysis of Mendez er al* in which
it is assumed that u, is temperature independent and that
0= yy. It is seen that for high values of N; both ap-
proaches lead to similar results. However, for low values of
N, the analysis of Mendez ef al* underestimates a,, by a
factor of about 4. It is thus evident that the dependence of
a,c on electron density as discussed in the Comment* can-
not be reliably used for determination of the deformation-
potential value.

It must be pointed out that the D =13.5 eV used by Price
is not in agreement with experimental electron mobility
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determined for very high-purity GaAs samples;?>? i.e.,
te=200000 cm?/Vs at 77 K. Taking D =13.5 eV the mo-
bility limit at 77 K is only 130000 cm?/ Vs, i.e., significantly
below experimental values. On the other hand, the mobility
data on epitaxial GaAs crystals with negligible free-carrier
screening effects were satisfactorily explained using D=7
eV in Ref. 2 and D =8.6 ¢V in Ref. 3. The value D=7 eV
was also adopted by Walukiewicz, Ruda, Lagowski, and Ga-
tos in Ref. 5 and by Lin, Tsui, Paalanen, and Gossard® and
Lee, Shur, Drummond, and Morkoc(‘.8

It should be pointed out that significantly greater values
of the deformation potential were invoked in the analysis of
electrical transport’ and free-carrier adsorption!® data ob-
tained from bulk crystals of GaAs grown from the melt. In
all melt-grown crystals there is an inherent large degree of
electrical compensation which when not properly accounted
for leads to an overestimation of the deformation-potential
value.

The Comment by Price! also raises reservations concern-
ing calculations of the optical-phonon scattering in MDH.
Reservations (a) and (d), e.g., the three-dimensional ap-
proximation and the use of Matthiessen’s rule, respectively,
are applicable to the treatment of Walukiewicz ef al.> These
approximations, however, are more accurate than implied
by the Comment. As discussed in Ref. 5, in the case of
optical-phonon scattering, electron states in a wide energy
range 3kT +%wy (i.e., > 100 meV at room temperature)
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FIG. 1. Temperature coefficient « as a function of electron den-
sity. X, results for «,, obtained from analysis in this reply. All the
other points represent results of analysis of Mendez et al. (Ref. 4)
assuming temperature-independent ionized-impurity mobility.
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participate in the scattering. The density of the initial and
final states is therefore an average over few subbands. This
corresponds to almost a constant distribution of the electron
density within the well. Furthermore, experimental values
of the room-temperature opitcal-phonon mobilities for
MDH’s in a wide electron density range (2x 10''-1012) are
within 8x10° to 9% 103 cm?/Vs (Refs. 11 and 12) and are
in good agreement with the three-dimensional optical-
phonon mobility, i.e., ~ 8500 cm?/Vs.

We agree with the Comment that Matthiessen’s rule can
in general lead to errors in mobility calculations. These er-
rors, however, are significant only when the dependence of
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the scattering processes on electron energy are very dif-
ferent. However, the dependence of acoustical- and
optical-phonon scattering on energy is very similar, and thus
Matthiessen’s rule is a very good approximation. This
reasoning is supported by the example considered by
Price,!*> who found that an error of only 2.4% is introduced
when Matthiessen’s rule is applied to combine
deformation-potential and piezoelectric acoustic phonon
scattering.
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