Response to "Comment on 'Electron mobility in modulation-doped heterostructures'"

W. Walukiewicz,* H. E. Ruda,[†] J. Lagowski, and H. C. Gatos Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (Received 21 January 1985)

The high value of deformation potential $D = 13.5$ eV proposed in the preceding Comment of Price is incorrect, since it contradicts low-temperature mobility data on high-purity GaAs crystals. We show that overestimation of the acoustic-mode scattering by Price results from incorrect analysis of the ionizedimpurity scattering in modulation-doped heterostructures,

The preceding Comment of $Price¹$ is quantitatively incorrect. The proposed high value of GaAs deformation potential $D = 13.5$ eV is not in agreement with the extensive low-temperature mobility data on high-purity crystals.^{2,3} We show that overestimation of the acoustic-mode scattering by Price results from an analysis which incorrectly neglects the temperature dependence of ionized-impurity scattering in modulation-doped heterostructures (MDH). The analysis presented in the Comment after Mendez, Price, and Heiblum⁴ involves an assumption that for MDH with electron density $N_s = 1 \times 10^{11}$ to 6×10^{11} cm⁻² ionized-impurity mobility is independent of temperature in the temperature range 4-40 K..

In order to illustrate that indeed there is a temperature dependence of ionized-impurity mobility, we consider the example of remote impurities. It can be shown that for a spacer width larger than 100 \AA , the temperature dependence of remote impurity mobility μ_r , can be written in the form⁵

$$
\mu_r = \frac{5}{2}\mu_r^0 \frac{(1 - e^{-\alpha})^2}{\alpha^{5/2}} F_{3/2}(\eta) \quad , \tag{1}
$$

where $\alpha = \pi N_s \hbar^2 / m^* kT$, $\eta = E_F / kT$ is the reduced Fermi energy, and $F_{3/2}(\eta)$ is the Fermi-Dirac integral of the order $\frac{\sqrt{3}}{2}$. For highly degenerate electron gas, $\eta >> 1$, $\alpha >> 1$, and $\mu_r \approx \mu_r^0$; i.e., it is independent of temperature. However, in the low density limit $(N_s \sim 10^{11} \text{ cm}^{-2}) \eta \sim 0$, $\alpha \sim 1$, and the temperature dependence becomes significant.⁶ In the temperature range 4–40 K, μ_r for $N_s = 10^{11}$ cm⁻² increases with temperature by as much as 60%. This change cannot be neglected in the analysis of the total electron mobility, since ionized-impurity scattering plays a dominant role in limiting the electron mobility in MHD with low electron gas density. $5,7$

The inaccuracy of the treatment discussed by Price¹ is apparent from Fig. 1. Here, $\alpha \equiv d(1/\mu)/dT$ is presented as a function of electron density. The results indicated with \times were obtained by taking into consideration the temperature dependence of μ_r , i.e., $\alpha_{ac} = \alpha_{tot} - \alpha_r$. All other points represent results by the analysis of Mendez et al.⁴ in which it is assumed that μ_r is temperature independent and that $\alpha_{ac} = \alpha_{tot}$. It is seen that for high values of N_s both approaches lead to similar results. However, for low values of N_s the analysis of Mendez et al.⁴ underestimates α_{ac} by a factor of about 4. It is thus evident that the dependence of α_{ac} on electron density as discussed in the Comment⁴ cannot be reliably used for determination of the deformationpotential value.

It must be pointed out that the $D = 13.5$ eV used by Price is not in agreement with experimental electron mobility

determined for very high-purity GaAs samples;^{2,3} i.e., $u_e = 200000$ cm²/V s at 77 K. Taking $D = 13.5$ eV the mobility limit at 77 K is only 130000 cm²/V s, i.e., significantly below experimental values. On the other hand, the mobility data on epitaxial GaAs crystals with negligible free-carrier screening effects were satisfactorily explained using $D = 7$ eV in Ref. 2 and $D=8.6$ eV in Ref. 3. The value $D=7$ eV was also adopted by Walukiewicz, Ruda, Lagowski, and Gatos in Ref. 5 and by Lin, Tsui, Paalanen, and Gossard⁶ and Lee, Shur, Drummond, and Morkoç.⁸

It should be pointed out that significantly greater values of the deformation potential were invoked in the analysis of electrical transport⁹ and free-carrier adsorption¹⁰ data obtained from bulk crystals of GaAs grown from the melt. In all melt-grown crystals there is an inherent large degree of electrical compensation which when not properly accounted for leads to an overestimation of the deformation-potential value.

The Comment by Price' also raises reservations concerning calculations of the optical-phonon scattering in MDH. Reservations (a) and (d), e.g., the three-dimensional approximation and the use of Matthiessen's rule, respectively, are applicable to the treatment of Walukiewicz et al .⁵ These approximations, however, are more accurate than implied by the Comment. As discussed in Ref. 5, in the case of optical-phonon scattering, electron states in a wide energy range $3kT+\hbar\omega_0$ (i.e., ≥ 100 meV at room temperature)

FIG. 1. Temperature coefficient α as a function of electron density. \times , results for α_{ac} obtained from analysis in this reply. All the other points represent results of analysis of Mendez et al. (Ref. 4) assuming temperature-independent ionized-impurity mobility.

32 2645

participate in the scattering. The density of the initial and final states is therefore an average over few subbands. This corresponds to almost a constant distribution of the electron density within the well. Furthermore, experimental values of the room-temperature opitcal-phonon mobilities for MDH's in a wide electron density range $(2 \times 10^{11} - 10^{12})$ are within 8×10^3 to 9×10^3 cm²/Vs (Refs. 11 and 12) and are in good agreement with the three-dimensional opticalphonon mobility, i.e., $\sim 8500 \text{ cm}^2/\text{V s}$.

We agree with the Comment that Matthiessen's rule can in general lead to errors in mobility calculations. These errors, however, are significant only when the dependence of

'Present address: Lawrence Berkeley Laboratory, University of California, 1 Cyclotron Road, Berkeley, California 94720.

[†]Present address: University of Toronto, 4925 Dufferin Street, Downsview, Toronto, Ontario, Canada M3H 5T6.

- 'P. J. Price, preceding Comment, Phys. Rev. B 32, 2643 (1985).
- ${}^{2}C$. M. Wolfe, G. E. Stillman, and W. T. Lindley, J. Appl. Phys. 41, 3088 (1970).
- ³D. L. Rode, in Semiconductors and Semimetals, edited by R. D. Willardson and A. C. Beer (Academic, New York, 1975), Vol. 10, Chap. 1.
- 4E, E. Mendez, P. J. Price, and M. Heiblum, Appl. Phys. Lett. 45, 294 (1984).
- 5W. Walukiewicz, H. E. Ruda, J. Lagowski, and H. C. Gatos, Phys. Rev. B 30, 4571 (1984).
- B. J. F. Lin, D. C. Tsui, M. A. Paalanen, and A. C. Gossard, Appl. Phys. Lett. 45, 695 (1984).

the scattering processes on electron energy are very different. However, the dependence of acoustical- and optical-phonon scattering on energy is very similar, and thus Matthiessen's rule is a very good approximation. This reasoning is supported by the example considered by Price, 13 who found that an error of only 2.4% is introduced when Matthiessen's rule is applied to combine deformation-potential and piezoelectric acoustic phonon scattering.

The authors are grateful to the U.S. National Aeronautics and Space Administration for financial support.

- There is an error in the value of acoustical-phonon mobility μ_{ac} in Fig. 3 of Ref. 5. The proper value, $\mu_{ac} \sim 4.5 \times 10^6$ cm²/Vs, can be found from Fig. 4 of Ref. 5. This new value of μ_{ac} affects the itting parameter, i.e., the background impurity concentration changing its value from 1×10^{15} to 7×10^{14} cm⁻³.
- 8K. Lee, M. S. Shur, T. J. Drummond, and H. Morkoç, J. Appl. Phys. 54, 6432 (1983).
- ⁹H. J. Lee, J. Basinski, L. Y. Juravel, and J. C. Wooley, Can. J. Phys. 57, 233 (1979).
- ¹⁰P. Pfeffer, I. Gorczyca, and W. Zawadzki, Solid State Commun. 51, 179 (1984).
- ¹¹H. L. Stormer, A. C. Gossard, W. Wiegmann, R. Blondel, and K. Baldwin, Appl. Phys. Lett. 44, 139 (1983).
- 12S. Hiyamizu, T. Mimura, T. Fujii, K. Nanbu, and H. Hashimoto, Jpn. J. Appl. Phys. 20, L245 (1981).
- ¹³P. J. Price, Surf. Sci. 113, 199 (1982).