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and random uniaxial anisotropies

Yadin Y. Goldschrnidt
Department ofPhysics and Astronomy, Uniuersity ofPittsburgh, Pittsburgh, Pennsyluania 15260

Amnon Aharony
School of Physics and Astronomy, Tel Auiu Uniuersity, Tel Auiu 69978, Israel

(Received 11 March 198S)

Long-range magnetic order is known to be replaced by a spin-glass phase for rotationally invari-
ant A'-component spin systems with random fields or random uniaxial anisotropies. Using exact
calculations in the limit X~ oo, we show how long-range order is restored when a uniform anisotro-

py is added. For a uniaxial anisotropy g, long-range order is achieved above a critical value of g, at
which a phase with an infinite susceptibility occurs. For higher-order (e.g. , cubic or hexagonal) an-
isotropies long-range order is reached via first-order transitions. Scaling arguments and explicit cal-
culations are used to obtain detailed predictions on the shape of the various phase boundaries.

I. INTRODUCTION

S(x) being the N-component spin vector at site x, while
h(x) is the random field, with configurational averages

[h(x)]„=0, [ ~

h(x)
~

]„=AF
or systems with random uniaxial anisotI"opies, with, e.g. ,

A, = —g [a(x) S(x)]

where

[a(x)],„=0, [ i
a(x)

~ ),„=w . (1.4)

Systems with random off diagonal exchan-geinteractions,

A „=g g JJ(x,x')S'(x)SJ(x')
I

X,X /, J

(ij =1, . . . , N are the spin-component indices) which re-
sult, e.g., from dipole-dipole interactions, random
quenched strains, spin-orbit interactions, Dzyaloshinskii-
Moriya interactions, etc., are expected to exhibit the same
properties as those with random uniaxial anisotropies.

The absence of long-range order in these systems can be
shown by a perturbative expansion (in b, F or in w). As-
suming a net magnetization M, the fluctuations in the
transverse spin components [(Sl(x)) ],„are shown to be
proportional (to leading order in b,~ or in w M ) to

d P (d —4)/2cc I T(p'+rT)'

When fluctuations are taken into account, various types
of random quenched interactions destroy long-range fer-
romagnetic (FM) order in Heisenberg-like isotropic (N-
component) spin systems with realistic dimensionalities
d&4. Of particular interest are systems with random
magnetic fields, ' where the randomness enters via

A h
——g h(x) S(x),

at all temperatures. For d~4, the SG phase is replaced
by a FM one (with q also nonzero) for sufficiently small
T and AF. The relevant phase diagrams are shown in
Figs. 1(a) and 1(b).

The summation to all orders in m, for the random-
anisotropy (RA) case, is possible for large N if the large-
N behavior of w is given by w = b, ~ l(4!N). For d & 4,
one again finds a SG phase for all finite values of Az,

SG SG

FIG. 1. (a) Phase diagram for the random-field case below
four dimensions. The black dot is the location of the critical
temperature for AF ——0. (b) Phase diagram for the random-field
case above four dimensions. FM denotes a ferromagnetic phase
and SG a spin-glass phase.

and thus to diverge for d ~ 4 as the inverse-transverse sus-
ceptibility rr ——H/M vanishes with the magnetic field
II- 1,2, 3

A similar lowest-order expansion of the equation of
state also shows no solution with M&0 as H~0. How-
ever, it is difficult in general to sum this expansion to all
orders and to identify the phases that replace the FM one.
Such a summation is possible in the limit X~~. For
the random-field (RF) case this has already been done in
the original paper by Lacour-Gayet and Toulouse. For
d & 4, any finite value of b,F yields spin-glass (SG) order-
ing, with a finite Edwards-Anderson order parameter
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which undergoes a second-order transition into the
paramagnetic (PM) phase at high temperatures [Fig. 2(a)].
For d ~ 4, one again recovers the FM phase [Fig. 2(b)].

As already pointed out in Ref. 3, real crystals never
obey the rotational invariance needed for deriving the
above results. In particular, real systems may have cubic
anisotropi es,

(1.8)

axial anisotropies is treated in detail. Section VII then re-
views the other cases, and Sec. VIII summarizes our con-
clusions and discusses relevant experiments.

II. QUALITATIVE DESCRIPTION OF RESULTS

A convenient way to analyze experimental results on
the equation-of-state uses Arrott plots, '" in which M is
plotted against H/M at fixed temperature T. Reference 8

gives this function explicitly for X~ oo as

hexagonal ones, ' M =f(T, H/M) . (2.1)

(1.9)

etc. One may also encounter weak uniaxial anisotropies, "

(1.10)

which prefer ordering of the S' component if g) 0. In all
of these anisotropic cases, rotational invariance is broken.
At low temperatures, the transverse "mass" rT is finite,
the integral in Eq. (1.6) does not diverge, and FM long-
range order may be restored. It was conjectured in Ref. 3
that this FM order would appear at low temperatures via
a first order tran-sition [for (1.8) and (1.9)]. This was sup-
ported by the absence of physically stable and accessible
fixed points in d =4—e dimensions. ' ' However, it was
never explicitly confirmed in a detailed calculation. The
present paper presents such a confirmation via explicit
calculations in the limit X—+ oo.

Since the detailed calculations are somewhat technical,
we start in Sec. II with a qualitative description of the re-
sults, including a discussion of the Arrott plots'" for the
equation of state and of the new predicted phase dia-
grams. %'e then proceed in Sec. III with a discussion of
the ground state, extending the Imry-Ma' and the zero-
temperature scaling arguments to show that strong aniso-
tropies will restore FM long-range order and to estimate
the threshold for this SG~FM transition. Section IV
then contains a general scaling analysis, yielding the
shapes of the predicted phase diagrams in terms of the
relevant crossover exponents. The main calculational
parts of the paper are described in Sec. V, where the gen-
eral equation of state is calculated for X—+ oo, and in Sec.
VI, where the example of cubic systems with random uni-

The Arrott plots for the RF case in d (4 and for the RA
case are plotted in Figs. 3(a) and 3(b), respectively. ' In
both cases, there is no intercept of an isotherm with theI axis and thus no spontaneous magnetization at H=O.

The only change that we find (for N~ ao ) when we in-
troduce anisotropy into the system is that H/M in Eq.
(2.1) must be replaced by a modified transverse-inverse
susceptibility rT, which is particularly simple in the limit

For the uniaxial anisotropy (1.10), rT is simply
given by

rT ——HJM+g . (2.2)

Thus, the Arrott plots of Fig. 3 are simply shifted to the
left, H/M~H/M —g, and a ferromagnetic phase ap-
pears for large enough g when the M axis starts crossing
isotherms. In the RF case, Fig. 1(a) turns into Fig. 4(a):
At any finite g, the b,F-T diagram looks like Fig. 1(b),
while at finite Az the g-T diagram is shown in Fig. 5(a).
Similarly, Fig. 2(a) turns, in the RA case, into Fig. 4(b):
At finite g one expects Fig. 2(b), and at finite b, ~ one ex-
pects Fig. 5(b).

It is interesting to note that in the RA case, the point
g =X, is a very special one: At this point all the low-
temperature Arrott plots approach the origin with infinite
slope, and one recovers a whole low-temperature phase
with infinite longitudinal susceptibility (the transverse
susceptibility is finite and equal to g). This is the phase
predicted in Ref. 4 that now emerges even after all the or-
ders in hz have been taken into account. Of course, this
is not surprising since the line g =X, is just the phase
boundary between the spin-glass and the ferromagnetic
phases. Since this transition turns out to be of second or-
der the susceptibility diverges. When X is not infinite this
line may not correspond to points of equal g, i.e., it can be

SG

FICx. 2. (a) Phase diagram for the random-axis model below
four dimensions. PM refers to a paramagnetic phase. (b) Same
as (a) for 8~4.

H/M
(0) (b)

FIG. 3. (a} Arrott plots for the random-field case, AF ~0. (b)
Arrott plots for the random-anisotropy case, A~ )0. X, denotes
the value of the transverse mass below the transition.
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(b)

FIG. 4. (a) Three-dimensional phase diagram for the
random-field case in the presence of a quadratic anisotropy.
Similar phase diagram applies to the case of a cubic anisotropy.
(b) Three-dimensional phase diagram for the random anisotropy
in the presence of a quadratic anisotropy. rr —H/M +v6M (2.4)

dependent) remains unchanged. This means that an Ar-
rott plot of M vs H/M in the case v4 &0 can be easily
obtained from the plot of y =M vs x =X (which is the
Arrott plot in the v4 ——0 case). This is achieved by a sim-
ple rotation of the x axis by an angle 0 satisfying
tanL9= —v4. The situation is explained in Fig. 6. We call
the rotated axis the X axis. In order to find the value of
H/M corresponding to a given point (M~, X) in the M
vs X plot, one has to draw a line through that point,
which is perpendicular to the X axis. The intersection of
this line with the x axis (corresponding to M=O) gives the
value of H/M. We then draw a new Y axis perpendicular
to the X axis. This axis represents the locus of all points
with H/M=0. Whenever an Arrott-plot trajectory corre-
sponding to a given temperature t intersects the Y axis at
a point Y~ 0, a solution with M&0 and H =0 exists. For
fixed finite b,F (or A~ ) the rotated M axis will start cut-
ting the isotherms (Fig. 3) only for angles above some
threshold. Since the low-temperature isotherms have a
convex shape, the axis will cut isotherms twice, and only
the upper intercept will be a legitimate solution for M .
The new Arrott plots (M vs H/M) for v& ~ 0 are
displayed in Figs. 7(a) and 7(b) for the cases of a random
field and a random anisotropy, respectively. We thus ex-
pect first order tra-nsitions directly into the ferromagnetic
phase at sufficiently large v4. Except for this differ-
ence and changes in slope and curvature of the phase
boundaries, the v4-6- T phase diagrams are expected to be
similar to those shown in Fig. 4.

In the case of the hexagonal asymmetry (1.9), we obtain
in the large-N limit

described by some function g (T). Still, we expect the sus-
ceptibility to diverge along this line. The exponents are
expected to be those of the Ising model in a random field,
which at least in perturbation theory are given by the
mapping d —+d —2 (this is because since q&0 on this line
there is an effective random field in the system even in the
RA case as discussed, e.g., in Ref. 8).

For the cubic anisotropy (1.8), we find for X~ &n,

so that the mapping of the Arrott plots involves both a ro-
tation and a curvature [M ~(M ) ]. When AF ——bz ——0
the large-N analysis shows a clear difference between the
phase diagrams for the cases d & 3 and d & 3. For d & 3 a
small v6 does not stabilize a ferromagnetic phase for
T & T„where T, is the critical temperature of the isotro-
pic system. This is related to the fact that the dimension
of the operator (1.9) in the large-X limit is equal to its
naive dimensions and is an irrelevant operator above three

rT H/M +v4M—— (2.3)

and the equation satisfied by rT (:—X, the self-energy in
the large-N limit, since in that case X is momentum in- y=M

2

(a} I', b)

FIG. 5. (a) A g- T phase diagram for the random-field case.
(b) A g- T phase diagram for the random-anisotropy case.

FIG. 6. Determination of the Arrott plot in the presence of a
cubic asymmetry from the Arrott plots of the isotropic case.
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&„t8(x)[=JJ dx
dX

2

N —1 1+g dx +—sin 0— cos 0 ~

N

{a)
H/M

{b)
H/M

(3.2)

subject to 8(0)=0, 8(xo) =sr T. aking the functional
derivative

FIG. 7. (a) Modified Arrott plots for the random-field case in
the presence of a cubic anisotropy. (b) Same as (a) for the
random-anisotropy model.

= —2J +g sin(28) =0,dx'

the solution becomes

(3.3)

dimensions. For finite X, there is a dimensionality d, (N)
below which the operator starts to become relevant (and
its corresponding eigenvalue changes sign). When
d &d, (X) the situation is similar to the case of a cubic
anisotropy below four dimensions.

When Az or Az are nonzero, one again has to distin-
guish the case d ~ d, (X) and d &d, (X). In the first case,
as one increases U6 a first-order transition into a fer-
romagnetic phase occurs only for T & T, (b, ) with
T, (b, ) & T, . This means that for T = T, and small U6, no
transition takes place. For d &d, (X) the phase diagram
is similar to the case of a cubic anisotropy. For large N,
even for d =3 we find no transition at T = T, .

2
gXp

8(x) = x — sin
Xp 8Jm Xp

gIld E~ is minimal when
' 1/2

2J~Xp=

with

E =~(2Jg)'~

hence,

Z =J~'/x, + —,'gx, +O(g')

+o(g ), (3 4)

(3.5)

(3.6)

(3.7)

III. LOW-TEMPERATURE DOMAIN STABILITY

In addition to the argument involving Eq. (1.6), Imry
and Ma' also used the following domain argument: At
low temperature, the fully ordered ground state will break
into finite domains of linear size L if the gained bulk en-

ergy Es -(b,FL ) (due to ordering along the local aver-
age random field) is larger than the energy cost of the
domain surface E, . For isotropic spin systems, E, is of
order JL" (where J is the nearest-neighbor exchange
energy) and domains will occur for d &4. The typical size
of the domains is estimated by minimizing (E, Ez):—

2/(4 —cE)

Lp— (3.1)

For Ising systems, E, is of order JL" ', and domains are
preferred only for d &2.

In what follows, we shall show that any anisotropy
which breaks the rotational invariance causes a crossover
from E, L" to E-, -L" ', nnd thus to ferromagnetic
long-range order at 2~d~4, The aim of the following
discussion is to estimate the threshold anisotropy (g, u4, U6,

etc.) above which this happens.
Consider first the uniaxially nnisotropic case, Eq. (1.10).

If the angle between S(x) and the S' axis is 8 and the
domain "wall" extends (along the x axis) from x=0 to
x =xo, then the optimum function 8(x) should minimize
the wall energy (per unit area). The incremental wall en-

ergy with respect to a configuration with 8(x)—:0, is given

by

' 2/(4 —d)
F

J2
(3.8)

This equation represents the border line between the FM
and the SCi phases on the hF-g plane, Fig. 4. If we start
at zero temperature and 2 ~ d & 4 with g= 0, then we have
no long-range order due to the existence of domains. In-
creasing g beyond the value (3.8) will recover FM long-
range order. The nature of the transition at this critical
value of g remains to be studied.

The argument presented above should equally apply to
the case of random uniaxial anisotropies. At low tem-
perature, these systems are also expected to break into or-
dered domains, within which there is full ordering along
the local average anisotropy axis. Since the magnetization
is practically saturated, all one needs to do is replace Az
in the above results by b,z (or w ).

Equation (3.5) might be expected on an heuristic basis:
The first term, representing the exchange energy, results
from assuming that the angle between two neighboring
spins is of order (nixo) The se.cond term implies that
each spin contributes an anisotropy energy of order g.
Indeed, we show below that this behavior is quite general.

If the domain size L is much larger than xp, then the
wall energy is E, =E~L" ', and we expect the Ising-like
behavior. On the other hand, the above calculation should
not be used when L ~&xp. In this limit, we should use
Eq. (3.4) with L instead of xo, nnd we are back at the iso-
tropic situation, yielding (3.1). The crossover between the
two will occur when xp-Lp, where Lp was defined in
Eq. (3.1), i.e.,
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The result (3.8) also applies to the higher-order aniso-
tropies, Eqs. (1.8), (1.9), etc. For example, consider the
cubic case (1.8). For U4&0, domains are ordered along
cubic axes. Consider now two neighboring domains or-
dered along perpendicular axes. If the angle between S(x)
and one of these axes is 0, then (2.2) will be replaced by

'2

E„I0(x)I=J f dx

6 2 —(fg

~F ~ ~F
T T

b

(3.11)

(3.12)

(3.13)

the scaling behavior is given simply by the naive dimen-
sion of the different operators. If the lengths are scaled
by a factor b, then

+v4 dx(1 —cos 0—sin 0),
0

(3.9) V4 ~U4
(3.14)

subject to 0(0)=0, 0(xo)=~/2. One can then repeat all
the other steps as described above and find a transition
from a domain state to a FM phase at

etc., and therefore

(3.15)

V4

J (3.10)

Similar results apply to V6, etc.
The above results find support in the renormalization-

group equations near zero temperature. ' ' In this limit,

U4~6 V4
2

AF~b AF .

(3.16)

(3.17)

Iterating (3.17) until b,F —1 and substituting the corre-
sponding value of b into (3.15) or (3.16), yields (3.8) or
(3.10). As we shall see in the next section, these are spe-
cial cases of a general scaling approach.

IV. SCALING

Near the isotropic ordered transition point, the equation of state can be written in the scaling form

(4.1)

where t =(T—T, )/T, (T, is the ordering transition of
the pure isotropic system) and where the various crossover
exponents P; are directly related to the scaling of the ap-
propriate fields near the isotropic fixed point. For exam-
ple, Ps ——Xgv, where g +b sg and v—is the correlation-
length exponent. ' The exponent Pz is known to be exact-
ly equal to the susceptibility exponent y. ' Similarly, the
exponent Pz has been exactly related to Pg,

'

(4 4)

In the absence of b, z, U4 tends to increase T, (see
below). Thus, one might hope to find a transition at suffi-
ciently small Az even at t=O. In this case,

~

t
~

should
drop out of (4;4), and we predict that

Pg ——2(tg —dv . (4.2) 4'4~ =04/4~ (4.5)

andAll the exponents in Eq. (4.1) are known within E expan-
sions in 4 —e and in 2 + e dimensions and within the 1/X
expansion. We list these expansions in Table I.

Typically, we shall be concerned with either AF or Az,
and with one of g, v4, U6, etc. Consider, for example, the
case in which Az and v4 are nonzero. Thus,

~4~v4-~w (4.6)

Similarly, we predict 0s& ——Pg/Pz, 06& $6/gz (whenev-—-

er it is positive), 0&&
——P4/Pz, etc. , for the other self-

explanatory cases. With continuity, it is reasonable to ex-
pect a behavior like (4.6) at other temperatures as well.
Indeed, our zero-temperature result (3.8) confirms this ex-
pectation, with 0gz 2/(4 d) =Pg/PI; As/A——+ [see —Eqs. ——
(3.15) and (3.17)]. At T=O, it turns out that all the ex-
ponents 0,z have the same value, i.e., 2/(4 —d). Our gen-
eral expectations for the exponents 8;J. can be directly read
from Table I.

H — t Aq v4
(4.3)

V. HAMII. TONIAN AND EQUATION OF STATE
FOR Pf —+ ao

As in all the field-theoretical calculations, we start with
an isotropic Ginzburg-Landau-Wilson Hamiltonian, '

When both b,„and u4 are zero, Eq. (4.3) has a nonzero
solution for M&0 in the limit H +0 when t~O. This—
solution no longer exists for A,z ~ 0 and small v4 but is ex-
pected to reappear at some (b,z-dependent) finite value of
v4. Within the scaling approach, this implies that the
function f(x,y, z) is singular along some line in the y-z
plane. Since we expect this line to go through the origin,

~4~its general form near the origin is z-y ', or
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A 0
——f d"xI —,

' [(V'S) +mo
I
S

I
]+(u/4!X)

I
S

I

(5.1)

where S(x) is now a continuous spin at the continuous d-
dimensional space coordinate x, and where mo is linear

..I

in T, m 0 ~ ( T —T, ). The anisotropy terms, e.g.,
(1.8)—(1.10) are then added with g being replaced byf d"x. To treat the random terms (1.1) and (1.3), one
replicates the system n times, averages over the random
variables, and takes the limit n~O at the end. ' ' The
resulting replicated Hamiltonian has the form ' '

n N~= f d x. 2 2~ I~S «)
I

+mo IS I 1+4t~ IS
I +8 ~ g(S')'+

, g(S' )' b, g —g S'S~-
i i =1 a, P=1 ' ij =1 a, P=1

(5.2)

n

HJ d"x g S—'(x) .
a=1

(5.3)

Shifting the longitudinal component to allow for a
nonzero magnetization, we define

l. (x)=S (x)—M (5.4)

and demand that

where a, I3 are the replica indices. We have scaled u, 6„,
and v4 like iV ', in order to achieve an appropriate
large-X limit, whereas U6 is scaled like 1/X . The choice
of the cubic term as being of order % ' is appropriate '

for the case U4 ~ 0, and this will be the only case we shall
treat here.

%'e note that, in general, A will contain additional
quartic terms, e.g., those representing random exchange
(i.e., S'S~SJQJ~, see Ref. 12). These are highly irrelevant
for large X, and therefore are ignored here (as they were
in Refs. 2 and 8).

In order to derive the equation of state, we apply a
magnetic field along an easy axis, say i= 1:

this function is given in the large-N limit by

GT '(k) =k'+X .

We then find that Eq. (5.5) corresponds to

H =mo —g+ —,(u —b, g) Gr(p)M P

(5.6)

(5.7)

6X 2V

and the equation for X is

(5.8)

in the large-N limit are depicted in Fig. 9. The graphs
representing Eq. (5.5) are depicted in Fig. 10 and those
contributing to the equation for the transverse mass X, in
Fig. 11. Defining Gz.(k) as the transverse two-point
correlation function,

n

GT(k)=lirn —g J d x(S'(x)S'(0))e', i&2,
n~O n

(I..(x)) =0. (5.5) X=mo+ —,(u —bz) J GT(p)+ q,
P 6X (5.9)

To represent this equation graphically in the large-%
limit, we use the notation of Ref. 8. The graphs corre-
sponding to the vertices g, AF, 6&, u, U4, and U6 are
represented in Fig. 8. The graphs corresponding to the
Edwards-Anderson order parameter

q = g (S' (x)SI)(x) ) (a&P)

where in (5.8) and (5.9)

f =(2') "fd"p .

Combining these two equations with the equation for q
(Fig. 9)

(a)

1Q La
"

LP

(b)

L,a~ ~ j,a

L, P&
(c) I

--' — + ==- — +

L, Q J,a L, a L, Q L, a
L, Q

L, Q

L,a J, Q L)Q L, a L, a
L)a

L, a

(d) (e) (r)
FIG. 8. Graphical notation for the different vertices (a) g, (b)

~g, (c) ~g, (d) u, (e) U4, and (f) U6.

f

+ J~J + +

FIG. 9. Diagrams contributing to q, the Edwards-Anderson
order parameter. - The dashed line stands for M, where M
denotes the magnetization. The dots stand for an infinite set of
diagrams of the ladder type.
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(5.10)

we find

+g+ M + MH V4 2 V6 4

M N
(5.11)

r=,'+-,'( —~„)f, ' + " M'+~~, fu @2+A 6N ~ (p'+&)'
1 1

1 ——,A~
t (p'+&)' (5.12)

Equation (5.12) for X is the same as that found for
H/M in the isotopic case. The only difference is that X,
as given by Eq. (5.11), replaces H/M. This yields all the
rules concerning the shifting and rotating of the Arrott
plots, as described in Sec. II.

For 2 & d & 4, Eq. (5.12) may be written as

m =ma+ —,(u —Az)2 2
A ]

p

fi(d)=,fq(d) =1 1

& p (p +1) & (p +1)

(5.14)

(5.15)

r =m '——,
'

(u —b,„)f,(d)X'-'" It can easily be shown that the equations of state (5.13)
may be expressed in the scaling form (4.1). Replacing
M /X by M =0 (1), and defining

[M'+Xb.Ff,(d)X '~'] f&(d)g —el2
6 t= —m

6
(5.16)

where E=4—d, m is a renormalized mass,

(5.13)
and replacing ( u —6)/u —1 near the isotropic fixed point
we find

H g Uz U6 r t f2~x H g U4s+ + + =f& ', hatt+
1 — s+ + +M ~g ~ M M'~ 6M M

f2bF H g vq U6
X 1+ q+ + +MFMM6M4M6

—1/y~ —1

(5.17)

with d =4—E,

P= —,, 5=3+ 2E'

2 —E
(5.18)

(5.21) agree with the values of P; given in Table I in the
large-N limit.

VI. EXAMPLE: THE CUBIC CASE WITH RA
2
E

2
2 —E

(5.19)

, (5.20)

2E

2 —E
OF=

2 —E

To demonstrate how the equation of state (5.13) yields

2E 2E 2E the general results described in Sec. II, we give here a de-
og =2+, 04=, 06= —2+

2 —E 2 —E 2 —E
tailed analysis of the most disputed case of a cubic system
with random uniaxial anisotropies, in which we find a

4 first-order transition. For brevity, we use U4
——U and

For v =0 the large- N theory in dimensions

The exponents cr; for i =g, 4, 6,g,F are related to y; by 2 & d & 4 Possesses two different phases: a paramagnetic

;=try;/p. Indeed the values given by Eqs. (5.20) and, Phase and a spin-glass phas'e depending upon t & t, or
t ~t„where

(6.1)

(0) (b) (c) (e)

When v & 0 the system can have a ferromagnetic phase,
as can be shown by an investigation of the equation of

(~) (g) (h) (1. ) (a) (c) (d)

FIG. 10. Diagrams representing Eq. (5.5). The dot stands for
mo. The arrow stands for an applied field H.

FICx. 11. Equation for the self-energy X (the transverse
mass). The dot stands for mo.
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and, substituting for the exponents from Eq. (5.18)
through (5.20)„we find

(ME)2 f (2 —E)/2ME+ ) Zf f u
1 —E (6.3)

whose solution is

ME ( f (2 —E)/2+ 2 —E 1 —E2 f2
U U — U=T I

1/2

(6.4)

state and the free energy of the system. We start by con-
sidering the equation of state; the discussion of the free
energy follows.

Consider first the case t=0. We look for a solution of
Eq. (S.17) with M&0 for H=O. We obtain

—1/y~ —1

(6.2)

coincides with that of the v=0 case, as follows from Eqs.
(5.11) and (5.12) with g a'nd u6 set to zero. In particular,
when M=O, the phase boundary between the spin glass
q&0 and the paramagnetic phase does not depend on u.

A schematic phase diagram for large X is depicted in
Fig. 12, representing the v- T plane for fixed 6 ~ O. Figure
13 represents the phase diagram in the v- T plane for fixed
4&0. These diagrams describe the N = m case. For fi-
nite X, we might expect the slope and curvature of the
phase boundary to change. generic phase diagrams have
already been displayed in Sec. II but here we display them
to show the particular characteristics of the X = oo case
with cubic symmetry breaking.

We now turn to check the free energy. For U & 0, this is
obtained using a functional integral technique (Appendix
A) and we find

The positive sign before the square root gives the stable
solution in the case 6=0, so it is expected to be the stable
solution for 6~0. We see that a real solution ceases to
exist whenever the argument of the square root becomes
negative, i.e., for

3
q —apl p2(u —b, ) 6

2

2 2v(—
3 ]

(6.S) ln p'+r—
12 p p2+

(6.9)

in any dimension. This is consistent with the phase
boundary at t=O given by Eq. (4.6) with 8=1. Actually,
by considering the free energy, it will turn out that the
tion with M&0 will become unstable even before (for
higher values of u), but this only means that the coeffi-
cient of 2)), on the right-hand side of Eq. (6.5) has to be
modified while the scaling exponent 0 remains correct.
We also see that the transition is first order since M has a
finite discontinuity at the phase boundary. In the general
case t&0 we consider only the physically interesting case
a=1. In that case we obtain the following equation for
the magnetization for H=O:

where we have again rescaled M and q to be of order 1.
In this equation, X is a function of M and q is deter-
mined from the equation

aF
ar (6.10)

+= —4' + —,'XM2 ——'gq2

The other two equations BF/Bq=O and BF/8M=0 deter-
mine the equation of state as can be readily verified. Us-
ing Eqs. (5.14) and (5.16) with g=O and carrying out the
integrals, Eq. (6.9) can be written as

M' f, v'v M'+(t+ ,
'—f,f2&)M ,f, ———(6.6)

It is possible to investigate this cubic equation and we find
that the locus of points for which the solution ceases to be
real is given by the equation

3 5 u

2(u b, ) 6 6—
2

( f yd/2+ ) g f y(d —2)/2+F(t) (6.1 1)

(3t+ 2f)f2~ f)u)'+ ~ [ 2f)u&u— —

+9f) &v «+ ,'f)f2~)—
9f th/2&u ] —=0 . (6.7)

where F(t) is a linear function of t, which is cutoff depen-
dent. We have investigated Eq. (6.11) for the case t=O

At the phase boundary, the magnetization is given by

M = —,f(&v + —,
' (f)v 3t —, f)f26)'/——

For 6=0, Eq. (6.7) represents a straight line t =f)u/4 in
the v-t plane. For 6~0 and t~ —~, it is consistent
with u ~b, /

~

t
~

. As we argued in Sec. III, at T=O,
there is a phase transition for nonzero u whenever 6&0,
and the phase boundary is given by v ~ 6 in three dimen-
sions and more generally by v ~ 6 '" ' in d dimensions.

Whenever there is no solution with M&0, or the M&0
solution is unstable, the solution of the equation of state

FIG. 12. A 6-T phase diagram for the case of cubic aniso-
tropy in the large-X limit.
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I

I

l

I

I

I

I

SG(&~~O)

P (D„&O)

FIG. 13. A v- T phase diagram for the case of random aniso-
tropy in the large-N limit.

FIG. 14. A v6-Tphase diagram for d=3. In the case of ran-
dom anisotropy, the dashed line separates the spin-glass phase
from the paramagnetic phase. This lines does not exist for the
random-field case.

and d=3, and considered two possible solutions: a spin-
glass solution and a ferromagnetic solution. In Appendix
8 we show that whenever 5 ~~v the ferromagnetic solu-
tion has lower energy. At the point b, =(3f

& /2f2)u where
the investigation of the equation of state predicts that the
ferromagnetic solution starts becoming complex we find
that the spin-glass solution has lower energy, so that the
phase transition actually occurs for a higher value of v.

VII. OTHER CASES OF INTEREST
/

In this section, we outline the treatment of the other
cases discussed in Secs. II and Sec. V. In the random-
field case with cubic anisotropy, the @=1, large-X equa-
tion of state reads, when M&0 for H=O [compare with
Eq. (5.17); we have absorbed a factor f2 in b,F],

AF
[1—f, (u, )'"]M'+tM'+ „,=0 .

u6
(7.5)

into the ferromagnetic phase is second order both from
the paramagnetic and from the spin-glass phases. The ex-
ponents in the large-X limit are those of the mean-field
spherical model, as was noted previously for a transition
from X~~ to a finite number of soft components. But
for finite X, the transition should be that of the pure Ising
model for a transition from the paramagnetic phase to the
ferromagnetic one (for Az &0) and that of an ising model
in a random field for the transition from the spin-glass to
the ferromagnetic phase (for b,F&0 or b, z&0).

For the case of sixfold anisotropy (1.9), we can again in-
vestigate the equation of state assuming M&0 for H=O
When b,F+0 we obtain for d=3:

U

2 =fi ~F V

W4+1+
—1/2 2

(7 1)

The solution with M real ceases to exist when

4~F [1—fi(u6)'"]
t 2

)
1/2 (7.6)

M f, v uM +tM+ —=0 .
V'u

(7.2)
(7.7)

and thus the phase boundary is given approximately by

165~
t4

The locus of points for which the solution ceases to be
real is given by

(3t flu)'+ .'[ 2f~u&u+9f—~&ut+2—7b—F/V u] =0.

For t=O this yields

(7.3)

4 3 2~F= 27f iu (7.4)

which is consistent with 04„———, for large % (compare
with p&/pF in Table I). The situation for a quadratic
symmetry breaking is very similar, the only qualitative
difference is, as indicated in Sec. II, that the transition

Note that the analysis is valid only for small u6 (u6 & 1),
otherwise we go out of the domain of stability of the
model, and higher-order operators have to be added.
Equation (7.7) implies that the phase boundary in the u6-
T plane diverges for t~0 from below. An investigation
of the free energy is necessary to determine whether the
transition does not actually occur for lower T. A u6-T
phase diagram for X = oo and d=3 is depicted in Fig. 14.

Similarly for the random-anisotropy case, an investi-
gation of the equation of state reveals that the phase
boundary is given approximately for v 6 & 1 by

V6 (7.8)

for t&0. Again the accurate location of the transition
can be obtained from the behavior of the free energy.
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VIII. DISCUSSION

As discussed in Refs. 3 and 13, many real systems have
random uniaxial anisotropies (or equivalent random
terms), and long-range order is stabilized in them only be-
cause they also have uniform anisotropies A. t finite values
of these (cubic or higher-order) uniform anisotropies, we
predict the typical phase diagrams of Figs. 4(b) or 5(b). In
some cases, a spin-glass phase will precede (or replace) the
ferromagnetic phase, and in others, the transition will be-
come first order. In most real systems Az is small com-
pared to the relevant uniform anisotropy parameter (e.g. ,

vq
"

), so that the first-order effect may be small (i.e., a
small discontinuity very close to the continuous transi-
tion). It would be very interesting to find real systems in
which Az is sufficiently strong to allow a detailed check
of our predictions.

A much better way to study our predictions systemati-
cally occurs when one can vary b, z (or b,F) and the uni-
form anisotropy (e.g., g) in the experiment. This has been
widely achieved in random antiferromagnets, to which we
devote the next few paragraphs.

Consider first an alloy of two antiferromagnets with
competing uniaxial anisotropies (one, with concentration
p, has g & 0, which favors ordering of the S' component,
while the other has g&0, which favors ordering of the
remaining N —1 components. ) Different values of p
correspond to different average values of the uniaxial an-
isotropy g. In the absence of any additional random
terms, Fishman and Aharony predicted the phase dia-
gram shown in Fig. 15(a). A tetracritical point occurs
when g=0, in which case all the X components are ex-
pected to order simultaneously. Indeed, such a phase dia-
gram was recently observed in Fe~ Co& ~ Clz 6HzO.
However, the similar system Fe&Co»C12 represented a
more complicated situation: Wong et al observed the
existence of random off-diagonal coupling terms of the
type S'S' (i & 1), which create random fields on the S'
component when S' orders (and vice versa) thus replacing
the "mixed" phase by one of domains (for N —1 =2).

In the absence of any uniform anisotropy terms, ran-
dom off-diagonal coupling terms like S'S~ (i&j) should
destroy long-range order both for the Ã —1 transverse
components 2V&3 and for all the N components that or-
der at the tetracritical point. These would be replaced by
spin-glass phases, as in our Fig. 5(b). The transverse
phase is probably stabilized by higher-order uniform (e.g. ,
cubic) anisotropy terms, which must be relatively strong
in order also to show no first-order effects. Intermediate
values of the cubic anisotropy might yield a spin-glass
phase between the paramagnetic one and the transverse
one, as shown schematically in Fig. 15(b). Various other
possibilities might occur for various strengths of the cubic
term, and it would be of interest to study the full T-g-U-
Az phase diagram.

Another way to vary g for antiferromagnets is to apply
a uniform magnetic field, as was done for metamagnets.
In the random case, the magnetic field generates local ran-
dom staggered fields, which complicate the studies of
the Ising transition into the longitudinal phase. In addi-

SG

(b)

I

FIG. 15. Schematic phase diagram for antiferromagnets with
mixed anisotropies. TCP is the tetracritical point. (a) Case
without random off-diagonal couplings. (b) Case with random
off-diagonal couplings and intermediate cubic anisotropy (thick
line denotes a first-order transition).

tion, off-diagonal random terms like S S will immediate-
ly generate random fields on the transverse phase, and
lead to the same discussion as above.

Our discussion here has ignored several effects which
might lead to further complications. First, we described
the transition into the longitudinal Ising phase as if it
were a "standard" simple transition. As realized recent-
ly, even at d=3 the random fields cause complicated
slow relaxation phenomena, and the monodomain-ordered
equilibrium phase may never be reached in realistic exper-
iments. Similar metastability difficulties may occur in all
the cases discussed here. Second, we concluded that many
of the ordered phases may be reached only via first-order
transitions. As explained by Imry and Wortis, random-
ness may smear first-order transitions, due to a gradual
ordering of domains within the system. This smearing
may be an additional cause for the apparent lack of
discontinuities in the real experiments. These complicated
effects, as well as detailed calculations beyond the X—+ &x&

limit, are left for future studies.
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APPENDIX A

In this appendix we derive the expression for the free
energy of the random-anisotropy model in the large-5
limit. Starting with the replicated Hamiltonian (5.2), all
couplings except m0, u, and Az set equal to zero, and we
have

lim /gal exp ~y4f~ ]
n —+0 n

Introducing collective fields Q ~ (et+f3) and X we have
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F= lim —,f [dX ][dg ~][do ] + [dS' ]exp —f d"x —g [X (x)] + 5 g [Q ~(x)]

+ —, gS' (x)([ —8 +mo i—[(u —b, )/3]'~ X (x)]5 ~—Eg ~(x)/6)St1(x)
a, P

+ —, g 0. (x)( I
—5 +m i [(u ——6)/3]'~ X (x) j5 ~—bg ~(x)/6)o&(x) —H g o (x) —1, (A2)

where o. stands for the longitudinal component S' and we
have introduced a magnetic field in the 1 direction. The
fields S' with i &2 can now be separated out using the
formula

APPENDIX 8

In this appendix we consider the free energy in Eq.
(6.11) in the case t=O, d=3. The spin-glass solution of
the equation of state (with d = 3) is given by

i&2 i a, P

1V=exp ——tr 1nA
2

with

f Q [dS' ]exp —f d x g g S' A pSp~

(A3)

= 36f2~'~ q = 6f1fZ~~

and the free energy (putting u —b, ~u for small b, ) is

4 3 1 1 ) 433 1
1 3456 f 1 3456f1p3 4u 3

(81)

(82)

2 p=-,'(I —8 +m i [(u ——b, )/3]' X I5 ~

—ag t'/6) . (A4)

where we have put b, =pu and used the fact that fz f1/2——
in d=3. The ferromagnetic solution is given by

Assuming now that (o ) —~N the large-N limit amounts
to a saddle point of the free energy. We assume that at
the saddle point

M = —,
' f1[v'v +(u —', fqb /f1 )' ]—=—,f1A&v, (83)

3f1A, u/4X=—4'f1', u, q = (84)
3 1A, —pp

X =X,
gaP

cr =M,
independent of a and P and we obtain

—=—X ——Aq
F

2 24

(A6)

with

A, = 1+(1—
3fop)'~—

2 —A, A.p 3X +2p —12k,

48 32

and for this solution one obtainsA7)

(85)

——,', Aq
t' p +ma i [(u ——b)/3]' X+bq/6

+ —, ln p +mo —i u —6 3 '~X+Aq 6

+ —,'M Imo i[(u —b,—)/3]'~ X+5,q/6I HM . —

(A8)

3 f4) 4 4 1
2Ap

32u 18K,—3p

'2

(86)

As p~0, A,~2 and we see that F]~0,
Fz~ —(3/2u)f", u, so obviously the ferromagnetic solu-
tion has lower energy.

On the other hand, as p~3f1/2f& (=3 in three dimen-
sions), A,~ 1 and we obtain

Putting

X= mo —i [(u —5)/3]'~ X+6.q/6, (A9)

F, = „',f1u (1—9v/u),

F& ———„f1v (1—ulu),

(87)

(88)

we,arrive at Eq. (6.9) where we have also added the contri-
bution —UM due to cubic symmetry breaking.

so in this case FI & F2 and the spin-glass solution is more
stable.
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