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An explicit expression is proposed for the renormalization-group equations for o, Oy i.€., the magne-
toconductance tensor for the two-dimensional disordered electronic system subject to a magnetic back-
ground field. The formulas are derived from the ‘‘dilute instanton gas’ approximation, which is given a
clear meaning within the previously derived nonlinear o-model description for the transport properties of

the system.

It is widely recognized by now that electron-localization
effects due to random impurities are responsible for the
high precision (1 part in 107) of the measurements of the
quantized Hall conductance observed in GaAs heterojunc-
tions and Si metal-oxide—semiconductor field-effect transis-
tors (MOSFET’s).!

Nevertheless, when attempting to explain the observed
flat steps in the Hall conductance, starting from a micro-
scopic theory, one is faced with a basic difficulty. This diffi-
culty stems from the fact that the standard machinery
for dealing perturbatively (diagramatically) with electron-
impurity scattering does not lead to an explanation of the
surprising and interesting phenomenon of the (integral)
quantum Hall effect.

This insight has been presented in a recent series of pa-
pers,>™* in which the impurity scattering problem has been
studied field theoretically. The effective field theoretic
description in terms of the unitary nonlinear o model con-
tains a novel, topological term (6 term) which cannot be
detected in the perturbative renormalization-group ap-
proach. The essential aspects of the quantum Hall effect,
namely, the plateaus of quantized Hall conductance and the
existence of extended electronic levels, which are necessary
to carry the Hall current, have been shown to be direct
consequences of the field theory and, furthermore, topologi-
cal in origin.

A way of understanding the nature of the theory is via
the notion of nonperturbative vacuum- states (instantons)
which are meaningful in the region of weak coupling
(1/0x) or weak localization and which are responsible for
the breakdown of perturbation theory.*

In this Brief Report I reconsider the meaning of instan-
tons for the electronic system. In particular, the dilute in-

stanton gas approximation is found to be well justified in .

this case and is furthermore exploited in studying the
renormalization-group equations for the conductance tensor.
The results qualitatively describe the whole region of weak
and intermediately strong coupling or localization. It is con-
cluded that the dilute instanton gas serves as the precursor
to the quantum Hall effect.

The central issue here is the understanding of the effec-

tive Lagrangian that describes the transport of the two-
dimensional free-electron system in a random potential,
subject to a constant magnetic background field, given by?

L=go% fdzr r(V,0V,0)
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where Q =Q,‘,’£'(r) belongs to the coset space
U(n+m)/U(n)xU(m).> The trace stands for the sum
over a,b (replica indices) which run from 1 to n,m for
p=1,2 (advanced, retarded indices). The physics of the
disordered electronic system follows after the analytic con-
tinuation n,m — 0. .

Among the many aspects which relate this field theory to
the disordered system, we mention the following.

(i) The first term is well known to apply to localization
problems in which time-reversal symmetry is broken.® The
connection with renormalization-group improved diagram-
matic impurity-scattering techniques has been analyzed and
discussed in detail in Ref. 6. The basic result is contained
in the renormalization-group equation:
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For all n,m (including the case of interest n,m — 0) the
theory is asymptotically free, and in terms of the disordered
electronic system, this implies that all states in two dimen-
sions are localized.

.(ii)) The second term L is a new feature and was
discovered in a derivation presented in Ref. 2. The expres-
sion multiplying o-,?y is topologically invariant and equals the
Jacobian for the mapping of the two-dimensional space into
the Grassmann manifold U(n +m)/U(n) xU(m). The ap-
pearance of long-ranged behavior in the underlying one-
particle Green’s function theory near the sample boundary
(boundary currents) imposes boundary conditions on the
critical fluctuations Q(r), which are such that

+ [ @re(01v,0,v,0D) =27ig 6)

with integer g (topological charge). The occurrence of
boundary currents therefore leads to the statement that the
two-dimensional space ought to be thought of as being com-
pactified to the sphere S2

(iii) The parameters o, o3, entering L are dimensionless
numbers, measuring the bare conductance in units of %/ A.
They are determined by an underlying massive field theory
which sets the length scale in L (phase-coherence length
n~1). They are furthermore given in terms of complicated
Kubo-like expressions,? which to a good approximation can
be evaluated in mean-field theory.” This turns out to
reduce Ando’s self-consistent Born approximation.®
- (iv) The Lagrangian forms a generalization of the more
familiar CPY~! model, which has been intensively studied
because of its similarity with the four-dimensional Yang-
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Mills theory.? As in four dimensions, the field theory exhi-
bits finite-action solutions to the classical equations of
motion (instantons). The exact role of instantons in general
remains somewhat unclear due to infrared divergences in
the semiclassical theory®'® (i.e., saddle-point plus one-loop
corrections). In the so-called dilute gas of an instanton!!
one replaces the instanton with charge g by |gq| widely
separated instantons with unit charge. In this way one gains
an entropy factor and this variety is supposedly making the
dominant contribution at large o, at which the density of
instantons is small.

The single instanton is furthermore characterized by its
position or orientation within the U(n +m)/U(n) xU(m)
degress of freedom and an arbitrary scale size p. The arbi-
trary scale size of the single instanton causes the free energy
of the dilute gas to diverge like!%!!

f-‘:;gp(p), D(p)wexpl —4man(p)] ,
| @

ox(p) =aok— "4:'" Inup

where D(p) is the density of instantons.

This infrared divergence indicates that the average size of
the instantons is much larger than the average distance
between them, and this then invalidates the original dilute-
ness ansatz. For this reason one has to resort to rigorous,
semiclassical methods by summing over all saddle-point (in-
stanton) configurations and then taking the thermodynamic
limit.°

In this latter respect, the situation is different for the elec-
tronic system. In the limit »n,m — 0 the one-loop correction
to ol vanishes and the result shows an ultraviolet diver-
gence; hence, the thermodynamic limit of the dilute gas of
instantons does exist in this case.

The ultraviolet divergence is caused by instantons with
size on the order of w~! (magnetic length); the average
separation d, follows from the density [Eq. (4)] and is given
by d,~exp(2mcd). On the other hand, the perturbative 8
function gives rise to a correlation or localization length (a
two-loop result):!2

g=goexp[f';""ﬁ*%a)dalocexpum,a)z ®

Hence, within the physical volume £? one can accommodate
a large number of widely separated single instantons over a
rather large region of o2. We therefore may expect the
methods of Callan, Dashen, and Gross'! to lead to an im-
proved renormalization-group analysis, beyond what is given
by asymptotic freedom alone.

In order to discuss the physical parameters o, oy, We
make use of the source-term formalism of Ref. 4. This
amounts to evaluating the shift in the free energy due to
the insertion of a slowly varying background field in L:!?

-]
Tx=0%+co+ 3, cpcos(2mnoy)
=
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oyg=0%t+ 3 0,sinQQmnay) ,
n=1
where c¢,, 8, are functions of o2 only. We can immediately
conclude from these series that the space of physical param-
eters O, Oy is periodic in o, with period 1. Furthermore,

large instantion,
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on the lines o, = o =+ +integer, the Hall conductance is

unrenormalized. This observation by itself can be con-
sidered as evidence for the earlier conjecture that a phase
transition occurs at precisely those Fermi energies for which
the bare Hall conductance is half-integer; for integer values
the second term in Eq. (1) is immaterial and the usual con-
clusion of asymptotic freedom (localization in two dimen-
sions) holds.

Furthermore, Egs. (6) make explicit what we mean by the
renormalization of the parameters o,,. The evaluation of
these parameters with the aid of the renormalization group
consists of eliminating the short-wavelength fluctuations in
each topological section g of the functional integral. Such a
program can be accomplished by evaluating the partition
function of the dilute instanton gas in the background of a
'l while accounting for the fact that instan-
tons of opposite charge interact such as to lower the energy,
whereas instantons of equal sign do not interact to the same
level of approximation. This leads to the result

ox=0%x—cos(2mal) (ad)? fipe—D(p) R
@)
oy=0%—sin(2mrod) (ad)? f—q;)&D(p) ,
where the density of instantons D(p) to one-loop order is
independent of the scale size p and is given by*
D(p) =Dyod exp(—4nal) ,

where ﬁo is a positive constant. We can next incorportate
the two-loop order result of the perturbative g8 function [Eq.
(2)] by replacing the first term in the expression for o by

02— % —(872¢d) lInuL
The renormalization-group functions
Bux=00x/dInL, By=080,/9InL

are then obtained as!*

1 ~ —4mo
B = ——m—;—aixcos(Zwaw)Doe x>
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A convenient quantity to study is the ratio
By _30y sin(2mo ) ’ ©)

Broe 00 A +cos(2moy,)

which is the slope of the renormalization-group flow
through the point (o, ox). The quantities T', A are given,
within the dilute gas approximation, by

r—1, A—(Dyoi8n?) lexp(4mo,)

more generally, they will be a function of both o, ox.
From Eq. (9) one can deduce the renormalization-group
flow as iltustrated in Fig. 1. The basic assumption is that
the fixed point on the lines o, = —i— + n does exist; this fixed

point is given by
A=A(Gx, 0=+ +n) =1

For very small values of o, (indicated by dotted lines in
Fig. 1) the flow diagram is extrapolated from the dilute gas
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FIG. 1. The renormalization-group flow diagram as obtained
from the dilute instanton gas method.

result (the full lines in Fig. 1), keeping in mind the
aforementioned global properties of the flow diagram.

The result shows in an intriguing manner what the formal
analysis of Refs. 2—4 was all about; upon scaling the disor-
dered system from microscopic length scales (on the order
of the cyclotron radius for strong magnetic fields) to macro-
scopic length scales, the transport properties of the system
scale from whatever was microscopically determined, and
hence nonuniversal values of the magnetoconductance ten-
sor, to the quantized values o =0, oy, =integer in units of
e?/h. This aspect of universality is synonymous with the ex-
perimental observation of the (integral) quantum Hall ef-
fect.!s

We conclude with a series of comments.

(i) The double-dotted lines (- -—- - =) represent the lo-
cation of the bare parameters in L for the strong magnetic
field case. The result for Landau-level index n are located
in between the lines o, =rand n +1.

The maximum of o at the center of the Landau level
increases linearly with Landau-level index » and is indepen-
dent of the details of the random potential and magnetic
field.” This allows for an estimate for the localization length
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for the states near the band center (o-v=—;— +n) in the
higher Landau levels which is given by Eq. (5). The varia-
tion in localization length as one moves from the band
center [Eq. (5)] to the band tails (£ =cyclotron radius) be-
comes more and more pronounced in the higher Landau
levels and this very strong effect might explain the oc-
currence of mobility edges and bands of extended states in
the finite-temperature experiments. For the 'lower Landau
levels, on the other hand, the bare coupling becomes large
and the corresponding electronic levels are all strongly local-
ized (£ =cyclotron radius) with the exception of the band
center.

(ii) The existence of the intermediate coupling fixed
points at o, =+ +n has general attractive consequences.!®

One expects a singular part of the free energy
f:(8,0) =b74 (0,6 7a)

where o and 6 are small deviations from the fixed points at
o and o= 71-+ n. Dependent upon the value of y,j > 0,
this singularity is of first order, second order, or a combina-
tion of these. For instance, the results of the large-N
CPV~! model'7 are translated in exactly this type of flow di-
agram with o5 =0; the first-order transition in this large-N
limit is represented by taking (y,7) = (2, o).

On the other hand, it is expected on physical grounds that
the localization length diverges for the electronic system as
one approaches the singular point (i.e., a second-order tran-
sition). In this way, one can associate an infinite number of
extended electron levels with this singularity, which are
necessary to carry the Hall current. Y

(iii) In order to understand the above-mentioned experi-
ments one would naively substitute an effective,
temperature-dependent length for L, namely, the inelastic
scattering length determined by the Coulomb interaction
between the electrons.!’® The flow lines of Fig. 1 are then
temperature driven (high temperatures to top, low tempera-
tures to bottom) and the results then describe the experi-
ments qualitatively well. In order to make a more detailed
contact with experiment, it is desirable to plot the data for
the conductance in a way as illustrated in Fig. 1. This will
serve as a valuable check on the validity of the ideas on
two-parameter scaling as suggested by the noninteracting
problem.
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