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Burstein shift of the contact exciton
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With the use of the contact exciton model, the influence of a finite concentration of conduction electrons
on the exciton energy is studied. Screening, gap renormalization, and the Burstein shift are taken into ac-
count. The absolute exciton energy increases with carrier concentration, while the binding energy de-
creases. However, no Mott transition occurs.

I. INTRODUCTION

The optical properties of semiconductors and insulators
are altered drastically when there is a finite concentration of
free carriers in the conduction band. This can be achieved
by doping as, e.g. , in the work of Raz, Gedanken, Even,
and Jortner. ' While the following considerations can be
equally well applied to a finite hole concentration in the
valence band, the situation is slightly different when holes
and electrons are simultaneously present, because then
recombination takes place. To avoid this complication, we
do not discuss experiments where the carriers are generated
optically or by raising the temperature.

In the framework of band theory, the presence of a non-
vanishing carrier concentration causes the Burstein shift:2
As a consequence of the exclusion principle, only unoccu-
pied states are available for interband transitions. The
threshold energy for direct absorption is therefore given by

g2 kF2

Eg = Eg+
2p

where Eg is the fundamental gap, kF the Fermi wave vector
of the conduction electrons, and iu, the reduced mass o(
valence and conduction band. The situation is sketched in
Fig. 1.

As is well known, excitonic effects modify the absorption
spectrum. This is due to the Coulomb interaction between
electrons and holes and must be taken into account also in
the present case of a degenerate semiconductor. It does not
only produce bound states (the excitons), but it also gives
rise to self-energy corrections of electrons and holes; this
leads to a renormalization of the fundamental gap.

In a degenerate semiconductor, the free carriers screen
the Coulomb interaction thereby reducing the excitonic
binding energy. This effect has been treated by discussing
the spectrum of a Yukawa or similar potential. . In these
types of theories, however, the exclusion principle or, more
generally, exchange effects are neglected and therefore no
Burstein shift is obtained. The most complete treatment of
excitons in degenerate semiconductors is due to Mahan. '
Using a diagrammatic approach, including screening and ex-
change, he calculated the absorption spectrum for different
densities.

In this paper we present a pedestrian version of Mahan's
work, using a simplified exciton model, namely, the contact
exciton, and the equation of motion method. Our theory
can be regarded as an amalgamation of Burstein's theory
with conventional exciton theory. This means that we take

into account the exclusion principle, screening, and gap re-
normalization. However, we do not treat effects outside the
framework of exciton theory such as, e.g. , the relaxation of
the conduction electrons or Auger broadening. Therefore,
our exciton has an infinite lifetime; we do not obscure this
failure by introducing a phenomenological damping con-
stant.

Owing to the simplicity of our model, we can solve the
problem analytically. In the weak binding limit, we find an
exponentially small binding energy, in agreement with
Mahan. An important result of our treatment is the obser-
vation that no Mott transition occurs; i.e., we have an exci-
ton with energy below Eg for arbitrarily small potential.
However, exciton states with energies in the range between
Eg and Eg are degenerate with recombination processes
from the Fermi sea in the conduction band (if unoccupied

FIG. 1. Energy bands of the model under consideration. The
valence band is full (no holes), the conduction band is filled with a
degenerate electron gas up to kF. Eg is the band gap, Eg the
threshold energy for optical absorption. Valence electrons with
(k~ & kt; cannot make direct transitions.
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states are available in the valence band). This may lead to a
Fano-type damping, 7 but is outside the scope of the present
paper.

II. EIGENVALUE EQUATION

The contact exciton model is defined by the following
Hamiltonian:

H= Hp+ Hc

Ho = $ [E,(k) c«c«+ E„(k)v„u«]

expectation value of the remaining two. We then get

[S«(q),H ]RpA Vp g [f (k ) + 1 —f„(k') ]S«(q)
k

Vp[f (k) f' (k+ q)] —g S,(q)1

k

with

(v v„,) =f„(k)5„„i= A„„i

(2.8)

(2.9)

H& = Vp ~ CJ UJVJ CJ

J
(2.1)

S„(q)= ~«c«+, ,

the interaction term can be written as

(2.2)

Hp is the Hamiltonian of the band model. From the
Coulomb interaction, only the direct electron-hole part is re-
tained, and is modeled by a contact interaction, effective
only for electrons and holes on the same lattice site. It is
written down in Wannier representation, where c, , v, create
a conduction or valence electron, respectively, in a Wannier
state, located at RJ.

Introducing the electron-hole-pair operator

( „' „,) =f,(k)a„„,=e(k, —~k~)a„„, .

Here, we have made explicit use of the fact that the valence
band is full and the electron gas in the conduction band is
degenerate.

Having applied the RPA, Eqs. (2.6) and (2.8) contain
only the operators S (q), and the eigenvalue equation

(2.5) can be solved with the ansatz (2.4). On the other
hand, the intraband dynamics has disappeared; the conduc-
tion electrons are present only via their occupation number
f, (k).

The first line of (2.8) contains only S«(q), just as (2.6).
Therefore, it can be absorbed into the contribution from Hp
and leads to the gap renormalization. Defining the number
density as

H. = —Vo—g S«(q)S (q)1

k, k, q

(2.3)
n = —$f, (k)1

k
(2.1O)

S,= (X) '~'g@(k, q)S„(q)
k

(2.4)

and, within exciton theory, it is requested to satisfy the fol-
lowing equation of motion:

[S,H] = E(q)S (2.5)

Then, $(k, q) is the (Fourier transform of the envelope)
wave function and E(q) the energy of the exciton.

In order to evaluate the commutator in (2.5), we need
[S«(q),H]. It is given by

f S (q),Ho] = [E,(k+ q) —E.(k) ] S (q) (2.6)

[S„(q),H, ] = —Vo—g (v«v „u,c, ,h
1

k , k, q

The exciton operator is defined as a linear combination of
electron-hole pairs with the same total wave vector q,

we have finally

[S„(q),H] = [E,(k+ q) —E„(k)—n Vp] S«(q)

+ Vp[1 —f (k+q)] —gS (q) . (2.11)
k

Inserting this expression into the eigenvalue equation, the
following equation can be derived:

1= Vo-
e(lk+ ql —k, )

2.12
E,(k+ q) —E„(k)—n Vo —E(q)

The root of this equation, E(q), is the exciton energy. The
Burstein shift is contained in (2.12) through the numerator:
states below kF are excluded. As already mentioned, the
term n Vp in the denominator represents the gap renormali-
zation. In order to include screening, we must specify the
dependence of Vp on the density n. We put

c ii ic«+pU ic I ip ii)
k +q k k+q kk

Vp= V(1 —
A kF) (2.13)

(2.7)

From (2.7) it is clear that electron-hole pairs are not true
eigenstates of the system: they couple to more complicated
states, namely, electron-hole pairs dressed by intraband
transitions. This is where the dynamics of the conduction
electrons comes into play and, in a rigorous theory, one has
to take them into account. We stay within the framework
of exciton theory and truncate the hierarchy starting with
(2.7) by applying the random-phase approximation (RPA).
This means that we replace the product of four operators in
(2.7) by all possible contributions of two operators times the

g2/ 2 52k
E,(k) =Ego+, E„(k)=-

2 Egg~ 2 m/g

(2.14)

and a spherical Brillouin zone

Us= ko
4m

3
(2.15)

where A. is an additional parameter, controlling the impor-
tance of screening. The form of (2.13) is motivated by the
fact that screening in a degenerate electron gas is described
by the squared Thomas-Fermi wave vector qTF. This quan-
tity scales as n', i.e., as k~.

We evaluate (2.12) for isotropic parabolic bands
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For direct transitions, i.e., q=0, this leads to the following
integral:

with

X2+ +
(2.16)

82k k E,'- nv, E—(0)0 o F ~&/3

2p, ko 8' (2.17)

8' is the joint bandwidth, o, the filling factor, and ~ the
dimerisionless exciton energy measured relative to the re-
normalized gap

C9

LU

Eg(n) = Eso nVp— (2.18)

III. RESULTS AND DISCUSSION

Solving (2.16) for e, we obtain the energy E(0) of the
bound state, if it exists. First of all, we note that the in-
tegral diverges logarithmically for e = —o.2, or

E(0) = Es(n) + Wn2 = Eg (3.1)

Therefore, Es is the solution of (2.16) for Vp=O. This
means that the exciton energy approaches the Burstein-
shifted threshold for vanishing potential. In addition, due
to this divergence, there is a solution ~ & —n for every fi-
nite Vo& 0. Since the Mott transition is defined as the
point where the exciton energy merges into the continuum,
E(0) =Et, we conclude that it takes place at Vp=0; i.e.,
there is no Mott transition for finite Vo. Note also that
e = 0 plays no particular role.

This is in contrast with the undoped case ( n = cr =0).
There, the continuum starts at Eso and a finite Vp & IV/3 is
necessary to produce a bound state e & 0.8 9 This is due to
the singularity in the density of states at k=0. However,
k=0 is excluded from the integration as soon as o, & 0. If
one used a screened potential like (2.13) but put n=0 in
(2.16), one would erroneously predict a Mott transition at
Vp= W/3 and e=0. This mistake is made in the conven-
tional formulation of the problem as a Schrodinger equation
with a screened potential.

The integral in (2.16) can be carried out analytically and
we obtain

branches of the solution e ( Vp, n) join smoothly at

Vp= (3.4)
3 1 A

The upper branch vanishes as n 0.
In Fig. 2 we have plotted the solution of (3.2) for some

representative parameters.
For- low densities, the following approximate, but explicit

solution can be derived by expanding f(x). For Vp& Vp

we get
r

E(0) = Eso Eso+ A.—kp-jap+
m 3 ep

where E~~- 8'~0 is the exciton binding energy for n = 0.
For weak binding and Vo ( Vo we obtain

t2kF2 lE(0) = E 2e—xp( —I/8)
p 1+A

(3.5)

(3.6)

where

I

0.05
DEN SIT Y n

FIG. 2. Exciton energy E(0) and threshold energy Es as func-
tions of the density according to (3.2). Energies are measured in
units of W, the joint bandwidth. A bare potential of V=0.78'and
a screening parameter Xko=1 has been chosen. The dotted line
represents the renormalized gap E(n).

3V, (I —~)J(,
~—1 —~+4~, [f

o. +e (3.2)
Vo5=

2(l —a) ( Vo —Vo)
(3.7)

where

f(x) = tanh '(x) —n'& e~0,
—tan '(x) a~0 . (3.3)

Note again that f(x) is continuous at a=0 and the two

This is essentially Mahan's result. 5

This completes the discussion of the influence of free car-
riers on the contact exciton. Details may be due to the
model; trends are believed to be general. It must be
remembered, however, that the real situation is complicated
by the dynamics of the conduction electrons.
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