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Higher-order fractional quantum Hall effect
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The Hamiltonian describing interacting two-dimensional electrons in a high magnetic field is diagonalized

numerically for a small number of particles to obtain the low-lying excitation spectra. The results include

estimates of energy gaps for values of v (the lowest-Landau-level filling factor) equal to certain multiples of
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. These v 's are characterized by the existence of periodic rigid parent states which gen-

erate maximum phase space. The even-denominator cases are markedly different.
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In a previous paper' we have tried to extract essential
physics of the fractional quantum Hall effect from some
finite-system calculations. The main conclusion is that for
v= p/q and q odd, there are precisely q-equivalent ground
states. Each ground state is characterized by a periodic
parent state with period q. The parent states are rigid in the
sense that the only way to change them without raising the
energy is to shift them by an integral number of steps. The
lowest-energy excitations then consist of kink-antikink pairs.
The kinks interpolating between different ground states car-
ry a charge +e/q. The precise quantization of the conduc-
tance relies on a geometrical derivation' of the Hall con-
ductance. Numerical evidence was presented there for the
v = T and v = ~ cases. In this paper we present results for

higher fractions. Besides being of theoretical significance,
those results should be of interest in view of the recent ex-
periment by Chang et a/. in which more higher-order frac-
tions are resolved.

Apart from a constant kinetic-energy term, the Hamiltoni-
an is essentially an electron-electron interaction truncated
to the lowest Landau level

H g e34'CJ Cj + X g X X g j j j CJ' Cj Cjt CJ'

J J) J2 J3 J4

where

One important feature of the above Hamiltonian is that it
depends only on the differences of the j's. Because of the

momentum conservation the total momentum J= g, ='t jI
is a good quantum number. The energy eigenstates can be
classified according to their total momentum. As in Ref. 1

we use

Ij~,j2, . . . ) =(Cg CJ )I0)

to denote a single-particle Slater state in which the j~ th,
j2th, etc. , orbitals are occupied. Because of the symmetry
property E(J)=E(J+N/q) we can restrict J to a number
smaller than or equal to (N, /q) (~ = p/q).

Figure 1 displays the low-lying spectra for v= 5. From

the figure we estimate the v = —, gap to be about 0.01 (the

unit of energy is e2/l), which is certainly smaller than the
v = T gap and the v = T gap which is about 0.05 from Fig.

2. It is interesting to note that in Figs. 1 and 2 the gap size
is fairly independent of the number of particles despite the
smallness of the systems. Also notice that the optimal
values of J correspond to periodic parent state with period 5

in both Figs. 1 and 2. For example, the parent state
I1,5,6,10,11,15,16,20), which has a total J equal to
84—= 4(mod20), nicely characterizes the ground state at
J= 4, for W, = 8 and W, = 20. It is worth mentioning that
the amplitude of the oscillation of the mean occupation
number p(j) = (CJ C&) (Fig. 4 in Ref. 1) has decreased by a

factor of 2 in going from X,= 6 to W, =8 so it is only a
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We adopt a square geometry (area = L') and periodic
boundary conditions so that the integer indices labeling the
Landau orbitals are between one and N, (the degeneracy of
the Landau level). l is the magnetic length. The filling fac-
tor v is equal to N, /N, , N, being the total number of elec-
trons. Zero momentum is excluded in the sum (3). 8'
means momentum conservation jt+ j2=—j3+j4(modN, ).
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FIG. 1. Low-lying energy (in units of e2/I) spectra for v =
5 (4

and 5 electrons).
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FIG. 2. Low-lying energy (in units of e /Ij spectra for v=
5 (4,

6, and 8 electrons).
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FIG. 3, Low-lying energy (in units of e2/t) spectra for v=
7 (4

and 6 electrons) and for v=
&

(6 electrons).=3

finite-size effect. The fact that the —', gap is larger than the

v = T gap suggests that v = T is no more fundamental than
= 2

5 I

In Fig. 3 the N, = 4 and N, = 6 cases for v =
7 and the

N, =6 case for v =
7 are shown. Due to large dispersion of

the v = 2, spectrum an estimate of the v=
7 gap of about

0.02 is not as reliable as the v =
5 or v =

5 cases. But it is

certainly much'larger than the v =
7 gap which is estimated

to be 0.003 and smaller than the v =
7 gap which is about

0.035. The results reveal a trend that for v equal to an ir-

reducible multiple of I/q, the closer it is to —,
' the larger the

energy gap. This trend seems to be there in Fig. 4 as well.
We also note that the energy gaps at v = —, and v =

7 are—2 —3

comparable to the v=7 gap. These two features are in

agreement with experimental findings of Chang et al. If
one can take the estimates of the v=

7 and v= 9 gaps from3 4

Figs. 3 and 4 seriously, then the energy gap at v= (n/
2n+ I) (n=1, 2, 3, . . .) seems to decrease linearly with

2
—v = I/[(2(2n+ I)]. The energy gaps for frac'tions we

have studied so far are tabulated in Table I.

Some even-denominator cases have also been examined.
The v =

4 case shares with v =
2 the accidental extra de-

generacy. For v = T and N, =6, if the parent state had a

period 8 then the optimal J should be even, but it does not
turn out to be the case. The same occurs for v=, o and

N, =6.
We would like to point out that while the periodic parent

state is a useful construct in that it predicts the right total
momentum of the ground states, it is in general not the
lowest-energy single-particle Slater state and its overlap with
the true ground state decreases with the size of the system.
For example, in the v = —,8 case the probability of the parent

state I1,4,7, 10,13,16) in the ground state is only 0.8%.
This is of course consistent with the very small amplitude
oscillation of the average occupation number p (j). In

the v =
T5

— case the probability of the parent state

I1, 5, 6, 10, 11, 15) is quite significant (=0.24); this is, how-

ever, only a finite-size effect much like the amplitude of the
oscillation in p(j).

Another useful aspect of the parent state is the number of
states N one can generate from it by switching on
momentum-conserving interactions. For a fairly complicat-
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FIG. 4. Low-lying energy (in units of e2/I) spectra for v= 9, 9, tt, and
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TABLE I. Energy gap (in units of e2/I) for some odd-denominator filling factors v.

1
3

1
5

2
5

2
7

2
9

2
11

Energy gap 0.08 0.01 0.05 0.003 0.02 0.035 0.018 0.025 0.01 0.018

TABLE II. Dimension of phase space for various odd-denominator filling factors v, and total momenta J. Numbers corresponding to
parent states with period q are underlined. v=p/q; p and q are relatively prime.

5

4
12
5
15
6
18
7

21
8

24
4
20
5

25

10
6
15
8

20
4
14
6

21
6
14
4
18
8
18
4

22
6

22

40

200

1035

5537

30624

240

2125

20

333

6288

70

2583

217

168

2424

330

3399

43

200

1026

5537

30 664

245

2125

22

333

6308

73

2583

212

172

2438

335

3384

40

200

1038

5537

30624

240

2125

335

6288

2586

42

200

1026

5537

30667

244

2125

6310

2583

201

1035

5537

30 624

2126

1028

5537

30 664

5538

30 624 30666

TABLE III. Dimension of phase space for various even denominator filling factors v, and total momenta J. Numbers corresponding to
parent states with period q (2q) are underlined singly (doubly). v= p/q; p and q are relatively prime.

4
8
5
10
6
12
7
14
8
16
9
18
10
20
4
16
5

20
6
24
6
16
9

24
6

20

8

25

78

245

800

2700

9250

112

775

5616

504

54477

1944

10

25

75

245

808

2700

9225

116

775

5598

497

54477

1932

8

25

80

245

800

2703

9250

112

775

5620

54484

9

25

'75

245

810

2700

9225

115

775

5598

26

78

245

800

2700

9252

776

5616

76

245

808

2703

9225

5601

246

800

2700

9250

809

2700

9225

2704

9250 9226
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FIG. 5. Low-lying energy (in units of e2/I) spectra for v=
2 (4

and 8 electrons}.

ed Hamiltonian such as (1) we expect N to be equal to the
total number of Slater states with the same total momen-
tum J as the parent state. The function N (J) [as
well as the energy E(J)] possesses an inversion symmetry
N( —J)=N(J). The inversion symmetry combined with
the translational symmetry N(J) = N(J+ N, /q) give rise to
a reflection symmetry of the functions N(J) and E(J)
about values of J= J+ corresponding to periodic parent
states. The slight deviation from such an exact symmetry of
Fig. 2 in Ref. 1 is due to the approximate nature of the cal-
culation (the v= —,s spectrum) and due to an error (the
J= 1 spectrum for v = ~ should be the same as the J= 45

spectrum). Therefore, N(J~) is always a local extremum.
For odd-denominator fractions N(J~) is always a true max-
imum as shown in Table II. We thus see that there is a
strong correlation between energy and phase space. A max-
imum phase space invariably leads to a lowest-energy state.
This is plausible if we note that N(J) is also the total
number of eigenstates with momentum J. The more eigen-
states there are with momentum J, the more likely it is to

find an eigenstate with momentum J split off from all the
excited states with any momentum.

For even-denominator fractions the situation is entirely
different. We examine the case v =

2 first. From Table III
it seems that whenever the total number of particles N, is
even, a parent state with period 4 always generates the larg-
est phase space. This is intimately related to the exclusion
principle as one can see in a simple example. Take
v = &, 4= ~1, 3) has a period 2. Due to the exclusion prin-

ciple the two particles cannot scatter, therefore N(4) =1.
On the other hand, the period 4 parent state W'= ~1, 2)
can generate two states N(3) =2 & N(4). If we had Bose
statistics then N (3) = 2, and N (4) = 3 would be the other
way around. Apparently due to the same reason
3, 4, 7, 8, 11, 12, . . .) generates a larger phase space than
2, 4, 6, 8, 10, 12, . . .) does. Because of this enlargement of

phase space it seems a period 4 parent state always gen-
erates a true ground state as evidenced in Fig. 5, and Fig. 3
in Ref. 1. For an odd N, a period 4 parent state is clearly
impossible. The existence of two types of competing period
parent states accounts for the oscillating behavior of the en-
ergy per particle as a function of N, (as reported in Ref. 1

for v = &) and is responsible for the proliferation of
equivalent ground states. From Table III it seems the unex-
pected doubling of the period of the parent state does occur
for other even-denominator fractions as well.

With the evidence presented here and in Ref. 1 we feel
we have a reasonable understanding of the fractional quan-
tum Hall effect in terms of the Hamiltonian (1) and the
concepts of ground-state degeneracy' and associated kink
excitations. Despite the lack of a completely analytic solu-
tion, the energy gap for various v can be estimated from
small system calculations. We have also gained considerable
insight into the absence of even-denominator fractional
quantum Hall effect through such calculations.
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