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A quasireciprocal relation is pointed out between the Csiv and 8-Sn structures. This relation comes from
a certain symmetry of the Madelung constant in a family of tetragonal diamond structures. The product of
the axial ratios c/a for the two structures is predicted to be 2.0084, slightly lower than the experimental
value 2.04-2.05 and very close to (¢/a)?=2 for the ideal diamond structure: a manifestation of the re-

ciprocal relation.

The crystal structure of a high-pressure phase of cesium
metal (CsIv) has recently been determined by Takemura,
Minomura, and Shimomura.! It has a tetragonal symmetry
with four atoms in a rectangular unit cell and an axial ratio
¢/a=3.73. More recently it has been found that rubidium
metal also shows a phase transition to a high-pressure phase
(RbV) with the Cs1v structure.?

The Cs1v structure is obtained from the diamond struc-
ture (¢/a=+/2) by stretching it along the c axis of the rec-
tangular unit cell and is accordingly of the tetragonal dia-
mond structure. Thus the CsIv structure belongs to the
same family as the crystal structure of B-Sn, which has
¢/a=0.5456.3* The B-Sn structure is known to be the
high-pressure form of Ge and Si,>” where ¢/a =0.55.

In this Brief Report we wish to point out that the Cs v

and B-Sn structures are quasireciprocal to each other, with a
certain generalization of the notion of reciprocal lattice.
Thus the doublet of Cs1v and B8-Sn structures may be com-
pared to the known one of bce and fcc, of which one is the
reciprocal lattice of the other. We shall argue that the
quasireciprocal relation may originate from some symmetry
in the curve for the Madelung energy as a function of the
axial ratio. This argument seems relevant in view of a re-
cent study by Yin and Cohen.” According to these authors
the Madelung energy plays a dominant role in determining
the axial ratio for the high-pressure form of Ge and Si.
Following Heine and Weaire (HW),® we consider a self-
reciprocal family of lattices where the reciprocal lattice of a
member of the family also belongs to the same family.
Since HW referred to families of the simple hexagonal
structures and of the body-centered tetragonal ones as ex-
amples, we first describe the family of rhombohedral struc-
tures which is generated from simple cubic (sc) by rhom-
bohedral distortions. For the product of the axial ratios c¢/a
in a space lattice and its reciprocal one we have a constant
value 3/2, referring to the hexagonal unit cell. The particu-
lar value (c¢/ a)0=\/3/ 2 corresponds to the sc structure
which is self-reciprocal or whose reciprocal lattice is identical
with the space one. In the rhombohedral family the doublet
of bee and fec appears at a pair of ¢/a =+/6/4 and ¢/a =+/6.
HW have shown that the Madelung energies of ions are
nearly the same for two lattices satisfying the reciprocal rela-
tion,® with refinements of the earlier arguments by Weaire
and Williams.? This is illustrated in Fig. 1 for the Madelung
constant a,s of the rhombohedral structures, where oy, is
defined by Ep = /2R,y with Ej; the Madelung energy of
an ion of unit charge and with R, the radius of the sphere
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of the volume Q, per ion. i

We want to generalize HW’s argument to a family of
tetragonal diamond structures. We write down the Ewald-
Fuchs formula!® for the Madelung constant o ,:

au=Ro| - 3 =G | 5(G) 2

Qo G
erffcVnR) [2/m =
! - , m

where R; and G stand, respectively, for the space- and
reciprocal-lattice vectors, and erfc(x) is the complementary
error function

erfe(x) = (/) [ e~ ax @

and S (G) is the structure factor
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FIG. 1. Curve for the Madelung constant «,, for the rhom-
bohedral structure as a function of ¢/a in logarithmic scale. The
axes refer to the hexagonal unit-cell.
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where the summation is taken over #z ions in the unit cell.

To show some improvement of the previous arguments,
let us for a moment consider the Bravais lattice, where
S(G)=1. For a self-reciprocal structure the sum over
reciprocal-lattice vectors (G sum) and that over space-lattice
vectors (R sum), both in Eq. (1), are identical in form,? if
the complementary error function is replaced by its asymp-
totic expression

erfe(x) ==& 4@
J7 x |
HW observed that® if the Ewald parameter m is chosen to
equate the convergence rates in the two summations of Eq.
(1), then the factors of the G and R sums become approxi-
mately equal: They have a value of #¥%/6=0.928 for the
ratio of the two factors. However, a more detailed inspec-
tion on the equal convergence rates shows that the two fac-
tors above are exactly the same.

To examine the asymptotic series of the G sum in Eq. (1)
we consider the contribution from G points lying far from
the origin. In the considered region, |S(G)|? may be re-
placed by its average value, which is equal to 1/# With this
average value taken into account as a weight, the effective
density of G points proves equal to (27 )3/Q,, since the
volume of a unit cell is nQy. From the volume for an ef-
fective reciprocal-lattice point we obtain the radius Gy of its
equivalent sphere as

GO= (6172/00)1/3 ) (5)
which must correspond to another radius
Ro= (3Qy/4m)V3 (6)

in the real space.
If we scale G and R;, respectively, by

G=Gog. R;=Ryr; , NG
the weighted g points distribute with the same density as the

r; points in the reduced space. Then the G and R sums
must have the same asymptotic series if the following iden-

(a) space lattice

(b) reciprocal lattice

FIG. 2. (a) Tetragonal diamond lattice and (b) its weighted re-
ciprocal lattice. In (a), open circles lie at z=0 plane, closed circles
at z=c/4, open squares at z=c/2, and closed squares at z=23c/4,
with the z axis vertical to the sheet. In (b), open circles lie at {=0,
closed circles at { =2w/c, 6m/c, and open squares at {=4/c, where
¢ denotes the z component of the reciprocal-lattice vector G.
Closed circles are of weight -;— and the others are of weight 1.

2615

tity holds for any distance p.

dm | 1 1 1 )
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In writing down the right-hand side of Eq. (8) we use Eq.

(4). The identity (8) proves to be satisfied by
n=Go/ QRo) =7/ QF? . : 9)

It is noted that the above value minimizes the last term in
parentheses of Eq. (1).

Substituting the value of % thus chosen into Eq. (1), we
get the Madelung constant in the form

ay=aptas;+a, , (10)
where:
13
a0=—3[z3;] — —1.861051 , 11)
.3 2 2
, exp(—vyg?) , (=yr?)
= 42 2 ls(g)lz Xp 27g +2 €Xp zy J ,
37 g 8 5 4]
12).
Y erfc(\/yr;)  exp(—yr?) 13
T 2 Nayr )

where y = (97/16) 3,

We shall below consider the term «y, leaving aside the
correction a.. For the Bravais lattices, the term «y is sym-
metric with respect to the interchange of the space and re-
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FIG. 3. Length of g and r vectors for tetragonal diamond struc-
tures as a function of c¢/a. Solid lines are drawn for g vectors,

where the number of equivalent vectors is indicated by figures in

brackets, and the g vectors with weight % by asterisks. Broken

lines are drawn for r vectors, with figures in parentheses indicating
the number of equivalent vectors. (c/a in logarithmic scale.)
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FIG. 4. Madelung constant «, for tetragonal diamond structures
as a function of ¢/a in logarithmic scale.

ciprocal lattices, and hence has the same value for two crys-
tal lattices reciprocal to each other. For non-Bravais lattices
we consider a reciprocal lattice where each lattice point g has
a weight given by |.S(g)|2 Then we look for a space lattice
for which the r sum is identified to the similar sum for a
weighted reciprocal lattice. We consider this problem specif-
ically for a family of tetragonal diamond structures.

For a tetragonal diamond structure, the space lattice and
its weighted reciprocal lattice are illustrated in Fig. 2, which
shows that a weighted reciprocal lattice belongs also to the
family of tetragonal diamond structures as far as the lattice
summation is concerned. Next we consider the length of
the reciprocal- and space-lattice vectors, which are shown in
Fig. 3 as a function of c¢/a in logarithmic scale. Notice in
Fig. 3 that the solid (broken) lines on the right side are the
reflection of the broken (solid) ones on the left side, with
respect to the vertical line at the center corresponding to the
ideal diamond lattice. Thus each of space-lattice vectors r;
for the crystal of an axial ratio ¢/a proves equal in magni-
tude to a reciprocal-lattice vector g for that of a different ra-
tio ¢*/a™* if we have the reciprocal relation

el
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Let us now consider Eq. (12), in which the g sum and r
sum are interchanged with each other for two crystal lattices
satisfying the reciprocal relation (14). Therefore the term
a; must be the same for the two crystal lattices above.

The minimum of the g sum occurs very nearly at the
point where the low-lying reciprocal-lattice vectors cross.
Referring to Fig. 3, we have 6(8) g points effectively at the
crossing point ¢/a =+/15 (¢/a=1/~/3) on the right (left)
side. These numbers with interchange coincide, respective-
ly, with the coordination numbers in the space lattice when
the crossing occurs. However, the crossing point of the
shortest r vectors shifts from that of the shortest g vectors
(Fig. 3), in contradistinction to what happens in the family
of simple rhombohedral lattices. This implies that the
minimum point of the r sum is slightly different from the
similar point of the g sum, for the tetragonal diamond struc-
tures. Though the numerical values of a; remain the same,
the minimum configurations of the Madelung energy appear
at positions slightly different from those satisfying the re-
ciprocal relation, owing to the correction term «,.

In Fig. 4 we show the curve for the Madelung constant
ay, which is the logarithmic plot of the previous results.*¢
For the minimum Madelung energy we have ay
=—1.77312 at ¢/a =0.5446 and ay=—1.77292 at c/a
=3.6881 with refinement of the values of c¢/a given by
Hafner.* A close agreement of the Madelung constants
above is comparable to that in the doublet of bcc
(—1.79186) and fcc (—1.79175).11

The axial ratios c¢/a for the minimum Madelung energy
are a little lower than the observed values, 0.55 for metallic
Si and Ge (or 0.5456 for 8-Sn) and 3.73 for CslIv, respec-
tively. These observed values are lying between the two ax-
ial ratios, one for the crossing of the shortest r vectors and -
the other for the crossing of the shortest g vectors. The ra-
tios above are estimated, respectively, as 0.5164 and 0.5774
for the B8-Sn and 3.464 and 3.873 for the CsIv structures.
The axial ratios observed are shifting from those for the
minimum Madelung energy towards the crossing point of
the g vectors.

We finally mention the reciprocal relation, Eq. (14). The
product of c¢/a for the lowest structures of the Madelung
energy proves to be 2.0084, which is closer to the ideal
value 2 than to the experimental one 2.04-2.05.

We are grateful to Professor H. Miyagi for informing us
of the Madelung constants for rhombohedral lattices.
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