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where the summation is taken over n ions in the unit cell.
To show some improvement of the previous arguments,

let us for a moment consider the Bravais lattice, where
S(G) =1. For a self-reciprocal structure the sum over
reciprocal-lattice vectors (G sum) and that over space-lattice
vectors (R sum), both in Eq. (1), are identical in form, if
the complementary error function is replaced by its asymp-
totic expression

e —X

erfc(x) =-
Qm x (4)

which must correspond to another radius

Z, = (3ng4~)'/'

HW observed that if the Ewald parameter q is chosen to
equate the convergence rates in the two summations of Eq.
(1), then the factors of the G and R sums become approxi-
mately equal: They have a value of 7r3'/6=0. 928 for the
ratio of the two factors. However, a more detailed inspec-
tion on the equal convergence rates shows that the two fac-
tors above are exactly the same.

To examine the asymptotic series of the G sum in Eq. (1)
we consider the contribution from G points lying far from
the origin. In the considered region, ~S(G)~' may be re-
placed by its average value, which is equal to 1/n. With this
average value taken into account as a weight, the effective
density of G points proves equal to (27r)'/Qo, since the
volume of a unit cell is nA, o. From the volume for an ef-
fective reciprocal-lattice point we obtain the radius Go of its
equivalent sphere as

G = (67r'/n )'/'

nM = no+ ns+ nc

where

(10)

r 1/3
3no= —3

4m
= —1.861 051

r

1/3
4

37r2

„exp( —yg') ~, exp( —yrj')
r.J

(12) .

erfc(Jyrj) exp( —yrj )
C

.2rj J7Ty I'J

where y = (9m/16)'/'.
We shall below consider the term n„ leaving aside the

correction n, . For the Bravais lattices, the term n, is sym-
metric with respect to the interchange of the space and re-

tity holds for any distance p.
1

4m
exp( —G)p /4q) =

2 exp( —
qR&& p )2 1 1 . 2 2

0 o 6'o2

(8)
In writing down the right-hand side of Eq. (8) we use Eq.
(4). The identity (8) proves to be satisfied by

~= G,/(2Z, ) =~/n$/' .

It is noted that the above value minimizes the last term in
parentheses of Eq. (1).

Substituting the value of q thus chosen into Eq. (1), we

get the Madelung constant in the form

in the real space.
If we scale G and R~, respectively, by

G= GoN, . Rg= Ror 3.0
I I I I I I I I } & I I I

3.0

the weighted g points distribute with the same density as the
rj points in the reduced space. Then the G and R sums
must have the same asymptotic series if the following iden-
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FIG. 2. {a) Tetragonal diamond lattice and (b) its weighted re-
ciprocal lattice. In (a), open circles lie at z=0 plane, closed circles
at z = c/4, open squares at z = c/2, and closed squares at z = 3c/4,
with the z axis vertical to the sheet. In (b), open circles lie at (=0,
closed circles at (= 27r/e, 6'/c, and open squares at (= 4n/c, where

denotes the z component of the reciprocal-lattice vector G.
Closed circles are of weight 2 and the others are of weight 1.

FIG. 3. Length of g and r vectors for tetragonal diamond struc-
tures as a function of c/a. Solid lines are drawn for g vectors,
where the number of equivalent vectors is indicated by figures in

brackets, and the g vectors with weight 2 by asterisks. Broken
lines are drawn for r vectors, with figures in parentheses indicating
the number of equivalent vectors. (c/a in logarithmic scale. )
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FIG. 4. Madelung constant o.~ for tetragonal diamond structures
as a function of c/a in logarithmic scale.

ciprocal lattices, and hence has the same value for two crys-
tal lattices reciprocal to each other. For non-Bravais lattices
we consider a reciprocal lattice where each lattice point g has
a weight given by ~S(g) ~

. Then we look for a space lattice
for which the r sum is identified to the similar sum for a
weighted reciprocal lattice. We consider this problem specif-
ically for a family of tetragonal diamond structures.

For a tetragonal diamond structure, the space lattice and
its weighted reciprocal lattice are illustrated in Fig. 2, which
shows that a weighted reciprocal lattice belongs also to the
family af tetragonal diamond structures as far as the lattice
summation is concerned. Next we consider the length of
the reciprocal- and space-lattice vectors, which are shown in

Fig. 3 as a function of c/a in logarithmic scale. Notice in
Fig. 3 that the solid (broken) lines on the right side are the
reflection of the broken (solid) ones on the left side, with

respect to the vertical line at the center corresponding to the
ideal diamond lattice. Thus each of space-lattice vectors r,.
for the crystal of an axial ratio c/a proves equal in magni-
tude to a reciprocal-lattice vector g for that of a different ra-
tio c'/a' if we have the reciprocal relation

Let us now consider Eq. (12), in which the g sum and r
sum are interchanged with each other for two crystal lattices
satisfying' the reciprocal relation (14). Therefore the term
o;, must be the same for the two crystal lattices above.

The minimum of the g sum occurs very nearly at the
point where the low-lying reciprocal-lattice vectors cross.
Referring to Fig. 3, we have 6(8) g points effectively at the
crossing point c/a =~15 (c/a = 1/J3) on the right (left)
side. These numbers with interchange coincide, respective-
ly, with the coordination numbers in the space lattice when
the crossing occurs, However, the crossing point of the
shortest r vectors shifts from that of the shortest g vectors
(Fig. 3), in contradistinction to what happens in the family
of simple rhombohedral lattices. This implies that the
minimum point of the r sum is slightly different from the
similar point of the g sum, for the tetragonal diamond struc-
tures. Though the numerical values of n, remain the same,
the minimum configurations of the Madelung energy appear
at positions slightly different from those satisfying the re-
ciprocal relation, owing to the correction term o,

In Fig. 4 we show the curve for the Madelung constant
nM, which is the logarithmic plot of the previous results.
For the minimum Madelung energy we have o.M
= —1.77312 at c/a =0.5446 and n~= —1.77292 at c/a
=3.6881 with refinement of the values of c/a given by
Hafner. 4 A close agreement of the Madelung constants
above is comparable to that in the doublet of bcc
( —1.79186) and fcc ( —1.79175)."

The axial ratios c/a for the minimum Madelung energy
are a little lower than the observed values, 0.55 for metallic
Si and Ge (or 0.5456 for P-Sn) and 3.73 for Cstv, respec-
tively. These observed values are lying between the two ax-
ial ratios, one for the crossing of the shortest r vectors and-
the other for the crossing of the shortest g vectors. The ra-
tios above are estimated, respectively, as 0.5164 and 0.5774
for the p-Sn and 3.464 and 3.873 for the Cstv structures.
The axial ratios observed are shifting from those for the
minimum Madelung energy towards the crossing point of
the g vectors.

We finally mention the reciprocal relation, Eq. (14). The
product of c/a for the lowest structures of the Madelung
energy proves to be 2.0084, which is closer to the ideal
value 2 than to the experimental one 2.04—2.05.

c c —2
a a

(14)
We are grateful to Professor H. Miyagi for informing us

of the Madelung constants for rhombohedral lattices.
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