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We have calculated, using the Krieger-Nightingale model, both the donor binding energy as a function of
donor concentration and the Mott constant aN, '~ in Si by numerically solving the Schrodinger equation.
The Hubbard-Sham and effective Hubbard-Sham dielectric functions are used for the screening of the im-

purity potential. Our present results are compared with earlier theoretical and experimental results.

Doped semiconductors show metallic behavior at and
beyond certain impurity concentrations. A number of ex-
perimental and theoretical estimates of the critical concen-
tration N, have been made in the recent past. Using simple
arguments, Mott' predicted that the transition would take
place when aN, ' =0.25, where a is the effective Bohr ra-
dius in the material. Krieger and Nightingale extended the
Mott model to many-valley semiconductors. Greene, Al-
drich, and Bajaj have made variational estimates of the
donor energies as a function of impurity concentration using
the Krieger-Nightingale model. Aldrich4 has considered the
anisotropic nature of the electron masses in his variational
estimate of the donor binding energies in Si and Ge. In all
these works, the host semiconductor is assumed to have a
static dielectric constant E;

The present authors have incorporated the space-
dependent or wave-vector-dependent nature of the host
dielectric function in their effective dielectric function, and
have made variational estimates of both the donor binding
energies as a function of impurity concentration, and the
Mott constant aN, ' in silicon, assuming isotropic and non-
isotropic energy bands. However, in a11 these works, the
values of the Mott constant aN, ' obtained are dependent
on the type of trial wave function chosen in the variational
procedure.

Martino, Lindell, and Berggren, with a view to obtaining
values of aN,' with high numerical precision which do not
depend on the type of trial wave function, have integrated
the relevant Schrodinger equation numerically, and have
pointed out that there is a considerable difference between
the values of aN, ' obtained by variational calculations, and
numerical integration for all semiconductors. They used an
impurity potential V(r) having the Fourier transform

V(q) = —47r e'/Ke(q) q',

where e(q) is the Hubbard-Sham dielectric function, and
obtained the value of aN, '

In this paper, we present model calculations of both the
donor binding energies as a function of aN', and the Mott
constant aN, ' in silicon. Numerical integration of the
relevant Schrodinger equation using both the Hubbard-
Sham (in which the host material is assumed to have a stat-
ic dielectric constant K) and effective Hubbard-Sham
dielectric functions [in which the host material is assumed
to have a wave-vector dependent dielectric function ez(q)]
in the impurity potential is performed. The wave-
vector-dependent host dielectric function used is that of
Azuma and Shindo.

The radial part of the Schrodinger equation to be solved
numerically is given by

t' dF+2 dF +V( )F( ) EF( )
2m dr

where m' is the effective mass in the conduction band,
which here is assumed to be isotropic. The potential V(r)
has the Fourier transform

V( q ) = —4m e'/e, rr (q )q'

where eeff(q) is the effective dielectric function which is

given by

'E ff(q) = K[ez(q) +eI(q) —1]

where the host dielectic function eI, (q) is given by
1

Kq2 KA q2 KBq2
q2+ ~2 q2+P2 q2+ y2

and the dielectric function of the impurity electrons eI(q) is
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TABLE I. The values of Mott constant aW, ~ .

Method of
calculation

Dielectric function
used

Trial wave
function

Experimental

Variational
method

Numerical
integration

Hubbard-Sham

Effective Hubbard-Sham

Hubbard-Sham

Effective Hubbard-Sham

Hulthen

Hulthen

0.21 (Ref. 9)

0.290 (Ref. 3)

0.317 (Ref. 5)

0.295 (Ref. 7)

0.412 (Present work)

given by
r

4me2 3N 1 4k' —q 2kF+ qei(q) = I+ — ln
Kq' 2E+ 2 8kFq 2kF —q

q
2

x
2(q'+ k'+ a') (6)

where

k = (3m X/v)'~

and

g'=4(3N/t 7r) ~/a

(7)

R —lnF(r ) = —1
d
dr

(9)

for different values of aN' . The value of aN', which
satisfies the continuity condition, Eq. (9), for a wide range
of R, is chosen as the value of the Mott constant aN, '

The donor ground-state energies for all concentrations
were determined by the following procedure. Since we are
interested in the bound states only, we put E= —~E~. The
continuity condition for finite values of aN'~ is given by

v is the number of the valleys of the semiconductor, which
is 6 for silicon. e,rr(q) reduces to e(q) as used in Ref. 7 if
we put A = 8 = 0 and o. = ~. We choose the effective Ryd-
berg R'= m'e~/2it~E~ and effective Bohr radius a =Et'/
m'e as units of energy and distance, respectively. The nu-
merical values of m', K,A, B, n, P, y used in our work are the
same as in Ref. 6. In order to solve Eq. (2) one needs
V(r ) which may be generated by the anti-Fourier-transform
of V(q). For this purpose a fast-Fourier-transform routine
is used.

To find the Mott constant aN, '~ the following numerical
procedure was adopted. Because of the dielectric screening,
the potential V(r) goes to zero for large values of r. Thus,
outside some radius R the potential is put equal to zero.
The radial equation is integrated numerically out to this ra-
dius with E = 0, and then matched to the solution of the
outer region through the continuity condition

since, in the latter case, the potential does not go to zero,
but varies as I/r for large values of r.

For a given value of aNt~3, the relevant Eq. (2) is in-
tegrated numerically out to a large radius R for different
values of

~
E ~. The value of

~
E

~
for which the continuity

condition, Eq. (10) or Eq. (11), is satisfied for a wide range
of R, is chosen as the energy eigenvalue.

The value of aN, ' obtained by using the effective
Hubbard-Sham dielectric function in Eq. (2) is given in
Table I along with earlier theoretical and experimental esti-
mates. We find that the inclusion of the spatial variation of
the host dielectric function increases the value of aN, '

This increase in the value of aN, '~ observed in the numeri-
cal method is larger than the increase in the value of aN, '~

observed in the variational method.
The ground-state energies are estimated as functions of

aN'~ using both the Hubbard-Sham and effective Hub-
bard-Sham dielectric functions in Eq. (2). The results are
presented in Fig. 1. The donor binding energies calculated
using the effective Hubbard-Sham dielectric function in Eq.
(2) are larger than the energies calculated using the
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FIG. 1. Variation of donor binding energy in Si, with impurity
concentration expressed as aW )' . ( ———), Hubbard-Sham
screening; ( ), effective Hubbard-Sham screening.
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Hubbard-Sham dielectric function in Eq. (2) for all impurity
concentrations.

When we compare the results based on the variational
method using Hulthen-type trial function3 and the result ob-
tained by Martino et al. ,

'7
the variational estimates look

reasonably accurate, thus showing the merit in the choice of
trial function. With the effective Hubbard-Sham dielectric
function, the results based on our variational calculation5
and the present work show considerable difference in the
critical constant, thus possibly showing that the choice of

trial function in Ref. S may have to be better. It appears
hard to solve the relevant Schrodinger equation with the
mass anisotropy included.
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