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Energy spectrum of the bound polaron
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An eigenvalue problem for an electron interacting with a Coulomb center and a field of LO pho-

nons is solved by a method of optimized canonical transformation. This method can be applied to
arbitrary values of the electron-phonon coupling constant a. The energy eigenvalues for the 1s
through 4f states have been calculated as function of a and of the ratio R of the donor rydberg

m, e /2' eo to the LO-phonon energy Ace. These values are the upper bounds to the energy E&, of
the ground state as well to all the energy levels of the excited states lying below E&, +%co. In a broad

range of o. and R, the present upper bounds are lower than previous variational results for the states

ls, 2s, and 2p. The energy levels for the 3s —4f states have been calculated for the first time by
variational means. The calculated energy eigenvalues E„I lie always below the corresponding hydro-

genlike levels, i.e., E„I/A~ & —a —R/n, where n and I are the principal and angular momentum

quantum numbers, respectively. For all values of a and R, the following sequence of the energy lev-

els for a given n has been obtained: E„~ &E„I if l ~ l . -In particular, it leads to the positive Lamb

shift E2, —E2~. The model of the bound polaron has been applied to the description of shallow

donor spectra. The calculated values agree rather well with the measured 1s-2p transition energies

for CdTe and ZnSe, and 1s-2s transition energies for CdS. For AgBr, AgCl, and CdF2 the upper
bounds for the 1s level are too low, but the 2p-3p energy differences agree well with the experimen-

tal data. It means that the short-range donor potential neglected in the polaron model is repulsive

for the considered impurities in the ionic crystals.

I. INTRODUCTION

The bound polaron is a system composed of an electron
bound to a positively charged infinitely heavy center and
interacting with a lattice polarization field of a crystal.
The theory of this system describes the electron in the
effective-mass approximation, its interaction with the pos-
itive center is assumed in the Coulomb form, and its cou-
pling with the lattice is described with the help of the
Frohlich Hamiltonian. The bound polaron is an example
of a fermion coupled to two boson fields: the Coulomb
field and the field of LO phonons, which are the quanta
of the lattice polarization field. Besides its meaning in
field theory the bound polaron provides a simple model
for a donor impurity in polar crystals.

The eigenvalue problem for the bound polaron was
treated with the help of the path integral method, ' varia-
tional method, second-order perturbation theory, '

trial Hamiltonian method, '"' and local-density approxi-
mation. ' Most of these papers analyzed the ground-state
properties, some of them" ' "" considered the first
low-lying excited states 2s and 2p as well. Calculations of
the energy levels 3s, 3p, and 3d were performed in the
second-order perturbation theory. ' However, this
method does not provide definite bounds to the energy
eigenvalues and cannot be applied to the electron-phonon
coupling a) 1. It can be expected that the high-energy
levels (n )3) are hydrogenlike, at least for small a, but
deviations from this behavior are not excluded. '

The purpose of the present work is the calculation of
energy levels of the bound polaron with the help of a
method, which can be applied for both the ground state

and excited states, and which provides satisfactory results
for arbitrary electron-phonon coupling. This approach, '

called the method of optimized canonical transformation,
is presented in Sec. II. It is an extension to strong cou-
pling of a similar approach to an exciton problem given

by Bednarek. The results and their discussion are con-
tained in Sec. III, where we investigate moreover to what
extent the model of the bound polaron is useful in a
description of shallow donor spectra in polar semicon-
ductors and ionic crystals.

II. METHOD OF OPTIMIZED
CANONICAL TRANSFORMATION

The starting Hamiltonian for the bound polaron is
given by'
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where r is the position of the electron with respect to the
Coulomb center; m„ the electron-band mass; ai, (ai, ), the
annihilation (creation) operator of the LO phonon with
the frequency co and the wave vector k,

uk ———(i /k )(2~e /eficuQ, )'

1/e= 1/e„—1/eo, e (eo) is the optical (static) dielectric
constant, and 0,, the quantization volume. It is con-
venient to deal with Hamiltonian (1) transformed with the
help of a canonical transformation. ' The present ap-
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proach is based on the transformation

U=exp g [Fk(r)ak —Fk(r)ak]
k

which yields

A = U 'HU=Hp+H)+H2 .

Here,

fi V'

2m,

of the canonical transformation (2). Effective Hamiltoni-
an (7) depends on g also. Its eigenvalues obtained by
minimizing (g„& ~

H,ff(g)
~ g„f ) with respect to g and to

the variational parameters of the electronic wave function
provide estimates to the energy eigenvalues of the

starting Hamiltonian II (see Appendix).
Method (a) leads to numerical complications for the ex-

cited states, since the expectation values of H, ~~ are biqua-
dratic functionals of f„]. Thus, in this paper method (b)
will be applied. I propose displacement amplitudes of the
form

g2+g I
VF. '+~ IF.

I
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where the phonon amplitudes are given by

(9)
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does not depend on the phonon operators,
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is a linear function of the phonon operators, and

II2 ——~osaka! + g [2VFk VFkakak
k 2m~

(VFk.VFk—akak +H.c. )]

is a bilinear function of them. Equations (4)—(6) are ob-
tained under assumption Fk(r)= —F k(r). The effective
Hamiltonian is defined as

H ff —(0
~

A
~

0) (7)

where 0) is the phonon vacuum, state, i.e., ak
~

0) =0
and (0 0) =1. It leads to the relation

In Eqs. (9) rJ, AJ, and pj(j =1,2) are the variational pa-
rameters, and a~ = (A'/2m, co)'~ is the free polaron radius.
The ansatz (9) resembles that applied previously to the ex-
citon, ' but there are two differences. Here I have in-
troduced the parameters ~J according to similar proposi-
tions for the free polaron ' and the exciton, and the
phonon amplitude fk ', which describes well the strong-
coupling case. For ~I ——A,

&

——p& ——1 and A, 2
——0 transforma-

tion (2) goes over into the Lee-Low-Pines transformation '

which provides a solution for weak electron-phonon cou-
pling. On the other hand, for A,

&

——~2 ——0 and A, 2
——1, we

obtain a modified Pekar transformation ' ' which de-
scribes well the strong-coupling case. Therefore, the pro-
posed canonical transformation [Eq. (2)] with the dis-
placement amplitudes given by Eqs. (9) is a product of
weak- and strong-coupling variational solutions.

The same effective Hamiltonian as that given by Eq. (8)
can be obtained when applying a product of the two
transformations

H, ff
——Hp,

which allows us to eliminate phonon coordinates from the
problem. The effective Hamiltonian is an auxiliary quan-
tity in the present treatment; it operates only on the. elec-
tron coordinates, which considerably simplifies further
calculations. In order to determine its form one needs to
know the displacement amplitudes Fk(r). These can be
found by one of the following two methods.

(a) A minimization of the expectation value

( fgf ~
Heff

~
QgJ ) for a given electronic state

~
]tj„]) with

respect to Fk(r) yields both the values of Fk(r) and the
energy eigenvalues of the effective Hamiltonian. This
method was used for the exciton in polar semiconductors
by Pollmann and Buttner, and extended by Kane and
Matsuura and Buttner.

(b) In this method ' we assume an explicit form of
the displacement amplitudes: Fk(r)=Fk(r;g'), where g is
a set of variational parameters, which allow to a flexibility

U] = exp —](r]+rp) y k «kak
k

and

2 exP y (f kak fkak)
k

where fk ——fk"+fk
'. Then,

II,ff=(0~ U2 U] IIU]U2 ~0)=IIO . (12)

In Eq. (10) one can recognize a recoil momentum of the
phonon field; the parameters ~& and ~2 moderate its influ-
ence. Moreover, we see that these parameters are not in-
dependent. I used ~~

——1 throughout this paper to obtain a
direct correspondence to the Lee-Low-Pines transforma-
tion when using only the first term in Eq. (9). Therefore,
transformation (2) depends on the set g of the five varia-
tional parameters:



2590 JANUSZ ADAMOWSKI 32

g=(A], A2, p], p2, 7 =72)

Transformation (10) was proposed for the bound polaron
by Huybrechts~9 who next applied the method (a) to find
the phonon amplitudes.

The effective Hamiltonian calculated according to Eqs.
(4) and (8) with the function F~(r) given by Eqs. (9) has a
form

—Cr B2 —Cr —Cr
H~f ———V'+ —+ e '+ e '+De '+X

r r

(13)

where the polaron units of energy and length (%co and az,
respectively) have been used, and
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Formulas (13) are valid if r&1, p~&p2, and p& and p2~ 0.
The effective Hamiltonian- depends on the following ma-
terial parameters: the electron-phonon coupling constant
a=(eo/e —l)R ' and the ratio of the donor rydberg to
the LO-phonon energy R =m, e /2A' coco.

The Schrodinger equation for Hamiltonian (13)

LLP RE = —n-
n2

(15)

III. RESULTS

Table I shows the present results for the ground-state
energy compared with the best variational estimates of
other authors. The present upper bounds are close to
those of Matsuura for cx &2, but are lower than those for
large a and R. They agree within 1% with the results of
Kane, which, however, are not variational for strong
electron-phonon coupling. Figure 1 shows the calculated
2s and 2p energy levels as functions of n and R. The
difference between these levels and the hydrogenlike level
E2 [Eq. (15)] increases with increasing o. and R. For
the ground-state energy this difference becomes very large
for large a and R (see Table I). Table II shows the calcu-
lated energy eigenvalues ls through 4f for several values
of n and R. The values for R=0.5 are the upper bounds
for all consecutive energy levels of the bound polaron.
For R =1 and 2 the one- and two-phonon levels with en-
ergies approximately equal to E~, +1 and Ej,+2 are
placed between the levels listed in Table II. The results of
Tables I and II, and Fig. 1 give the estimates for the ener-

gy levels E„I measured with respect to the bare conduc-
tion band. The experimentally accessible dissociation en-

ergy D„~ of the bound polaron is the difference between
the ground-state energy of the free polaron Ep, ~ and the
energy E I D I Ep ] E„I. The best variational re-
sults ' for Eppes are also listed in Table II. We see that the
estimates of the 3s 4f levels for -a=2 and R=0.5 as well

in energy units ~. Equation (15) provides as well the
upper bounds for the energy levels: E„~(E„" if
E„I&E&,+1. The present estimates are always lower
than ELL'

(H,fr E„I)g„((r)=0— (14)

yields the upper bounds E„I to all the energy levels E„I of
the bound polaron lying below the lowest one-phonon lev-

el E&,+1 (see Appendix). Equation (14) can be solved
with the use of the variational wave function
P„~(r)=R„I(r) YI (0,@), where YI (O, rp) are the spherical
harmonics, n, l, and m are the principal, angular-
momentum and magnetic quantum numbers, respectively.
The radial wave function R„I(r) has been chosen as a
normalized linear combination of ten exponential func-
tions exp( jyr ) with one no—nlinear variational parameter

y and ten linear parameters cz (j =1,2, . . . , 10). The ener-

gy eigenvalues E„~ which are degenerate with respect to m
but not with respect to l are found by minimizing the ex-
pectation values (g„l j H, ff ~ P„I ) over the variational pa-
rameters of the canonical transformation (r, A, &,kz,p, ,p2)
and those of the electronic wave function (y, cz ).

The present approach is a generalization of the Lee-
Low-Pines method, ' that yields for the bound polaron
the hydrogenlike spectrum

0.1

0.0 I

0.001
6.1 10,

FICi. 1. Estimated energies E&~ and E» of the 2p and 2s
states of the bound polaron as functions of R and o.'. Solid
curve shows 62p: Epp cx R/4 dashed curve 6» ———E»
—e —R/4. Energy is expressed in units of the LO-phonon en-

ergy.
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TABLE I. Variational estimates of the ground-state energy of the bound polaron calculated by Platz-
man (Ref. 1), Larsen (Ref. 3), Matsuura (Ref. 2), and Devreese et al. (DEKB) (Ref. 9), compared with

the present results for several values of a (electron-phonon coupling constant) and R (ratio of the donor

rydberg to the LO-phonon energy Ace). All energies are expressed in units of A'co.

Platzman
Larsen
Mats uura
DEKB
Present

results

—3.31
—3.41
—3.47

—3.42

2
5

—7.85
—8.64
—8.69
—8.60
—8.66

10

—13.08
—14.69
—14.73
—14.66
—14.72

—7.93
—7.86
—7.99

—8.03

—14.56
—15.30
—15.39
—15.21
—15.53

10

—21.39
—23.02
—23.10
—23.00
—23.28

a
R

Platzman
Larsen
Matsuura
DEKB
Present

results

—11.89
—11.62

11.78

—12.02

—20.00
—20.61
—20.74
—20.52
—21.09

10

—27.90
—29.47
—29.59
—29.41
—30.00

—22.17
—21.34
—21.54

—22.47

11
5

—33.26
—33.45
—33.63
—33.40
—34.71

10

—43.42
—44.59
—44.79
—44.60
—45.95

as those of the 4s-4d levels for o.=2 and R = 1 are not sa-
tisfactory since they lie above E~,i.

The present estimates for the 2p levels lie below those
of Devreese et al. , which were obtained with the use of
the variational wave function including one-phonon
states. If Ez~ &E|,+ 1 then both methods yield the
upper bounds to the true energy eigenvalues. Therefore,
the lower value is closer to the true one, e.g., for a=1 and
R =1, E&, —2.165 an——d Eq~ 1.262 (see T——able II),
whereas the estimate for E2& given in Ref. 9 is —1.113.

It follows from Fig. 1 that E2, —Ezz) 0 for all values
of a and R, i.e., the Lamb shift is positive similarly as in
the hydrogen atom. ' The results given in Table II al-
low us to extend this property up to 4f states:
E„t E„t )0 if l —&l'. The equality holds for small a
and/or large n This is. a general property of the poten-
tial being the superposition of the attractive Coulomb and
the repulsive Yukawa potentials'. The effective potential

in Eq. (13) includes two Yukawa potentials and the ex-
ponential potential, but their net contribution to the total
energy is always positive and the repulsive Yukawa poten-
tial dominates in the correction to the Coulomb potential.
This result is interesting due to a formal analogy be-
tween the theory of the bound polaron and the hydrogen
atom. Moreover, there exists another system having the
energy eigenvalues, which increase with decreasing I for a
given n. It is a quarkonium being a bound state of two
heavy quarks, whose interaction is described in a simple
model as a superposition of an attractive Coulomb po-
tential and a confinement potential.

The arrangement of the bound-polaron energy levels is
mainly a quantitative result, because it was obtained by
variational means. The effective Hamiltonian given by
Eq. (13) possesses a variational character also. The calcu-
lations with the use of the second-order perturbation
theory yield the negative Lamb shift' ' for small a

TABLE II. Calculated energy levels 1s through 4f of the bound polaron as functions of the electron-phonon coupling constant u
and R =m, e /2A coE'o. Ep J is the ground-state energy of-the free polaron calculated by Larsen (Ref. 31). The unit of energy is Am

(LO-phonon energy).

0Ep, i
——

R=
1s
2s
2p
3s
3p
3d
4s
4p
4d
4f

0.5

—1.034 54
—0.627 11
—0.627 99
—0.555 96
—0.556 03
—0.556 26
—0.531 35
—0.531 37
—0.531 41
—0.531 50

0.5
—0.5040

1

—1.574 33
—0.754 15
—0.755 90
—0.611 96
—0.61208
—0.612 51
—0.562 76
—0.562 79
—0.562 85
—0.562 98

—2.653 70
—1.008 15
—1.011 69
—0.723 91
—0.724 16
—0.725 01
—0.625 41
—0.625 49
—0.625 70
—0.625 96

0.5

—1.576 95
—1.129 29
—1.131 19
—1.056 40
—1.056 53
—1.056 98
—1.031 47
—1.031 53
—1.031 59
—1.031 73

1

—1.0160
1

—2.165 39
—1.258 43
—1.262 18
—1.11281
—1.11307
—1.11397
—1.063 03
—1.063 08
—1.063 20
—1.063 48

—3.335 06
—1.516 51
—1.523 91
—1.225 61
—1.226 14
—1.227 88
—1.125 94
—1.12607
—1.126 40
—1.126 96

0.5

—2.698 58
—2.133 87
—2.13820
—2.057 32
—2.057 53
—2.058 57
—2.031 77
—2.031 87
—2.031 91
—2.032 21

2
—2.0640

1

—3.415 83
—2.267 39
—2.275 89
—2.11451
—2.115 10
—2.11701
—2.063 56
—2.063 67
—2.063 86
—2.064 51

—4.795 85
—2.534 11
—2.551 12
—2.229 08
—2.230 19
—2.233 91
—2.127 00
—2.127 24
—2.127 76
—2.128 99
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and R, although the change of the sign is not exclud-
ed' ' ' for large values of cx and R. For strong
electron-phonon coupling the estimates for the energy lev-
els can be obtained in an analytical form

Ei, ———R —0.625aR ' —0.097 656o.

E2, ———0.25R —0. 147 645aR 'i —0.021 799(x

Eq&
———0.25R —0. 180028eR ' —0.032 410m

(16a)

(16b)

(16c)

Formulas (16) have been derived using the strong-coupling
canonical transformation, i.e., solving the eigenvalue prob-
lem for effective Hamiltonian (13) with A,

~

——&=0 and

X2 ——1. It can be done straightforward with the help of
the hydrogenlike wave functions of the states 1s, 2s, and

2p. The result for the ls state [Eq. (16a)] was already
given in Refs. 3, 9, 14, and 23; Eq. (16c) leads to higher

upper limit for E2& than that obtained by Devreese et al.

Equations (16) give the analytical expressions for the ener-

gy levels, but they are not the best upper bounds obtained
by the present method. For example, for a=100 and
R = 1 the minimization over all the variational parameters
in Eq. (13) yields Et, ———1142.7fico, whereas Eq. (16a)
yields E&,———1040.1%co. Although the upper bound E2~
lies above the corresponding asymptotic expression, and
also above the numerical estimate for Ezz obtained by the
present method, it gives a reasonable approximate formula
for this energy level. For large ct Eqs. (16) provide esti-
mates mainly of qualitative character. They show that
the Lamb shift is positive and increases like o. for the
strong coupling. It remains an open question if the Lamb
shift changes the sign for small a and R.

One can attempt to describe a shallow donor in a polar
crystal as a bound polaron. In the polaron model of the
donor one assumes the effective-mass approximation and
neglects, e.g., an anisotropy and a short-range part of the

TABLE III. Transition energies measured for donors (Expt. ) and calculated in the bound polaron model (Theor. ) ~ The material
data used in the calculations: electron-band mass m„static (eo) and optical (e ) dielectric constants, and LO-phonon energy Ace, are
also quoted. All energies are in meV.

Crystal

CdTe
Cds (A)
Cds (B)
ZnSe (A)
ZnSe (B)
AgBr

AgCl

CdF2

mq /m~p

0.096'
0.155'
0.155'
0.16"
0.15"
0.215"

0.302"

0.283'

9.6'
8.42'
8.78'
8.66'
9.14'

10.6'

9.5'

7.78'

7.21"
5.27'
5.27'
5.9'

4.8'

4.04q

2.4'

21.1'
38.0
37.8g

31.4
31 9m

17.2P

50.0'

Transition

1s-2p
1s-2$
1s-2s
1s-2p
1$-2p
1$-2p
1s-3p
2p 3p
1s-2p
1s-3p
2p-3p
1$-2p
1$-3p
2p-3p

Expt.

10.8'
23.4—25.7'

19.1—22.33

20.8"
23 ~ 8"
3.0l'

33 5'
40.6"

7.1'
65.0'
75.6'
10.6'

Theor.

11.1
24.5
22.7
23.5
19.6
25.9
29.9
4.0

49.5
56.7
7.2

82.9
93.6
10.7
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donor potential. The transition energies calculated by the
present method and those measured for the donors are
listed in Table III. I have chosen those values of material
parameters from many literature data, which led to the
best agreement with the experiment. The results for CdS
and ZnSe labeled as (A) and (B) show the dependence on
these parameters. The agreement between the theory and
experiment is quite good for the polar semiconductors
CdTe, CdS, and ZnSe. For the ionic crystals AgBr (Ref.
40), AgCl (Refs. 41 and 42), and CdFq (Ref. 43) the calcu-
lated transition energies 1s-2p and 1s-3p are too large for
all values of the material parameters found in the litera-
ture. Nevertheless, the 2p-3p energy differences agree
well with the experiment. Therefore, the upper bounds
obtained for the ls level lie too low. Since the short-range
potential neglected in the polaron model of the donor af-
fects mostly the ground state, it means that this potential
is repulsive for the ionic crystals and donors considered in
this paper. The short-range potential is due to the differ-
ence of atomic properties of the donor and the host lat-
tice, the local lattice distortion (especially in CdF2, Ref.
45), and the acoustic phonons. The excited states of the
donor are rather insensitive to the short-range effects and
can be well described by the polaron model.

Unfortunately, this model does not reproduce properly
the splittings 2s-2p and 3s-3p, which, although very
small, were measured with a high accuracy in CdS (Ref.
46) and ZnSe (Ref. 47). As stated previously the present
approach yields positive-energy differences E2,-Eq~ and
E3 E3p whereas the experiments ' yield the negative
values for these splittings. In CdS this effect is probably
due to the anisotropy of the electron band mass and the
dielectric constant. In both the crystals the properties of
individual donor atoms affect the spectra which results in
the observed chemical shifts.

The energy levels 1s, 2s, and 2p of shallow donors in
ionic crystals were previously calculated by Bajaj and
Clark" ' with the use of the second-order perturbation
theory. Despite the fact that the perturbation theory can
hardly be used for o.) 1 the authors' calculated the tran-
sition energies for AgBr, AgC1, and CdFz and claimed a
good agreement with the experiment. These calculations
were next extended to the 3s, 3p, and 3d, states. This
approach takes advantage of the Dalgarno-Lewis
method of summation of the second-order perturbation
series. In this method an auxiliary operator I' [defined by
Eq. (8) of Ref. 11] is of great importance. Bajaj and
Clark' assume that F is a function of only space coordi-
nates: F=F(r). Next, they try to find the matrix ele-
ments (k'

~

F
~

k" ) in the plane-wave basis
~

k). The ma-
trix elements (k'

~

F(r)
~

k") depend only on k' —k", as
the Fourier transforms of a function, which depends only
on r. Instead of solving the infinite set of linear equations
for (k'

~

F
~

k") [Eq. (14), Ref. 11] the authors propose a
special solution [Eq. (15), Ref. 11]. However, the solution
proposed for the matrix elements depends explicitly on
(k") —(k'), which is in contradiction to the assumption
made by the authors"' that the operator I' is only a
function of r. The proposed form of the matrix elements
does not fulfill the set of equations for them [Eq. (14),
Ref. 11]. Therefore, an analytical summation of the

second-order perturbation series has not been achieved,
and the results of Refs. 11, 17, and 49 cannot be helpful in
a description of the donor spectra.

IV. CONCLUSIONS

The present method provides variational upper bounds
for all the energy levels of the bound polaron, which lie
below the lowest one-phonon level EI,+Ace.

'
These upper

bounds are lower than most of the previously obtained
variational results. The high-energy levels have been cal-
culated for the first time. I have shown here only the re-
sults up to the 4f level. Calculations for higher excited
states can be performed with the same computational ef-
fort. The present approach is fairly simple, all expres-
sions are given in the analytical form, which enables us to
apply them to the high-energy levels and arbitrary elec-
tron phonon coupling. The estimates for the levels lying
above E],+fm are variational solutions only for the
zero-phonon Hamiltonian Ho. The X-phonon states with
X) 1 are to be treated by other methods. Nevertheless,
the present results can be helpful even for these states as a
basis for further studies. "

The properties of the obtained spectra can be summa-
rized as follows.

(i) The energy levels lie always below the corresponding
hydrogenlike levels given by Eq. (15), i.e., E„t & E„

(ii) For small electron-phonon coupling a the estimates
E„I go over into E„

(iii) For large a the energy eigenvalues of the ls, 2s,
and 2p states can be approximated by the analytical ex-
pressions [Eqs. (16)], showing that the 2s-2p splitting is
positive and proportional to a .

(iv) For arbitrary a and 8, E„t)E„t if I & I' (at least
for the states ls-4f).

Property (ii) means that for very small a the present ap-
proach does not lead to any change of the electron-band
mass into the polaron mass. This can be improved by us-
ing the canonical transformation, which depends explicit-
ly on the momentum operator of the electron. However,
the corrections should be very small.

The polaron model of the donor impurity in polar crys-
tals, which includes the long-range screening through the
LO phonons, leads to the substantial increase of the disso-
ciation energies in comparison to those obtained from the
hydrogenlike model with the Coulomb potential screened

Eo. The results agree rather well with the observed
donor spectra for excited states. The results for the
ground state permit us to describe the character of the
short-range part of the donor potential, which is repulsive
in the ionic crystals AgBr, AgC1, and CdF2.

Note added. After submission of the present paper, a
paper by Y. Lepine, Solid State Commun. 52, 427 (1984),
has been brought to my attention. The author calculated
upper bounds for the 2p excited-state energy of the bound
polaron and obtained results, which for e ~ 11 lie above
the present upper bounds.

Vote added in proof. In a recent paper on the bound
polaron by M. Matsuura, J. Phys. Soc. Jpn. 53, 284
(1984), the author calculated the second-order perturba-
tion corrections to the 1s, 2s, and 2p energy levels and ob-
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tained the positive (negative) Lamb shift for R & —,

(R & —, ). The calculated is-2p transition energies for
silver halides are larger than the experimental values,
which agrees with the results of the present paper.

Lee-Low-Pines ' transformation. The introduction of the
effective Hamiltonian [Eqs. (7) and (13)] is equivalent to
the outer projection '

A =PA I' (A5)
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~~u;&=E; ~u;& , (A6)

is equivalent to Eq. (14) for the effective Hamiltonian,
since

of the operator A - with respect to the subspace defined by
the operator I' =

~

0& (0 ~, where
~

0& is the phonon vacu-
um state. The eigenvalue problem for

APPENDIX

The present method is based on the unitary transforma-
tion U [Eq. (2)]. The starting Hamiltonian H [Eq. (1)] is
transformed to the new Hamiltonian

A = U~HU =Hp+H ) +H2,
[cf. Eqs. (3)—(6)], which has the same spectrum as H. In
this paper the energy is determined with respect to the
bottom of the conduction band. The ground-state energy

Ez,t of the free polaron which is therefore negative
separates two parts of the spectrum of A: above Ez,] the
spectrum is continuous, below E„,] only discrete energy
levels exist. Due to the infinite mass of the positive center
no real phonon recoil effects disturb the spectrum below

Ez,~, which remains discrete on the contrary to the free
polaron and the exciton. The exciton cari possess both
discrete and resonant states in an energy gap.

The eigenstates of A satisfying the equation

m~u, &=E, u, &

can be expanded in the basis

]xi&= [x&[y, &,

(A2)

(A3)

where
~

X & is the N-phonon state and
~ P; & is the elec-

tronic state. The basis states with %=0 are the eigen-
states of the Hamiltonian HD, that is independent of the
phonon operators. I will denote them by

(A4)

and call them zero-phonon states. The energies of the
states with X) 1 are determined by Hp as well as by H&

and H2 [the one- and two-phonon operators given by Eqs.
(5) and (6)]. If the zero-phonon state has the energy E;,
then the corresponding states with X & 1 possess the ener-
gies approximately equal to E;+%co, E;+2%co, etc., pro-
vided that the coupling between the states

~
O, i & and

~

X) l, i & is not large.
Our purpose is to prove that the method of optimized

canonical transformation yields upper bounds both for the
ground-state energy Ep and for the excited states with the
energies below Ep+~. The proof which relies on the
work of Lowdin ' will be done in two steps.

(a) Let us consider the case when the variational param-
eters g in the canonical transformation U are fixed. The
transformation U can have, for example, the form of the

Equation (A6) is solved with the help of the orthonormal-
ized electronic wave functions 1'„~(r)= (r

~ g; &, where
i =(ni) and

(u, ~u, &=(q,- ~q,'&=a, , (A7)

I will further proceed as if I had the exact solutions of Eq.
(A6), because A is spherically symmetric and therefore
Eq. (A6) [cf. Eqs. (13) and (14)] is reduced to the one-
dimensional eigenvalue problem, which can be solved nu-
merically with an arbitrary precision. Moreover, the use
of upper bounds for E; instead of E; themselves does not
change further considerations provided that the variation-
al wave functions for different states are mutually orthog-
onal.

If E; (Ep+Acu, where Ep ——E], is the ground-state en-

ergy of the bound polaron, then the eigenvalues E; of A
provide the upper bounds to the eigenvalues E; of A in
order: ' E; (E;. If E; )Ep+Aco, then the X-phonon
state's (X= 1,2,. . . ) with the energies approximately equal
to E&, +%co, E],+2%co, . . . , are to be take into account.
In this case E; are the upper bounds only for the energy
eigenvalues of the zero-phonon Hamiltonian Hp. In order
to construct upper bounds to all consecutive energy levels
of A one should apply the projection operator including
the corresponding X-phonon states.

(b) For the optimized canonical transformation the
proof is similar as in case (a), although now the varia-
tional parameters g take on different values for each state
and all the quantities in Eq. (A6) depend on g. Now, Eq.
(A6) is solved by minimizing the expectation values

E;(g)=(u;(g)
i
A (g) u;(g)& (Ag)

& uo(ki)
l
ui(ki) & =0. (A9)

The eigenvalue E()(g& ) corresponding to the eigenstate

~
ua(g~)& is an upper bound to the ground-state energy

also, although worse than the previously obtained EQ((0):
ED(g'0) (ED(g&), and has not been given in the present pa-

with respect to g, which yields the optimal values of
The energy eigenvalue of the state i is E;=E;(j;).

The eigenvalue ED ——ED($0) found in this way for the
ground state

~
ua($0) & is obviously the upper bound to the

ground-state energy: Ep (Ep. The minimization' for the
first excited state yields the values g, and E, =E~(g&) as
well the orthogonal eigenstates
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per. Moreover, it fulfills the inequality Eo(g~) & Et(gt),
which together with Eq. (A9) leads to the conclusion '

that Ej (E&. The same procedure can next be repeated
for each excited state, which gives E; & E; for all the ener-

gy levels lying below Eo+fuo as in case (a).
I would like to comment on the approximation made in

the present method. The use of the states [Eq. (A4)] does
not mean that the zero-phonon approximation has been
applied. The total variational wave function has the form

U
I 0)1l„,(r) . (A 10)

Its phonon part is the coherent state U
~

0) being the Har-

tree ansatz for bosons. ' ' ' This approximation does not
include phonon-phonon correlation. ' The states3, 18

~

X) 1, i) can provide corrections to the energy levels in

the vicinity of the level crossing, but outside of this re-

gion the corrections should be negligible.
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