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The nature of the phonon intensity pattern associated with low-temperature heat-pulse propaga-
tion is examined theoretically for a wide range of cubic crystals. In general, huge anisotropies in the
thermal flux are predicted due to phonon focusing. The phonon-focusing patterns of cubic crystals
divide naturally into two major groups, as distinguished by the sign of their anisotropy factor
E=Cll/C44 —Cl2/C44 —2. Experimental and theoretical intensity patterns of CaF2 and Si in the
long-wavelength, dispersionless limit are examined in detail to illustrate the typical focusing-pattern
features characteristic of positive and negative A. For both regimes, the evolution of particular pat-
tern structures is studied systematically as the elastic constants are varied. Investigation of the
flux-intensity pattern and slowness-surface topology for various elastic constants reveals distinct
trends in the phonon-focusing structures. Based on this study, we have defined a small number of
angular dimensions (one or two for each phonon mode and anisotropy regime) which quantitatively
determine the principal directions of singular flux. The variations of these angles are mapped onto
the general elastic-parameter space. We thus present a means for quickly determining the angular
positions of the principle phonon-focusing caustics for an arbitrary set of elastic constants.

I. INTRODUCTION

At low temperatures, the ballistic heat flux emitted
from a point source in a crystal is strongly concentrated
along certain crystalline directions —an effect known as
"phonon focusing. "' The nature and degree of angular
anisotropy that is present in the crystal s heat-flux intensi-
ty pattern are directly determined by the elastic constants
of the crystal. Phonon-imaging experiments have exam-
ined these pronounced anisotropies in order to extract in-
formation about the propagation and scattering of high-
frequency acoustic phonons. In Ge, a knowledge of pho-
non focusing was required to characterize the interaction
of phonons with electronic states. Phonon scattering
from dislocations in LiF (Ref. 9) and the effect of
piezoelectricity on ballistic heat flow in LiNb03 (Ref. 10)
were more clearly understood by examining the flux-
intensity patterns for these crystals. A detailed under-
standing of phonon focusing has proved essential in the
characterization of large k vector phonons in Ge (Refs. 11
and 12) and GaAs (Refs. 13 and 14). In each of these
cases, a specific, unique intensity pattern was involved.

In this paper we present a systematic study of the non-
dispersive phonon-focusing patterns of cubic crystals in
general. A previous systematic study of phonon focusing
in cubic crystals was reported by Every, ' who em-
phasized the aspects of singular flux patterns as a physical
application of catastrophe theory. Also, Armbruster and
Dangelmayr' have examined the general topological
features of -phonon focusing. With the advent of more ad-
vanced computing techniques —Monte Carlo flux-
intensity simulations and three-dimensional representa-
tions of phonon wave surfaces —it is now possible to ex-
amirie the relative intensities and origins of the intricate
focusing patterns in more detail. We show the evolution

of focusing patterns over a wide range of elastic constants.
In addition to revealing topological details, this general-
ized summary may serve as a practical reference for
characterizing the heat-flux anisotropy in a particular
crystal without having to resort to a detailed calculation.

II. BACKGROUND AND METHODS

Wave propagation in a continuous, anisotropic medium
has been studied for many years. ' ' The equations of
continuum elasticity theory which govern the propagation
of lattice waves (i.e., phonons in the long-wavelength,
dispersionless limit) in crystals are dependent on the crys-
tal density p and the elastic constants Clz (the nonzero
elements of the elastic stiffness tensor Cjt ). ' For crys-
tals with cubic symmetry, there are only three elastic con-
stants: C», C&2, and C44. This means that phonon prop-
agation, and thus ultimately phonon-focusing patterns,
can be treated as a function of two variables, generally
taken as the ratios a =C~~/C44 and b =C&2/C44. (The
magnitudes of the CIJ and p determine the absolute veloc-
ities, but the ratios a and b completely determine the an-
isotropy in velocity. ) All cubic crystals can thus be
mapped into a two-dimensional "elastic-parameter
space."" The position of several different materials as
plotted in this space is shown in Fig. 1.

For certain hypothetical values of elastic constants,
there is no anisotropy in phonon velocity. This condition
for elastic isotropy, ' C» —C&2 —2C4& ——0, appears now as
the line 6=a —b —2=0, as shown in Fig. 1. All real, an-
isotropic crystals fall on either side of this isotropy line.
The line serves as a natural boundary with which to divide
crystals into two distinct groups: those for which 6 & 0
("positive-b, regime") above the isotropy line, and those
with b, &0 ("negative-b, regime") below the isotropy line.
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to the corresponding group-velocity vector, V=Vkco(k),
which is normal to the surface at that point. Thus, gen-
erally the energy flux associated with a given phonon is
not collinear with its wave vector. This is how an isotro-
pic angular distribution of k vectors, as produced by an
ideal incoherent heat source, can produce an anisotropic
concentration of energy flux —i.e., phonon focusing.

The topology and curvature of the slowness surface
determine the kinds of focusing features that result in the
thermal-flux intensity pattern. For a surface in three di-
mensions, the local curvature is conventionally described
by a "Gaussian curvature" which is defined as the prod-
uct of the two principal curvatures (inverse radii) of an
element of surface at that point. In general, a section with
large Gaussian curvature on the slowness surface indicates
a "defocusing" of group-velocity vectors, or a reduction in
phonon flux for the corresponding propagation directions.
Likewise a flat section of the slowness surface indicates
that the corresponding wave vectors have their energy
"focused, " or concentrated, along a narrow angular region
in real space. The slowness surface for a given crystal
contains sections of positive (convex or concave) and neg-
ative (saddle) curvature, separated by lines with zero
Gaussian curvature. These lines of vanishing curvature
("parabolic lines" ) on the slowness surface correspond to
the real-space caustics of mathematically infinite phonon
flux. The boundaries of the bright features in the phonon
images of Fig. 2 are such caustics. Clearly, a study of the
slowness surface provides insight into the kind of intensi-
ty pattern formed.

For a surface in k space of constant frequency coo, the
distance from the origin to a point on this surface is
k =coo/U(k), where U(k) is the phonon phase velocity.
Similarly, the slowness surface is defined as
s(k)=k/coo ——1/U(k). The slowness surface is therefore
constructed by calculating the inverse phase velocity for-

all angles in k space. The phase velocity U is obtained
from the Christoffel equation, derived from continuum
elasticity theory:

(Da U &a)&1=0 ~

where eI is a Cartesian component of the phonon polari-
zation vector, and D;~=CJI njn~/p is the Christoffel
tensor for the wave normal n=k/k and the elastic tensor
Cpjl~ The phase velocity for a given k is obtained by
solving the characteristic equation of Eq. (1), which is cu-
bic in U . Each root corresponds to a solution for one of
the three acoustic phonon modes, and so the three sheets
of the slowness surface can be generated. The slowness
surfaces are graphically constructed by computing the in-
verse velocity for lines of constant Ok and Pk (standard
polar coordinates) and then plotting these lines in the
desired perspective. A root-finding program is used to
determine the parabolic lines (thick lines in the drawings)
and to project them onto the slowness surface.

Thus, an important part of this paper is to characterize
the shapes of the slowness surfaces for realistic values of
elastic constants. Just what shapes can slowness surfaces
take on? Clearly, when 6=0 the surface is spherical, in-
dicating perfect isotropy. For slightly positive or negative
6, the surface becomes nonspherical. As the anisotropy is

a(a —1)—(b —1) =0,
for curve C,

(3)

a +(a —1)(b+1)—2(b+1) —1=0, (4)

hypothetically increased, small regions of saddle or con-
cave curvature develop. A preview of this evolution may
be found in Figs. 7, 10, and 17. The shaded regions
represent saddle curvature. For the most part, the (100),
( 110), and ( 111) symmetry directions act as sources for
these new saddle and concave regions. As anisotropy is
increased, the advent of a new region of different curva-
ture is signaled by a change in the sign of the Gaussian
curvature near the symmetry direction. Correspondingly,
new features will appear in the phonon flux pattern at
these critical values of elastic constants.

Every and others' ' 8 have examined the conditions
on the elastic constants which are necessary for specified
regions of the slowness surface to have vanishing curva-
ture. For some symmetry planes, near specific symmetry
directions, the two principal curvatures can be expressed
in terms of the phase velocity, and thus in terms of the
elastic constants. The combinations of elastic constants
that yield zero or negative values for either the in-plane or
transverse curvature at these specific directions can there-
fore be determined. When mapped into elastic-parameter
space, these conditions on the elastic constants form a set
of curves as shown in Fig. 3. For brevity we will refer to
these curves as "critical curves, " i.e., curves with critical
values of elastic constants that signal the advent of a new
feature in the surface topology. For each successive re-
gion away from the 5=0 line, the topology becomes more
complex. The specific set of critical curves for each mode
is discussed below.

(1) Longitudinal (L) mode. For cubic crystals, the long-
itudinal slowness surface is entirely convex, so there are
no caustics due to L-mode phonons in the phonon intensi-
ty patterns. There is an anisotropy of phonon flux, since
the curvature of the slowness surface varies somewhat,
producing maximum flux in regions of minimum (but still
positive) curvature. The slowness surfaces for the L mode
in CaF2 and Cu are shown in Figs. 4(a) and 4(b), respec-
tively For p. ositive-b, materials (such as CaF2), the sur-
face curvature is a minimum in the (100) directions, so
that in these directions the phonon flux is most intense.
For negative-b, crystals (such as Cu), the surface bulges
out in the (100) directions and is flattest in the areas near
and between adjacent (111)directions. Thus the phonon
flux is reduced near the (100) directions, and enhanced
between adjacent (111) directions. Since these anisotro-
pic effects are relatively small and no flux singularities
occur, the L mode will not be discussed further.

(2) Slow transverse (ST) mode. The critical curves
which signal changes in the slowness-surface topology for
the ST mode are shown in Fig. 3(a). In terms of the vari-
ables a and 6, the equations for the critical curves as la-
beled are as follows For curve A,

2(a —1)(b + 1)+(a b —2)(a +2b +1)—
&& (2a +b —1)=0, (2)

for curve B,
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for curve D,

(a —1)(a+b)+(a b —2)(b+1) =—0,
(2a +b —1)(a b —2)—2(b + 1—) =0,

for curve H,

(8)

for curve E,

2a —3a +ah —3b —9b —4=0
and for curve I',

6(a b+ 1) (b + 1)—3(—a b —2) (b + 1)—

(6)

—(a b+1)(a b —2)(8—a +13—b +5)=0 . (7)

(3) Fast transverse (FT) mode. For the FT mode, there
are three critical curves. The curve labeled F in Fig. 3(b)
is identical to curve F in Fig. 3(a) and is described by Eq.
(7). The other two curves shown in Fig. 3(b) are deter-
mined by the following equations: For curve G,

a +ab —2(b+1) =0.
As one moves away from the 6=0 line, each critical

curve signals the advent of a new development in the
slowness-surface topology, and thus a new development in
the associated phonon intensity pattern. The evolution of
the slowness-surface curvature can be summarized as fol-
lows: the critical curves for the ST sheet in the negative-
d, regime all denote changes in curvature that occur in the
immediate vicinity of the (100) directions. For negative
b„the single FT critical curve (denoted H) marks the ad-
vent of saddle regions between adjacent (100) directions.
On the other hand, the critical curves for the positive-b,
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Loop

C

FIG. 5. (a) FT slowness surface for CaF2. Phonons with k vectors at points 3 through D on this surface are focused into points A

through D on the group-velocity surface in (b)'. Shading indicates areas of saddle (negative) curvature. All other portions of this sur-

face are convex. Thick lines outlining saddle regions represent lines of zero Gaussian curvature and correspond to folds in the group-

velocity surface. ibi Representation of the FT group-velocity surface near the [111]direction. No phonons are focused into the cen-

tral shaded region. Thick lines represent folds which correspond to lines of mathematically infinite flux intensity (caustics). (c)

Monte Carlo flux-intensity simulation for FT phonons in CaFz. This image is centered on [111]and represents a scan of 35 from

left to right.

regime signal a change in the sign of the Gaussian curva-
ture at one of three symmetry directions: curve 6 marks
small new saddle regions at the (110) directions; curve E,
at the (100) directions; while curve I' is associated with
the (111)directions.

In addition to an analysis of the slowness surface, it is
useful to simulate the phonon-flux intensity pattern for
arbitrary values of a and b. To produce the simulations,
a computer program is used to map a uniform-
probability, random distribution of phonon k vectors into
(real-space) group-velocity vectors V. The V vectors are
then projected onto a plane normal to the desired viewing
direction, corresponding to the crystal surface across
which a laser beam would be scanned. The intensity at
one pixel —i.e., the number of V vectors mapped into that
pixel —is stored in a 256X256 element array. An image
array with an integrated intensity of approximately 10
phonons typically takes 20 min of computing time on a
VAX 730 computer. The image array can be transferred

to a video frame buffer which displays the result on a
video monitor. Photographs of the monitor screen are
presented here.

Another construction helpful in understanding these
focusing patterns is the group-velocity surface, or wave
surface. Physically, the wave surface represents the shape
of a wave front caused by a point disturbance in the medi-
um. This surface is formed by calculating the group velo-
city V, or surface normal, for points on the slowness sur-
face. For a given real-space direction, the distance from
the origin to the wave surface equals the magnitude of V.
Thus group-velocity surfaces are closely related to
energy-flux simulations, but have the added feature of be-
ing a three-dimensional representation of the wave front.

III. CRYSTALS WITH POSITIVE 6
A. An example —Calcium fluoride

A good example of a cubic crystal in the positive-6 re-
gime is CaF2. Its focusing pattern possesses all of the
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FIG. 6. (a) ST slowness surface for CaF2. Points E through H on this surface correspond to points E through H on the velocity
surface in (b). The three small areas forming the cloverleaf structure near (111) are concave. (b) Portion of the ST-mode group-

velocity surface near the [111]direction. (c) Monte Carlo simulation for ST phonons. The image is centered on the [111]direction,
and represents a scan of +35 left to right.

structures associated with this regime, for in elastic-
parameter space CaF2 lies beyond all critical curves. An
experimental image of the focusing pattern for CaF2 was
shown in Fig. 2(a). The origin of this complicated pattern
may be understood by examining the slowness and wave
surfaces for CaFz. The FT-mode slowness surface and a
portion of the corresponding group-velocity surface are
depicted in Figs. 5(a) and 5(b), respectively. Points
through D on the group-velocity surface correspond to
similarly labeled points on the slowness surface. (These
labels are not related to the critical curves in Fig. 3.)

On the slowness surface, starting from the [001] direc-
tion and moving toward point 3, the surface is convex.
The large curvature implies a defocusing of phonons, with
a reduced phonon intensity. At point 3, a change in the
sign of the Gaussian curvature causes a fold caustic in the
velocity surface. As k moves further toward the [111]
direction (toward point B), phonons in the saddle region
are channeled up away from the fold. Point 8 is a conic
point where the ST and FT slowness surfaces meet, and
the curvature is not defined at this point. As k is smooth-
ly rotated through this point, the group-velocity vector

suddenly flips to the opposite point on the conic circle, as
shown in Fig. 5(b). For k just beyond point B, the slow-
ness surface has convex curvature. At point C, the
Gaussian curvature changes back to saddle, giving rise to
the cusp in the wave surface.

The Monte Carlo simulation in Fig. 5(c) shows the
heat-pulse intensities associated with the FT mode. The
three-cusped structure, as also seen in the experimental
image [Fig. 2(a)], is quite prominent. It is interesting to
note that the roughly circular fold which joins the cusps
does not exist entirely on the FT sheet. Instead, the fold
extends between the FT and ST sheets, so that for each
mode it appears as if there were three separate caustic
lines which end on the conic circle. This phenomenon
will be discussed in more detail below.

Figures 6(a) and 6(b) show the slowness and group-
velocity surfaces associated with the ST mode. For k
along the [110] crystalline direction, the slowness surface
is convex and indicates a large defocusing of phonon fiux.
As k approaches the parabolic line at point E from below,
the phonon group velocity points above the [111]crystal-
line direction, then nears a cusp caustic. As k is rotated
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(c) ]E
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/

FIQ. 7. FT slowness surfaces for several values of a and b in the positive-6 regime, showing the topological changes with increas-
ing anisotropy. The Roman numerals identify these elastic ratios in Fig. 9. The slowness surfaces were calculated using the following
values: (a) a =3.15, b =0.47 (point II); (b) a =3.18, b =0.43; (c) a =3.20, b =0.40 (point III); and (d) a =3.75, b = —0.50 (point
VI).

further toward point F, V now points up beyond the cusp.
Phonons in the small island of concave curvature between
point I' and [111]possess velocity vectors that are direct-
ed back down towards the [111] direction. When k
crosses the [111]direction, there is a discontinuity in the
direction of V. Group-velocity vectors for phonons in the
saddle region above the [ill] direction point below the
symmetry direction. The topology of the wave surface is
directly reflected in the predicted heat-pulse intensities,
which are shown by the Monte Carlo calculation of Fig.
6(c). The focusing pattern agrees well with that in the ex-
perimental image in Fig. 2(a).

One important aspect of the wave-surface topology in
CaF2 is that a fold in the total wave surface crosses the
conic circle which joins the FT and ST sheets. This has
interesting implications with regard to the heat-pulse in-
tensity. The intensity on the conic circle is mathematical-
ly zero because this line corresponds to only one point on
the slowness surface (namely, k~~(111)). On the other
hand, the folds give rise to mathematically infinite energy
flux. Thus the collision of these two features would seem
to give a mathematically undefined intensity. The experi-
mental image shows only a weak intensity at these six
points.
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FIG. 8. FT-mode Monte Carlo simulations for values of a and b in the positive-6 regime. Each simulation is centered on the
[111]crystalline direction and'spans +35 left to right, so that the [110] direction lies at the center of the lower edge of the images.
The combinations of a and b used in the simulations are labeled as points in Fig. 9. The simulations were calculated with the follow-

ing values. (a} a =2.95, b =0.65 (point I in Fig. 9), (b) a =3.15, b =0.47 (point II); (c) a =3.20, b =0.40 (point III); (d) a =3.25,
b =0.35 (point IV); (e) a =3.54, b =0.00 (point V); and (f} a =3.75, b = —0.50 (point VI).

B. Fast transverse mode —General considerations

The series of ca'lculations shown in Fig. 7 depicts the
development of the FT slowness-surface topology for ma-
terials in the positive-6 regime. The Monte Carlo flux-
intensity simulations shown in Fig. 8 show the corre-

sponding evolution in the focusing structures near the
[111]direction. The values of a and b used to generate
the Monte Carlo simulations are plotted in Fig. 9 as
points I—VI. (The rest of the figure is explained below. )

These calculations are for arbitrary values of a and b that
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a (c11/c44)

CX2~

b (C)2/C44)

b (C)2/C44)
FIG. 9. Curves in elastic parameter space which show constant values of the two FT-mode, positive-6 angular dimensions. (a)

Curves of constant a2+, defined as the real-space angle subtended by the two fold caustics as they intersect the (001) plane, as indicat-
ed in the inset. (b) Similar curves for /l2+, defined as the angle between (111)and the midpoint of a leg in the (111)-centered trian-
gle. The simulations in Figs. 8(d), 8(e), and 8(f), respectively, show the cases for which Pz+ is negative (no phonons propagate near
(111)}, zero, or positive (phonons propagate inside the caustics). The dashed-dotted line labeled i indicates the ratios beyond which
the intense triangular structure becomes singular.

do not represent particular materials, but point out signi-
ficant steps in the development of the focusing pattern.

For materials near the 6=0 line, the slowness surface is
entirely convex. Least convex are the regions between ad-
jacent (111) directions, so that the flux is most intense
there. The Monte Carlo simulation for point I in Fig. 8(a)

displays this behavior. Increasing the anisotropy and
crossing curve G in Fig. 9 causes saddle regions to
develop in the slowness surface around the (110) direc-
tions [point II, Fig. 7(a)], and produces a singular struc-
ture shown in Fig. 8(b). The caustics are linked by a nar-
row triangular region of intense flux which does not con-
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tain caustics. As the anisotropy is increased to approach
critical curve F, the lobes of saddle region widen and
lengthen, and smaller droplet-shaped areas of saddle cur-
vature arise between the lobes, as seen in Fig. 7(b). The
parabolic lines bounding the droplets produce three small
fold structures which contribute to the (111)-centered
triangle. For increased anisotropy, the droplet-shaped
areas on the slowness surface merge with the lobes, leav-
ing a convex "island" at the [111]direction. In this case,
the parabolic lines bounding the island give rise to a con-
tinuous caustic with three cusps that encircles the symme-
try direction. The slowness surface and flux-intensity
simulation for this case (point III) are shown in Figs. 7(c)
and 8(c), respectively. The cusps are not visible in Fig.
8(c) because they fall very close to the vertex of the trian-
gle formed by other caustics.

At curve F, the parabolic lines bounding the island on
the FT surface just touch the [111] direction. Thus,
beyond curve F, each large island splits into three separate
sections that meet at the [111]conic point. [We will see
that curve F also marks the emergence of parabolic lines
from the conic point on the ST sheet. One can imagine
the FT parabolic lines continuing through the conic point
to form the ST "cloverleaf" in Fig. 6(a).] The result in
real space is that the continuous caustic containing the
three cusps splits into three sections, each containing a
cusp. This phenomenon occurs in the simulation in Fig.
8(d) (point IV), as well as in the simulation for CaF2 [Fig.
5(b)]. In fact, the missing parts of this parabolic line have
moved to the ST sheet via the conic point. As anisotropy
is increased beyond curve F, the convex islands shrink in
size [Fig. 7(d), point VI]. However, the curvature of these
islands increases with increasing anisotropy, so that the
position of the cusps relative to the symmetry direction
remains fairly constant, as seen in Figs. 8(e) and 8(f).

Notice that in Fig. 8(d) no FT phonons propagate inside
the bright (111)-centered triangle. As b, is increased, this
triangle gradually shrinks until it disappears [Fig. 8(e)]
and FT phonons can propagate in the [111]direction. As
5 is increased further, a triangular region containing mul-
tiple wave sheets appears about the [111]direction, as Fig.
8(f) shows.

Because the focusing structures vary smoothly with in-
creasing 6, it is possible to conceive of using one or two
angular dimensions to quantitatively define the size of
each focusing structure. For example, the angular separa-
tion between two related caustics can be determined for
each point in the elastic-parameter space. We apply this
concept first to the positive-b, regime. For all materials
located beyond curve 6, there are always pairs of curved
fold caustics that run along the (110) directions. The
two caustics have a maximum separation when they inter-
sect a [001] plane. I.et the angle az+ be defined as the
angular width of the folded region bounded by two caus-
tics at Ov ——90', e.g., points D& and D2 in Fig. 5(b). The
angle a2+ is indicated in the inset in Fig. 9(a). [The 2
refers to the mode (1=ST, 2=FT); + refers to the sign
of b, .] The dashed curves plotted in Fig. 9(a) are calculat-
ed for constant values of a&+. To obtain these curves, a
fixed value of b was chosen and then a was adjusted to
yield a selected value of 0,2+. This angle was determined

with an accuracy of +0.05'. This procedure was repeated
for different b at intervals of Ab =0.05—0. 1 until the
desired (a,b) parameter space was covered.

A second dimension that helps to define the positive-6
FT focusing structures is a measure of the size of the tri-
angle of caustics surrounding the [111]direction, such as
the angle pz+ indicated in Fig. 9(b). The elastic ratios
which show the first appearance of singularities in the tri-
angle (i.e., when the droplet-shaped saddle regions appear)
are plotted in Fig. 9(b) as the dashed-dotted line marked i.
The values of a and b for which the triangle has zero di-
mension [Pz+ ——0', as in Fig. 8(e)] are plotted as the
dashed-dotted line marked ii in Fig. 9(b). The angle Pz+
is that between the [111] direction and the propagation
direction of a phonon at the midpoint of one leg of the
surrounding triangle [such as point A in Fig. 5(b)]. We
will denote all values of P2+ between curves 6 and ii as
negative, indicating an "open" triangle (no phonons), as in
the case in Fig. 8(d). Beyond curve ii, pq+ will have posi-
tive values, such as in Fig. 8(f). The dashed lines in Fig.
9(b) show the numerically calculated loci of elastic ratios
for which P2+ ———10', —5', 5', 10', and 15'. Given (a,b)
for an arbitrary crystal, the simple determination of an-
gles +2+ and p2+ from Figs. 9(a) and 9(b) makes it possi-
ble to quantitatively predict the directions of major flux
singularities.

C. Slow transverse mode —General considerations

The evolution of the ST-mode focusing pattern for in-
creasing 6 can be understood by examining both the series
of slowness surfaces shown in Fig. 10 and the Monte Car-
lo simulations shown in Fig. 11. The images in Fig. 11
show the area within +35 of the [111] direction. The
values of elastic ratios used to generate the Monte Carlo
simulations in Figs. 11(a) through 11(c) are plotted in Fig.
12 as points I' through III', respectively.

The slowness surface in Fig. 10(a) and the flux-intensity
simulation in Fig. 11(a) have been calculated for a hy-
pothetical crystal with almost isotropic velocity (point I').
Although point I' is located close to b, =0, a small (111)
three-cusped caustic structure such as that found in CaF2
occurs. In fact, there is singular focusing of ST phonons
for al/ positive-6 materials. With increasing anisotropy,
the saddle region surrounding each (111) direction
grows, reaching towards the adjacent (100) directions.
After curve E is crossed, the triangular saddle regions
touch each other at the (100) directions, as indicated by
the slowness surface in Fig. 10(b) for point II'. For in-
creasing 6, the saddle regions widen but always taper to a
point at the (100) directions. The result in real space, as
indicated by the intensity simulation of Fig. 11(b), is that
the (111)cusp structures grow but the caustics meet in a
point at the (100) directions.

When 6 is increased sufficiently to cross critical curve
F, three small concave islands appear on the slowness sur-
face near the (111). As noted in the discussion of CaFq,
the caustics formed by the parabolic lines bounding these
islands are three small fold caustics located near the cusps
[see Fig. 6(c)]. These fold caustics are the missing seg-
ments in the previously-mentioned FT-mode structure.
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FIG. 11. ST-mode Monte Carlo simulations corresponding to
the slowness surfaces in Fig. 10. The simulations are centered
on the [111]direction and span +35' left to right.

FIG. 10. ST slowness surfaces for several values of a ana and b

in the positive-5 regime. The values of a and b used are plotted
as points m ig.F'- l2 The sets of elastic ratios used are as fol-
lows: (a) a =2.95, b =0.65 (point I' in Fig. 12); (b) a =3.00,
b =0.60 (point II'); and (c} a =3.64, b = —0. 19 (point III').

Comparison of the ST slowness surface for CaF2 rn Fig.
6(a) and that in Fig. 10(c) (point III' in Fig. 12) shows that
with increasing anisotropy beyond curve I', the concave
islands expand in size until they almost touch the convex
portions of the surface. The real-space result is not very
dramatic, as the Monte Carlo of point III' in Fig. 11(c) re-
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b=-1 a (C11/C44 )

b (C1P /C44)
FIG. 12. Lines for which n&+ is a constant value. The ST-mode, positive-b, characteristic dimension is defined as the angle be-

tween ( 111)and one of the cusp caustics, as indicated in the inset.

veals. The three-cusp structure has increased propor-
tionately in size, but the three small fold caustics are
hardly visible.

The major change in the ST focusing pattern can be
characterized, as shown in Fig. 12, by defining the angle

at+ between the [111] direction and the propagation
direction of phonons focused into a cusp. The plot in Fig.
12 shows curves of constant at+ for values ranging from
1 to 35'.

In summary, the focusing structures which occur for
the positive-6 class of materials consist mainly of fold
and cusp c'austics centered around the (111) crystalline
directions. The evolution of the principal FT and ST
caustics can be sufficiently described with three angular
dimensions. Figures 9 and 12 can be used to lletermine
these dimensions for an arbitrary set of elastic constants.

IV. CRYSTALS %'ITH NEGATIVE 4
A. An example —Silicon

The plot in Fig. 1 indicates that a number of cubic crys-
tals previously examined by heat-pulse experiments—
including Ge, GaAs, LiF, and Si—lie close together in
elastic parameter space. Thus, the flux-intensity pattern
of Si can be considered typical of these negative-b, crys-
tals. A magnified view of the experimental intensity pat-
tern of Si was shown in Fig. 2(b). The (100) crystalline
direction is at the center of the image, which spans about
24 left to right.

The slowness and wave surfaces for the two transverse
modes of Si are shown in Figs. 13 and 14. The FT-mode
intensity-pattern simulation in Fig. 13(c) reveals high-
intensity "ridges" which are bounded by a pair of fold

:-:;:-;.iVX4%4~8~%44&»»:AXXS~X&~w»»» ~ ~ ~ +» w %»4»wl»x~@Q$g+Qgxw»v(~cy»s»'.

[~oo)
I 010)

FIG. 13. {a) FT slowness surface for Si. Points 2& and A2 map into points A~ and A2 on the group-velocity surface in {b). {b)
Section of the FT-mode group-velocity surface near the [100] direction. (c) FT-mode flux-intensity simulation for Si, centered on the
[100]direction and covering a scan of +45 .
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(a) 001

0

~ \

(d)

FIG. 14. (a) ST slowness surface for Si. The small cloverleaf sections of the surface surrounding each (100) direction are concave
in curvature. (b) Symmetry-reduced portion of the ST slowness surface near [100]. The part of the surface enclosed by dashed lines

maps into the portion of the group-velocity surface shown in (c). (c) Symmetry-reduced segment of the ST group-velocity surface for
Si near the [100] crystalline direction. The remainder of the surface can be obtained by reflecting in (100) and (110) planes. (d) ST-
mode flux-intensity simulation for Si, centered on the [100]direction and spanning +20' left to right.

caustics in the wave surface [Fig. 13(b)]. The slowness
surface [Fig. 13(a)] contains furrows of saddle curvature
that extend between (100) directions.

The ST-mode intensity pattern is much more compli-
cated, as shown in the Monte Carlo calculation in Fig.
14(d). The slowness surface for this mode in Si is depict-
ed in Fig. 14(a). Present on this surface are fairly wide
saddle regions that stretch between neighboring (111)
and (100) directions. In the vicinity of the (111)direc-
tions, the ST slowness surface for negative-b, crystals
resembles that of positive-4 crystals and causes similar
three-cusp caustic structures in those areas [see Fig. 6(c)].
In addition, small concave "cloverleaves" occur directly
around each (100) direction, which give rise to more
folds and cusps.

Figure 14(b) is an enlargement of the slowness surface
near the [100] direction. This portion of the slowness sur-
face bounded by dashed lines maps into the section of the
group-velocity surface shown in Fig. 14(c). This section is
a symmetry-reduced segment of the complete wave sur-

face near [100]. Points B through F in Figs. 14(b) and
14(c) show the point-to-point mapping of specific k vec-
tors into real space. (The [100] axis passes through point
B, while point E reaches 7' towards the [110] direction. )

All of these features can be identified in Fig. 14(d). The
fold lines EI', DB, and Dc correspond to mathematical
singularities in the flux and mark the intense flux regions.
Notice that the line segment EB [partially represented by
the dashed line in Fig. 14(c)] marks an edge of the wave
surface which meets up with another symmetry-reduced
section.

B. Fast transverse mode —general considerations

For elastic ratios between the 6=0 line and the curve
labeled M in Fig. 3(b), the FT slowness surface is totally
convex; there is no singular focusing of phonons. Howev-
er, due to a local reduction in curvature, an enhanced flux
appears between adjacent (100) directions. As

~

b.
~

is in-
creased beyond curve H, furrows of saddle curvature ap-
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( 4.P1
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FIG. 15. (a) FT slowness surface for the point a =1.60, b =1.40 (negative-6 regime). (b) Corresponding Monte Carlo simulation

for FT phonons, centered on the [100]direction and spanning +45 left to right.

pear which run between adjacent (100) directions, as in-
dicated in Fig. 13(a) for Si. These saddle regions produce
the high-intensity FT "ridges. " With increasing anisotro-

py, the saddle regions widen and become more deeply
curved, as shown in Fig. 15(a). This causes a separation
of the two caustics bounding the ridge in the intensity pat-
tern, as shown in Fig. 15(b).

We define the angular dimension o.2, as indicated in
the inset in Fig. 16, as the angular separation between the
two caustic lines at /~=45 . The graph in Fig. 16 shows
curves of constant a2 . The focusing pattern for the FT

mode is virtually identical for any two points on the same
dotted line.

C. Slow transverse mode —General considerations

The fact that there are four critical curves for the ST
mode in the negative-b, regime [curves 2 through D in
Fig. 3(a)] indicates that radical changes occur in the
slowness-surface topology over this region. The evolution
of this topology is represented by the series of slowness
surfaces shown in Fig. 17. The Monte Carlo simulations

b=-1 a(C))/( 44) 2 '40

2
b (C)p/C44)

FIG. 16. Lines of constant a2 in the negative-6 regime. This angular dimension gives the maximum'width of the FT ridge, as in-
dicated in the inset.
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(Q) I

&''N I

(c) C

FIG. 18. ST-mode flux-intensity simulations for several
negative-5 elastic ratios. The elastic ratios used for the simula-
tions have anisotropies between 6=0 and critical curve C, as
shown in Fig. 21. The following elastic ratios were used: (a)
a =2.40, b =0.60 (point I), (b) a =2.35, b =0.65 (point II); and
(c) a =1.87, b =0.22 (diamond, C). The simulations are cen-
tered on the [2~2, 1, 1] crystalline direction and represent a
scan of +38 left to right.

in Figs. 18, 19, and 20 depict the corresponding develop-
ment of the ST focusing pattern. The simulations in Fig.
18 were calculated assuming a (Zv 2, 1, 1) scanning sur-
face, which includes both the [111] and [100] focusing
structures. The simulations in Fig. 19 contain only the re-

gion within +20 of the [100] direction, to examine more
closely the complex structures there. The simulations in
Fig. 20 show an expanded view centered at the [100]
direction and encompassing +40'. The corresponding lo-
cations in elastic-parameter space for these selected im-
ages are noted in the two graphs in Fig. 21.

As in the positive-6 regime, the ST slowness surface for
negative-5 materials arbitrarily close to the 6=0 line
contains regions of saddle curvature around the (111)
directions. For anisotropies between 5=0 and curve A,
the saddle regions extend from the (111)directions part-
way toward adjacent (100) directions, as the slowness
surface in Fig. 17(a) indicates. The resulting focusing pat-
tern, seen in Fig. 18(a), appears qualitatively identical to
those of the ST mode in positive-5 materials close to the
isotropy line. At curve A new areas of saddle curvature
arise, originating at the (100) directions and stretching
toward nearby (111) directions. Figures 17(b) and 18(b)
show the slowness surface and intensity pattern for aniso-
tropies slightly beyond Q (point II in Fig. 21). Between
curves A and B, the saddle regions merge together, form-
ing' a continuous furrow between adjacent (100) and
( 111) directions. This is the case for diamond ( C),
whose intensity pattern is shown in Fig. 18(c). The locus
of points for which the two saddle regions have just
merged is the dotted-dashed line labeled i in both graphs
in Fig. 21.

As the anisotropy is increased further, the four (100)
saddle lobes fuse together. In fact, as curve 8 is reached,
a continuous region of the slowness surface around each
(100) direction becomes saddle shaped. Figure 17(c) il-
lustrates this situation. The corresponding Monte Carlo
simulation in Fig. 19(a) reveals how this merging of the
saddle lobes alters the (100) focusing structure. Instead
of meeting at a point in the (100) directions, the fold
caustics now overlap each other as they wrap around the
symmetry direction.

The slowness surface shown in Fig. 17(d) is representa-
tive of the topology found in materials whose anisotropy
lies beyond critical curve C. Small cloverleaves of 'con-

cave curvature now appear inside the saddle region, cen-
tered at the (100) directions. Examination of Fig. 14 re-
veals that these areas are responsible for small (100)-
centered cusp structures in the focusing pattern. Monte
Carlo simulations in Figs. 19(b) through 19(d) for points
IV through VI show that this interior structure varies ap-
preciably as the anisotropy changes between curves C and
D. As the anisotropy changes, the cusp-fold caustic in
each symmetry-reduced segment [line BDC in Fig. 14(c)]
changes its orientation or tilt with respect to the [001I
planes. The change is due to the gradual increase in size
of the cloverleaves as they expand, their parabolic lines
approach the I 001 I planes, so that phonons on the caus-
tics are focused closer to those planes.

As the anisotropy is increased past critical curve D, the
cloverleaves merge into a single concave area around the
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FIG. 19. ST-mode intensity-pattern simulations for several negative-5 materials between critical curves B and D. These images

are rotated 45' with respect to those in Fig. 18. The simulations are centered on the [100] direction and span 20 left to right. Plot-

ted in Fig. 21, the values chosen for a and b are as follows: (a) a =2.275, b =0.725 (point III); (b) a =2.225, b =0.775 (point IV); (c)

a =2.20, b =0.80 (point V); and (d) a =2.10, b =0.90 (point VI).

( 100) directions, as Fig. 17(e) indicates. The flux-
intensity simulations of points VII and VIII in Figs. 20(a)
and 20(c) and for copper (Cu) in Fig. 20(b) show the evo-
lution of the focusing pattern for anisotropies beyond
curve D. Formation of a single concave region around
(100) means that the four separate inner caustics merge
into one continuous caustic. As the concave region in-

creases in size and curvature, this inner caustic moves
away from the symmetry direction, until it touches the
outer folds at the (001) and (010) planes (for Cu). For
larger anisotropies, the caustic due to the concave regions
actually appears outside of the saddle caustics in these
planes [Fig. 20(c)]. (Examples of several types of catas-
trophes can be observed as the (100)-centered caustic
structure evolves. A discussion of this is in Ref. 15.) Fig-
ure 20(c) also reveals that as the anisotropy is increased,
an enlargement of the entire focusing structure occurs,
and the (111)-centered cusps eventually move inside the
( 100) -centered square structure.

A representative feature of the ST-mode focusing pat-

tern is the "ramp, " or pair of fold caustics that extends
from near a (100) direction toward a (111) direction,
where they meet with other caustic pairs to form the
three-cusped structure. The separation of the cusps from
(111) indicates the width of the ramp. As shown in Fig.
21(a), we define at as the angle between one of the three
cusps and the [111]direction. The dashed curves in Fig.
21(b) are curves of constant a~

Another prominent feature in the ST-mode pattern is
the bright square centered about the (100) directions
[e.g. , Fig. 20(a)]. This structure actually consists of over-
lapping V-shaped folds which form the boundaries of the
ramps. With increasing anisotropy, the "square" changes
size, shape, and orientation. Let I3, be the angle between
the [100] direction and intersection of the square with the
(001) plane, as shown in Fig. 21(a). Figure 21(c) shows
the curves of constant Pt

Thus, the focusing structures for materials with nega-
tive 6 are most complicated near the (100) crystalline
directions. Intense FT ridges occupy the {100I planes.
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(Cl) VII

Ramps in the ST focusing pattern reach between (100)
and adjacent ( 111) directions, and additional cusped
structures occur near the (100) directions. The dimen-
sions of the FT ridge caustics can be described with one
angle, and the principal changes that occur in the ST-
mode caustics can be approximately characterized with
the use of two angles.

V. SUMMARY

(C) Vl ll

The phonon-focusing patterns associated with low-

temperature heat-pulse propagation in cubic crystals has
been systematically described. Depending on the values of
the elastic constant ratios a =C~~/Cz~ and b =C&2/C44,
a material can be assigned to one of two classes, deter-
mined by the sign of the parameter 6—=a —b —2, where
isotropy corresponds to b, =0. Qualitative differences are
observed between the phonon-focusing patterns of
positive- and negative-b. crystals. To provide specific ex-
amples of the focusing features typical of each regime, the
slowness and wave surfaces of CaFz and Si were examined
in detail.

The qualitative changes that take place in the focusing
pattern as the elastic ratios are hypothetically varied have
been investigated by studying (a) the evolution in the
slowness-surface topology and (b) the corresponding
changes in Monte Carlo flux-intensity simulations. Inten-"
sity patterns for nearly isotropic materials show little or
no singular focusing. As the anisotropy is increased, the
angular size and complexity of the singular structures in-

crease.
In general, a quantitative prediction of the anisotropy

in phonon flux requires a detailed Monte Carlo calcula-
tion. However, the angular dimensions of the principal
caustics can be described by a small number of angles.
We have defined a set of such angles and determined their
variation in the elastic-parameter space. Using this infor-
mation (Figs. 9, 12, 16, and 21), the singularity pattern for
a cubic crystal of arbitrary elastic constants can be easily
predicted.
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