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We have developed a Thomas-Fermi theory for the structural and elastic properties of the first-
stage alkali-metal graphite intercalation compounds. We use a simplified model for the electronic
structure of these materials which assumes full charge transfer between the alkali metal and the
graphite, no hybridization between metal and carbon states, and a uniform distribution of the donat-
ed charge on the graphite planes. We have computed lattice constants, compressibilities, shear
moduli, alkali-metal diffusion constants and activation energies, and domain-wall thicknesses; gen-
eral agreement with available experiments is found. These results indicate that our model of the
electronic properties is consistent with known elastic and structural properties. The interplane
metal-carbon interaction is mostly determined by a competition between Coulomb attraction and
hard-core repulsion. The Li ion is much more compact than that of K, Rb, or Cs, which explains
the higher compressibility of the Li graphite intercalation compound and the lower Li ionic mobili-

ty. The Na —C bond is found to be very soft, explaining the lack of formation of Na-intercalated
graphite. The in-plane alkali-metal —alkali-metal interaction is determined almost entirely by the
Coulomb interaction, and is thus relatively independent of the alkali-metal species.

I. INTRODUCTION

Recently the structural properties of the first-stage
graphite intercalation compounds have received increasing
experimental attention. ' Reported in the last few years
have been studies of the concentration-temperature and
pressure-temperature ' phase diagrams of LiC6 (Ref. 4)
and KC8 (Ref. 5), investigations of commensurate-
incommensurate transitions in the alkali-metal-atom
planes, measurements of the domain-wall structure in
modulated phases, studies of the magnitude and activa-
tion energies of alkali-metal diffusivity, ' determination
of elastic constants in both the ordered and disordered
state, and the measurement of in-plane"' and out-of-
plane' phonon dispersions. A variety of model stud-
ies' ' have been done to try to understand some of these
phenomena. However, very little effort has been made to
correlate this wealth of structural observations with the
(presumably known) electronic structure of these solids.

A presently accepted model for obtaining the electronic
and structural properties of solids is the density functional
theory (DFT) within the local density approximation
(LDA). Although this theory has enjoyed considerable
success in both describing the energy bands and determin-
ing structural energies for a wide variety of metals and
semiconductors, it has not been applied extensively to
the graphite intercalation compounds. This use of the
DFT—LDA approach is presently limited by the immense
computational cost of performing calculations on crystals
with large unit cells. This means that its application to
graphite intercalation compounds has been limited to elec-
tronic structure studies of a few of the simplest com-
pounds [LiC6 (Ref. 26), KC8 (Refs. 27 and 28), BaC6 (Ref.
29), and some thin-film studies ]. In the future such
DFT—LDA studies may be done for a much wider class
of compounds.

For the time being we have attempted to obtain a uni-
fied understanding of the electronic and structural proper-
ties of the graphite intercalation compounds by using a
simpler theoretical approach. Our work is also based on
the DFT, but within the simpler Thomas-Fermi approxi-
mation (TFA) (Ref. 31). The application of the TFA is
much less time consuming than the LDA, a simplification
which has permitted us to study the systematics of the
structural properties of the entire alkali-metal series. The
TFA is known to be less accurate than the LDA, but
when applied with care it has proved to be capable of pro-
ducing semiquantitative predictions for the structural
properties of a variety of compounds.

We have made predictions about the structural proper-
ties of the alkali-metal graphite intercalation compounds
by using the TFA along with some simple assumptions
about the electronic properties of these materials. These
assumptions are the following: (1) Alkali-metal ionization
is complete, with full charge transfer to the graphite host.
(2) The graphite states may be treated in the rigid-band
approximation. These points [especially (1)] continue to
be a subject of active investigation recent
work3&, 35,27, 28, 26 tends to support the full-ionization pic-
ture. In any case, the predictions which we generate using
these assumptions are largely consistent with observed
structural properties.

Our calculations reproduce the observed trends in prop-
erties related to alkali-metal —graphite interactions, e.g. ,
lattice constants and elastic moduli, down the alkali-metal
series. We obtain reasonably good predictions for the in-
plane diffusion constants of the heavy alkali-metal com-
pounds, and we correctly predict the large enhancement of
the activation energy for diffusion in Li-intercalated
graphite as compared with the other compounds. In our
model the underlying physics which determines these
structural properties is quite simple. The intraplanar
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carbon —alkali-metal interactions are determined by a
competition between the attractive Coulomb and
exchange-correlation interactions and hard-core repulsion.
As such, this interaction is sensitive to the details of the
alkali-metal-ion core (pseudo)potential, and thus Li is
found to behave quite differently than K, Rb, or Cs. The
Li graphite intercalation compound is unique in that
direct C-plane —C-plane interactions play a significant
role in stabilizing the crystal. Na has properties which are
distinct from any of the other alkali metals. The inter-
plane (pseudo)Coulomb energy for NaC8 is more repulsive
than for the other compounds. As a consequence the
Na —C bond is very soft, which seems to be in accord with
the observation that Na graphite intercalation compounds
do not easily form. Later we will account for this
behavior in terms of the atomic physics of Na.

In the present model the physics of the in-plane alkali-
metal —alkali-metal interaction is even simpler. It is
determined almost entirely by classical Coulombic in-
teractions alone, and as such is essentially the same for all
the alkali-metal species. The primary difference between
the in-plane behavior of the different alkali-metal species
comes from changes in the "corrugation potential" gen-
erated by the adjoining hexagonal C lattice. This corruga-
tion is much stronger for Li than for the other alkali-
metal species, and we predict that discommensurations be-
tween locally registered Li domains should be much
sharper than for the other metals.

It is important to note that all of these predictions come
from a single, simple, unified model which is built direct-
ly on our current understanding of the electronic structure
of the graphite intercalation compounds. We thus both
increase our confidence in our understanding of the elec-
tronic structure, and demonstrate the utility of Thomas-
Fermi —type approaches for further studies on these ma-
terials.

The remainder of this paper is organized as follows. In
Sec. II we outline our density-functional approach and its
application to the alkali-metal intercalation compounds.
Our numerical results for the energetics of these com-
pounds is given in Sec. III: In- Sec. III A we explore phe-
nomena related to the alkali-metal —graphite interaction
(lattice constants, elastic moduh, diffusion constants); in
Sec. III B we study the alkali-metal —alkali-metal interac-
tion, which is relevant to the commensurate-
incommensurate transition and domain structure and ki-
netics. The Appendix gives certain formal results for the
Coulomb energy for layered materials which are useful in
Sec. III B. Our conclusions are presented in Sec. IV. Pre-
liminary accounts of this work have appeared previous-
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4/3 ~ 5/3
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(2b)

Here g; are the one-electron (plane-wave) orbitals, and f;
are the occupation numbers. In this equation and the ones
below we use Rydberg atomic units.

The ansatz which is made for the density-functional
ground-state energy of the inhomogeneous many-body
system follows from this knowledge of the homogeneous
system. In both the local-density and the Thomas-Fermi
approaches the exchange-correlation energy V„ in a sys-
tem with density p(r) is taken to be that of a homogene-
ous electron gas locally, integrated over all space:

V„,[p(r)] = J~(r)e„,[p(r)]dr. (3)

For the noninteracting kinetic energy there are two possi-
ble generalizations, depending on whether the starting
point is Eq. (2a) or (2b). In LDA (Ref. 23) the obvious
generalization or Eq. (2a) is made:

T„;[p(r)]= gf; J g*;(r)V—1tj;(r)dr. (4)

That is, the plane-wave eigenstates are replaced by the
eigenstates g; of an effective one-particle Schrodinger
equation for the inhomogeneous system. In the TFA the
starting point is Eq. (2b), and the generalization is the
same as the one used for the exchange-correlation energy:

35/3
T„;[p(r)]=sr ~ f [p(r)]'~ dr. (5)

work, however, useful empirical theories of the density-
functional type were in use. ' ' In both the original
Thomas-Fermi model and the more recent local-density
approximations the starting point is our knowledge of the
many-body ground-state properties of the uniform elec-
tron gas (jellium). The ground-state energy of this system
with density p0 and volume 0 is conventionally written

Eo(po) =T„;(po) + VL +poise„, (po).

Here T„; is the (kinetic) energy of a noninteracting elec-
tron gas of the same density p0, and Vc is the classical
Coulomb energy (=0 for jellium). e„,(po), the exchange-
correlation energy per particle, is simply the additional
term required on the right-hand side of Eq. (1) to give the
exact many-body ground-state energy on the right. The
function e„, is known to good accuracy from numerical
simulations, and reliable parametrizations of it exist in
the literature. ' We have used the Hedin-Lundqvist
parametrization. T„; is obviously known exactly, but it
can be written in two equivalent ways:

T„;= gf; J—[P, (r)]*V P;(r)dr, (2a)

II. THEORY

In density-functional theory the ground-state energy
E [p] of the solid is written as a functional of the
ground-state electronic charge density p of the system.
Hohenberg and Kohn proved the existence of an exact
functional relationship of this form; long before their

Both approximations for the kinetic energy are justifiable
for systems with slowly varying densities; both approxi-
mations have been used extensively in systems with rapid-
ly varying densities, for which no rigorous justification
exists. Still, both have enjoyed remarkable qualitative and
often quantitative success, especially the LDA. ' At-
tempts to add correction terms to both T„; and V„, have
been made; these terms frequently do not improve the suc-
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cesp of the theory.
One way of improving the Thomas-Fermi kinetic ener-

gy in Eq. (5) which has met with some success involves
expressing the kinetic energy in a series of powers of the
spatial gradients of the electron density: '

T=T„,+T'"[IvpI']+ T"'[
I
vpI']+ . .

In practice this does seem to be a convergent series, with
T' ' and higher terms contributing only slightly to the to-
tal energy. T'" has been found to be important; it is
given by

(7)
p(r)

It is found that the inclusion of this term in a Thomas-
Fermi model does yield a substantial improvement in pre-
dictions of total energies for real systems. We have
therefore used this term in the present calculation.

The Coulomb energy of Eq. (1) for an inhomogeneous
system is

p{r,)p(r, )
Vc[p] = f f dr)dr2,

which is not zero as it is for jellium. In this equation p is
now understood to contain both the electronic charge den-
sity and the charge density of the nucleus. The actual
evaluation of this expression requires some care, as has
been discussed previously. ' The calculation is simpli-
fied somewhat by representing the nucleus and the core
electrons by a pseudopotential V;,„. We have taken V;,„
to be of the norm-conserving type; ' such potentials are
generally angular momentum dependent. In the present
application we have used only the l =0 part of the pseu-
dopotential and assumed that V;,„ is local. Within this
approximation we can represent the nucleus plus the core
electrons by a pseudo-core charge density p, (r) which is
related to V;,„ through the Poisson equation

p, (r) varies smoothly in the nuclear region. This repre-
sentation permits a simple calculation of the core contri-
bution to the Coulomb energy using Eq. (8).

Such a pseudopotential is constructed to describe the

cancellation between the large attractive core Coulomb
potential and the large repulsive core kinetic energy of the
valence orbitals; therefore, we only use the Thomas-Fermi
kinetic energy terms of Eqs. (5) and (7) to obtain the ki-
netic energy of the ualence electrons. In other words, we
evaluate Eqs. (5) and (7) using only the valence charge
density p, . Since p„ is slowly varying, the use of the
Thomas-Fermi approximation should actually be more
justifiable than if we had used Eqs. (5) and (7) to evaluate
the full kinetic energy, which has a core contribution
which varies rapidly in space.

In many applications of norm-conserving pseudopoten-
tials the core contributions to the exchange-correlation en-

ergy are also included in V;,„. However, since E,, is a
nonlinear function of p (varying roughly like p / ), it is
not strictly correct to write it as a linear superposition of a
core piece plus a valence piece. The error made has been
found to be particularly important for alkali-metal atoms,
which have fairly weakly bound and extended core states.
Therefore we follow the approach of Louie et al. ' and
(for the alkali-metal atoms only) exclude the core
exchange-correlation energy from V;,„, but evaluate the
full core-plus-valence V„using Eq. (3). Since p, varies
rapidly near the core, the integrand of Eq. (3) has a large
number of Fourier components, which is inconvenient for
actual calculations. Again following Louie et al., we note
that in the integrand

the only important nonlinear contributions occur when

p, -p, . Thus near the nucleus where p, ~~p„we are free
to replace p, by a more smoothly varying model-core
density p, . p, is constructed according to

Aexp( —r Ir~), r & ro,2 2

p, (r),

Here A and ~~ are chosen such that the value and slope
of p, are continuous at ro, and ro is chosen such that
pe(ro) &2Xp&(ro) Thus p, is smoothly varying, its
Fourier transform is short ranged, and it is accurate in the
region where the nonlinearity in Eq. (9) is important.

With this, the expression we use for the Thomas-Fermi
energy in the present work becomes

[p, (r~)+p„(r~)][p,(r2)+p„(r2)]
ETp[p] = ~.'"dr+

36 dr+ 6 r)OI'2
5 0 p 0 Q

+f [p, (r)+p, (r)]e„,[p, (r)+p, (r)]dr.

Finally, we must specify a procedure for obtaining the
valence charge density p„. In a self-consistent Thomas-
Fermi calculation, this density would be varied until a
functional minimum of the Thomas-Fermi energy is ob-
tained:

~ETF =0.
6p„

(12)

However, this procedure suffers from the defect that the
self-consistent Thomas-Fermi charge density is unlikely to
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psuper( r) ~

pgr( r ) extr
p (r),

&super/2 & & & & super/2

otherwise.

'The extrapolation charge density p'""(r) is an exponential-
ly decaying charge which is chosen so that p is continuous
at z =+a'" "/2 and total charge is conserved. This ap-
proximation for pg, (r) has the advantage of being exactly
positive definite: pg, (r) &0 for all r. The decay constant
of the (xl

I
&0 components of p Cx

I I

' a 'n p
reciprocal-lattice vector) are chosen to be 1.3 times as fast
as the Cx~t

——0 component; we do this to mimic the known
property that corrugations (CxII&0) die rapidly away from
surfaces. However, there is nothing special about the fac-
tor 1.3. We do not expect our final results to be very sen-
sitive to the details of this extrapolation, since p'""(r) is
everywhere small.

Thus we complete our construction of the alkali-
metal —graphite charge density by a simple linear superpo-
sition of the contributions from different graphite planes
and alkali-metal atoms. For the case of pure graphite, Ez
in Eq. (13) is chosen such that the C planes are electrically
neutral. For the alkali-metal graphite intercalation com-
pounds the Fermi energy is raised so that the charge on
the C planes compensates the ion charge of the alkali-
metal atoms.

This ansatz contains several assumptions. First, as dis-
cussed in Sec. I, we assume that the alkali-metal atoms are
completely ionized, contributing nothing to the valence-
charge density but simply donating charge to the graphite
planes. This assumption has been rather controversial'

give an accurate description of the covalent C—C bond in
graphite compounds; our semiclassical functional in Eq.
(1) should not be expected to describe such a quantum-
mechanical bond. Of course, for the most part we are not
interested in the C—C in-plane interaction, but rather in
the C—C interplane interactions and C—alkali-metal in-
teractions which should be accurately described by Eq. (1).
Thus we would be happy to simply freeze-in a correct
quantum-mechanical description of the C—C bond
charge, not allowing it to vary while we study other more
subtle and interesting energetics. To do this we have con-
structed the valence charge density in a non-self-
consistent way which nevertheless retains a good
quantum-mechanical description of the covalent-bond
charge.

We begin with a quantum-mechanical calculation of the
eigenstates of an isoLated plane of C atoms. (The results
of such a LDA calculation have been kindly provided to
us by Professor N. A. W. Holzwarth. ) If we denote the
C-plane wave functions by 1L'"~"(k,r), then the charge
density contributed by the C planes is

p'"~"(r)= I,„, I

P'"~"(k,r)
~

dk. (13)

As Eq. (13) suggests, the LDA calculation which we per-
form is not precisely for an isolated graphite plane, but
rather for a supercell of widely spaced graphite planes.
The supercell lattice constant a'"P" is about 55% larger
than the lattice constant of pure graphite; it was chosen in
connection with a study of BaC6 (Ref. 29). The model
which we use for the Isolated graphite plane is then

but seems to be supported by recent experiments.
Second, our charge-density construction does not allow
for self-consistent readjustments of the graphite eigen-
states due to the presence of the added charge. Since the
added charge density [(—,

'
)e per C atom] is fairly small

on the scale of the total valence-charge density (4 per C
atom), this is expected to be only a small effect. (It is
indeed found to be a small effect in recent LDA calcula-
tions for KCg. ) Third, we have neglected the in-plane
polarization of the added charge due to the presence of
the positive ions, i.e., we have neglected screening effects.
Reference 52 shows that the screening length in graphite
is actually anomalously long because of the two dimen-
sionality of the screening and because of the peculiar elec-
tronic structure of the host material near the Fermi ener-
gy. For most of the cases treated in this paper, therefore,
the screening effects will indeed be weak. However, there
are cases in which this neglect will cause errors, and we
will discuss these cases below.

III. RESULTS

A. Alkali-metal —carbon interactions

I

0.0—

—0.2—
I I I

3.6 4.0
I I

4.4 5.0
c (A)

.I I

5 4

FIG. 1. Total energy ET and the density-functional energies
contributing to it for LiC6 and KCS as a function of the out-of-
plane lattice constant c. Energies are in eV/C atom and have
been shifted by arbitrary constants.

In this section we wil1 show results for the total energy
[Eq. (1), with the modifications mentioned above], along
with its components, the exchange and correlation energy
V„„. the electrostatic Coulomb energy Vz, the Thomas-
Fermi kinetic energy TTF,' and the gradient correction to
the kinetic energy T"'. We have computed these as a
function of several lattice coordinates of the alkali-
metal —graphite lattice: the sandwich spacing c, the posi-
tion of the alkali-metal superlattice with respect to the
graphite lattice ~, and the alkali-metal —alkali-metal
separation a. From these we are in a position to discuss
various ground-state parameters of the first-stage com-
pounds.

Figures 1 and 2(a)—2(c) show these energies as a func-
tion of the carbon-plane separation for the stage-1 alkali-
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FIG. 2. Same as Fig. 1 for (a) KC8, (b) RbC8, and (c) CsC8.
The experimental lattice constant is indicated as co.

metal —graphite compounds. Figure 1 compares LiC6
with KCs, and Figs. 2(a), 2(b), and 2(c) show KCs, RbC8,
and CsC8, respectively. These stoichiometries are the
alkali-metal concentrations appropriate for the zero-
pressure, low-temperature first-stage phases of these com-
pounds. The Li-intercalated graphite compound differs
strikingly from the heavier-alkali-metal graphite inter-
calation compounds of K, Rb, and Cs, as the figures
show. In LiC6, the general form of the total energy
around equilibrium is contributed to dominantly by the
electrostatic Coulomb energy, with all the other com-
ponents of the total energy making roughly equal but
small contributions. On the other hand, the general shape
of the total-energy curve for the K, Rb, and Cs com-
pounds is determined by a roughly equal contribution
from a repulsive Coulomb term and an attractive ex-
change and correlation term, with the kinetic and gradient
terms making essentially no contribution.

First, let us consider the general behavior of the
Coulomb contribution. At large lattice constant the
Coulomb contribution becomes linear and attractive. This
simply represents the attractive force between the alternat-
ing positively- and negatively-charged planes in the ma-
terial. This regime can be seen in Fig. I for the case of
LiC6, it occurs at somewhat larger lattice constants than
have been plotted for the heavier alkali metals. At smaller
lattice constant the Coulomb energy becomes repulsive.
This is so because what we call the "Coulomb" energy is
actually a pseudo Coulomb energy, that is, it includes con-
tributions from the core kinetic energy which have been
folded into the effective ionic pseudopotentials. At small
lattice constant the carbon-valence charge begins to
penetrate the alkali-metal cores. Thus the core kinetic en-

ergy rises, and the effective Coulomb energy becomes
repulsive, as is seen for all the curves in Figs. I and 2.

The other important contribution to the total energy for
most of the first-stage alkali-metal graphite intercalation
compounds is the exchange-correlation energy V„. It is
attractive, which (as discussed previously in our work on
pure graphite ) is generally true for exchange energies.
For LiC6 we have discovered by more detailed analysis
that V„, has equal contribution from both the overlap of
the C valence charge with the alkali-metal-atom core
charge (the nonlinear interaction described above), and
from the interaction of valence charge on adjacent C
planes. On the other hand, we find that for the heavier al-

0.0

E
O

-O. I
O

I I I

4.0
I I

4.4 4.0
c (A)

I

4.4

FIG. 3. Comparison of total energy of LiC6 with the hy-
pothetical compound NaC8.

kali metals, only the alkali-metal-atom-core —graphite-
valence-charge overlap makes a significant contribution to
V„„' that is, there is only negligible direct interaction be-
tween adjacent C planes because of the larger lattice con-
stant in the heavier-alkali-metal graphite intercalation
compounds as compared with LiC6. This is the reason
that the kinetic energy contributions TTF and T'" are al-
most completely flat; in the present formulation of the
theory, these energies depend only on adjacent graphite-
plane interactions.

Figure 3 shows the results of our calculation for the hy-
pothetical compound NaC8 as compared again with LiC6.
Na i.s distinct from all the other alkali metals in that it in-
tercalates into graphite only with considerable difficulty.
Some Na-intercalated graphite compounds have been syn-
thesized, and a stage-8 material has been reported. (It
was found to have a 2X2 in-plane density. ) Low-stage
ternary compounds with cointercalated Na and K have
been observed. However, no low-stage pure Na graphite
intercalation compound has been synthesized. An early
model by Hennig based on a Born-Haber cycle involving
the work function of graphite and the ionization energy of
the alkali metals predicted that the K, Rb, and Cs
graphite intercalation compounds would form and the Na
graphite intercalation compound would not; however,
this model also predicted that the Li graphite intercala-
tion compound would not form, which was later found to
be untrue. The lack of formation of Na-intercalated
graphite remains a mystery.

The energy curves of Fig. 3 show that NaC8 is distinct
from both LiC6 and the heavy-alkali-metal MC8 com-
pounds. The main feature which distinguishes NaC8 from
both LiC6 and KCs is that the (pseudo)Coulomb energy
Vc is more repulsive, leading to a flatter ET near the
minimum. We can trace the behavior of Vc back to the
atomic physics of the alkali metals. Figure 4 shows the
pseudopotentials V„„(r)which we use for Li, Na, and K;
they are generated according to the Kerker procedure,
with the exchange-correlation correction of Louie et al. '

As the figure shows, the pseudopotential near the origin
V;,„(r=0) is more repulsive for Na than for either Li or
K; this leads to the more steeply rising Vc for NaC8 in
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2
O

r {a.U. )

FICx. 4. Ionic pseudopotentials used for Li, Na, and K. The
Na potential is more repulsive near the origin, resulting in the
more repulsive Coulomb energy V~ of NaC8 and the flatter ET.

Fig. 4. This anomaly in V;,„(0) is simply a reflection of
an anomaly in the Wigner-Seitz radius rws of the alkali
metals. (We take rws to be defined by the la'st extremum
of the wave function of the outermost s electron. ) The
Wigner-Seitz volume Vws for Na, rather than being mid-
way between those of Li and K, is nearly the same as for
Li; the change of Vws in going from Li~Na~K is in
the ratio 15:85. In other words,

Vws(Na) —Vws(Li) lS
Vws(K) —Vws(Na) 85

This means that the core radius of the Li and Na pseudo-
potentials is nearly the same, as Fig. 4 shows. On the oth-
er hand, the value of the valence s eigenvalue E„which
determines the strength of the pseudopotential, increases
more nearly continuously down the alkali-metal series; the
change in E, in going from Li to K in the sequence
Li~Na~K is divided according to the ratio 30:70; i.e.,

E, (Na) —E,(Li) 30
E,(K)—E,(Na) 70

Thus the Na pseudopotential, while having about the
same extent as Li's, must reproduce a higher s eigenvalue.
Therefore, it is more repulsive. The flatness of ET for
NaC8 resulting from this effect leads to a very low elastic
modulus (see below). Since in most materials there is a
direct scaling relation between the elastic modulus and the
cohesive energy E, h, it may be speculated that, al-
though E«h cannot be computed directly in the present
work, it is likely to be much smaller for NaCs than for the
other compounds. This suggests a possible reason for the
observed nonformation of NaCs.

Table I shows the equilibrium lattice constant co as de-
duced from the minimum of Er in Figs. l —3, along with
the values obtained from diffraction experiments. Fig-
ure 5 also shows these parameters graphically. As the fig-
ure demonstrates, we reproduce the trend of the growth of
the lattice constant down the alkali-metal series quite reli-
ably. (The experimental Na lattice constant is taken from
the C-Na-C sandwich spacing in stage-8 Na-intercalated

X

TABLE I. Fhysical parameters for first-stage alkali-metal —graphite compounds.

Li

co (expt. ) (A)'
co (theor. )

Ac/co (%)
C33 (expt. )

{10 dyn/cm )

C33 (theof, )
Ec
E, (ev)
E~ (expt. )

E, (eV)
C~ (expt. )'
(10" dyn/cm )

C~ (theor. )

a (expt. ) (A)
kM (eV/A )

6 (eV/A)
k (eV/A )

lo (A
D (expt. )

(cm /sec)
D (theor. )g

3.70
4.42

+ 19.5

0.88

1.39
0.0
1.30

0.7—1.0
1.60

1.00

4.00
4.26
0.25

—0.41
0.28
6.0

—10

1.0X 10-"

4.6
4.41

—4.0

0.25
0.0
0.25

5.36
5.33

—0.5

0.49

1.27
0.0
0.18

0. 1—0.2
0.20

0.28

0.60
4.92
0.26

—0.87
0.32

23.0

1.0X 10-'

5.66
5.52

—2.5

0.48

1.29
0.0
0.14

0.05—0.10
0.16

0.49
4.92
0.28

—1.00
0.35

27.0

5.7 X 10-'

2.0X10-'

5.94
5.85

—1.5

0.64

1.54
0.0
0.18

0.05—0.10
0.20

0.30

0.67
4.92
0.28

—1.10
0.35

24.0

7 6X10

0.7X10-'

'Reference 57.
References 13 and 11.

'By convention.
References 9 and 10.

'References 11 and 12. Not measured for Rb.
At 523 K. References 9 and 10.

I'Reference 39.
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FIG. 5. Experimental and theoretical out-of-plane lattice con-
stants for the first-stage alkali-metal intercalation compounds.

graphite. ) The lattice constants of the Na, K, Rb, and
Cs graphite intercalation compounds in fact have high
quantitative accuracy, being in agreement with experiment
to within 4% in each case. We have found that the non-
linear core exchange interaction included in Eqs. (9)—(11)
is crucial in obtaining this good agreement; these lattice
constants are consistently small by 10—15 % when this
effect is not included. It is therefore clear that the non-
linearity of the core exchange interaction is, as Louie et al.
have noted, ' essential in describing the energetics of
alkali-metal-containing materials.

The result for LiC6 is different in a number of ways.
The agreement between theory and experiment in co is not
as quantitatively accurate, although our prediction still
follows the general trend quite adequately. [We find that
inclusion of the nonlinear core interaction in Eqs. (lo)
and (11) has virtually no effect on the prediction which
our theory makes for the LiC6 lattice constant. ] One pos-
sible explanation for this lack of agreement is that our
simple charge-density construction, with fully ionized
alkali-metal-atom cores, unpolarized graphite m. charge,
and no carbon-metal hybridization effects, is more realis-
tic for the heavier-alkali-metal graphite intercalation com-
pounds than for LiC6. Previous speculations have
focused on evidence for Li-C hybridization provided by
trends in the LiC6 lattice constant. A theoretical study of
the ground-state charge density of LiC6 has demonstrated
the presence of a noticeable hybridization which leads to
something resembling a weak covalent bond charge be-
tween the Li and C atoms. This theoretical prediction
has recently been confirmed by Compton scattering mea-
surements. While there is some evidence that this hy-
bridization effect is less pronounced in KCz, this con-
clusion remains controversial, ' and other studies have
reached the opposite conclusion. Still, it is our belief
that the neglect of electronic hybridization is likely to be
the main source of the quantitative error in our predicted
LiC6 lattice constant.

As implied by the above discussion, we explain the
trend of lattice constants through the alkali-metal series
by changes in the nature of the core-valence interaction.
The greatest difference in the atomic physics between Li

co%
C3

Ao
(14)

Here Ao is the basal plane area per C atom. The values
deduced for C33 are shown in Table I along with the
values obtained by neutron-scattering measurements of
longitudinal-acoustic phonons perpendicular to the
planes " these values are plotted in Fig. 6. (Naturally,
no experimental data exist for NaCs. ) For all compounds
except NaC8, these elastic constants are fairly strong, be-
ing in the range of typical semiconductor moduli, ' and
they are larger than for pure graphite. The agreement be-
tween theory and experiment is on the same order as
graphite, with discrepancies of about a factor of 2. It may
be that this is the best that may generally be expected with
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I
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FIG. 6. Same as Fig. 5 for out-of-plane compressional elastic
modulus C33 Circles are theory, squares experiment.

and K, Rb, and Cs is the presence of shallow p cores in
the latter but not in the former. (We will exclude Na
from the present discussion. ) The Li core, composed of
1s electrons, is about 60 eV below vacuum. Thus the core
charge is very compact, its interaction with the carbon ~
charge is quite short ranged, and the lattice constant is
small. In fact we have shown that the LiC6 lattice con-
stant is stabilized at least as much by C-plane —C-plane
interactions as by Li-C interaction. In K, Rb, and Cs, on
the other hand, the outer p core lies only 15—20 eV below
vacuum, with this energy decreasing down the Periodic
Table. The resulting core charge p, becomes more and
more diffuse, interacts more and more strongly with the C
valence charge, and causes the lattice constant to increase
down the Periodic Table. This physical picture is perhaps
not surprising, given the known fact that the alkali-
metal —graphite lattice constants scale consistently with
atomic radii. Li's lack of a p core has been noted previ-
ously. However, the outer atomic s charge of the alkali
metal is apparently playing no detectable role in the deter-
mination of the out-of-plane lattice constant, and thus our
assumption that it is absent is supported.

The planar compressibility C33 is determined from
Figs. 1 and 2 through the curvature of ET at equilibrium.
If we fit the total energy as a function of the plane-plane
separation c by a parabolic form around equilibrium co,
ET ——(I/2)IC(c cp) +Ep th—en the elastic modulus is
given by
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the present approximate Thomas-Fermi theory, although
previous studies on carefully selected systems have on
occasion done better. It is promising that we appear to
reproduce the overall trend of C33 down the alkali-metal
series fairly well. Experimentally the Li compound has a
high compressibility, K and Rb are smaller and nearly
identical, and Cs is again higher. This is precisely what
we obtain from the theory. The greater stiffness of LiC6
is easy to understand in terms of the greater compactness
of the sandwich. Unfortunately we have not been able to
find a similar underlying explanation of the heaviest Cs's
relatively larger stiffness. As discussed above, Fig. 6
shows that C33 for NaCs deviates remarkably from that
of the other compounds, being about a factor of 5 softer.

As in our study of pure graphite, we are also interest-
ed in deformations of the lattice involving shear distor-
tions, motions of the constituents parallel to the basal
plane. In the alkali-metal compounds, ho~ever, there is a
much richer variety of physical properties which are relat-
ed to these deformations which can be probed experimen-
tally. We are not only interested in the ordinary shear
elastic modulus C44 but also in the global potential energy
surface for the motion of alkali-metal atoms through the
corrugated potential produced by the graphite host. From
this we will discuss some important physical properties of
the alkali-metal layers: the competition of diffusive and
harmonic motions, the diffusion times which are relevant
to staging transformations or compound formation, and
the driving forces for ordered phases, commensurate or
incommensurate, within the alkali-metal layer. We will in
fact be interested in the same sort of physics as is un-
covered in studies of surface adsorption to which TFA
theories have also been applied (rare gases on graphite,
for example); the intercalation problem is different in a
number of interesting ways, as will become clear below.

The theoretical method for probing in-plane motion of
alkali-metal atoms in the carbon host is very straightfor-
ward; we simply displace the entire alkali-metal superlat-
tice in the first-stage compound to different positions rela-
tive to the surrounding graphite substrate, and calculate
the kinetic and potential contributions to the total energy.
Once again, this is done using our simple linear superposi-
tion construction for the compound charge density. In
each calculation described here the layers are positioned
identically ("aa" stacking) in the first-stage compound.

%'e will present our results by quoting the energy and
its components for three high-symmetry alignments of the
alkali-metal and C sublattices: the metal atoms over a C
hexagon, over a C—C bond, and over a C atom. The re-
sulting crystal arrangements are shown in Fig. 7. We
have chosen to study these particular points because their
symmetry permits a more reliable calculation of the rela-
tive total energy at these positions. It should be noted
that within the charge-density model. which we use, TTF
and T'" remain rigorously constant for the deformations
which we study [Fig. 7(a)]; thus we need only recompute
the variations of the Coulomb contribution and the ex-
change and correlation contribution to obtain relative to-
tal energies. Intuitively we expect that the lowest-energy
configuration is the first of these high-symmetry points
Eo where the alkali-metal atoms sit over the centers of C

E,

(a)

(b)

FIG. 7. {a) The three high-symmetry positions Eo El and

Ez for the alkali-metal layers with respect to the host planes for
which the density-functional energies have been evaluated.
Also, an edge view of the deformation studied. (b) An acoustic
shear deformation. As mentioned in the text, the energies of (a)
and (b) are closely related in a system without long-range forces.

hexagons; this is indeed found to be true for every alkali-
metal compound studied, as shown in Table I. Further-
more, the energy above the center of a C—C bond (E&) is
always somewhat lower than the energy above a C atom
(E2). The C—C bond center is thus a saddle point for the
passage of an alkali-metal atom from one hexagon center
to another. Note that because we move the alkali-metal
atoms rigidly, these conclusions are strictly valid only for
the collective, long-wavelength motion of a group of met-
al atoms. We will return to a consideration of alkali-
metal —alkali-metal interactions in subsection B.

Table I shows experimental results for the activation
barrier E& as deduced from the activation energy for in-
plane alkali-metal diffusion. This is determined by
quasielastic neutron scattering. ' The overall agreement
between theory and experiment is fairly good, with the
theory being consistently higher. Still, both agree that the
activation energies are on the order of 1 eV for LiC6, and
on the order of 0.1 eV for the other compounds.

Previous studies of the problem of adsorbate molecules
on a graphite surface ' have found that the corrugations
imposed by the graphite substrate are quite smoothly
varying, being representable by a small number of in-plane
Fourier components. By computing the total energy at a
number of other low-symmetry alignments of the alkali-
metal superlattice, we have determined that for the case of
the intercalation compounds as well, the impurity atoms
sit on an almost sinusoidal surface. This fact permits us
to fit the three high-symmetry points by a sinusoidal ener-

gy function wit;h contributions from only the six shortest
reciprocal-lattice vectors of the C plane. From this fit we
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may examine small harmonic excursions about . the
minimum point at the center of the C hexagon, relating
the curvature of this minimum to the shear elastic con-
stants of the alkali-metal —graphite compounds.

In order to associate this curvature with the shear
modulus C~, we must make the assumption that long-
range forces between planes which are not nearest neigh-
bors are not important; otherwise, the optic-type deforma-
tion which we are studying is not related to the acoustic
distortion which determines C44 (see Fig. 7). While it
might be thought that long-range forces are important in
such a highly ionic compound, this is not the case for the
distortions under study. It can be shown that an overall
neutral planar structure, like a carbon-metal sandwich, in-
teracts by an exponentially decaying force with neighbor-
ing neutral slabs; thus the relevant force is short ranged.
(It is therefore surprising that in recent experiments,
acoustic and optic shear energetics do not seem to be sim-
ply related as they should be in the nearest-neighbor
force model; however, such direct experimental compar-
isons are rather difficult. ) We have demonstrated by
direct computation of the total energy for the acoustic-
type distortion in Fig. 7(b) that these long-range shear
forces are numerically insignificant. (Note that on the
contrary, there should be and are long-ranged compres-
sional forces. ) Therefore we are justified in extracting C44
from the sinusoidal fit to our high-symmetry optic shear
distortions. We have chosen not to obtain C44 directly
from acoustic shear computations because these involve
symmetry-breaking 'distortions of the lattice. We have
found that for the extraction of these rather small energy
differences, the full use of symmetry is quite important in
obtaining reliable numerical estimates for the shear
modulus.

Using the above assumptions, the shear modulus is ob-
tained simply from the numbers at hand:

m' Eico
C44 =

a ohio
0

Here ap=2. 46 A is the graphite lattice constant, the pa-
rameters Ao and co have been defined above, and the cor-
rugation energy E& is given in Table I. The resulting esti-
mates of the shear modulus are also given in Table I and
displayed in Fig. 8. The experimental values for C44 are
extracted in an ingenious fashion from a fit of the
TA(100) branch measured by inelastic neutron scatter-
ing. "' The experiment has not been performed for
RbCs (nor of course for NaCs). The shear elastic modulus
C44 is about two orders of magnitude smaller than the
compressional modulus C33 as is well known, these com-
pounds shear very easily. Nevertheless, we obtain reason-
ably good agreement between theory and experiment,
especially for the heavier alkali metals. It is interesting to
note that NaC8, despite its anomalous C33 has a C44
which is perfectly normal compared with the K, Rb, and
Cs graphite intercalation compounds. Na apparently sees
the C-plane corrugations just as strongly as the other
heavy-alkali-metal atoms.

As for our results for C33 for C44 we again predict
that the Cs graphite intercalation compound should be
slightly stiffer than the other heavy-alkali-metal graphite

l
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FIG. 8. Same as Fig. 6 for the shear elastic modulus C44.
Circles are theory, squares experiment. No experiment has been
performed for RbC8.

intercalation compounds. This seems to be borne out by
experiment. The Li graphite intercalation compound con-
tinues to be quite distinct from the other alkali-metal
graphite intercalation compounds, with a larger resistance
to shear resulting from the more compact sandwich spac-
ing. In our model, of course, this is directly related to the
larger saddle-point barrier E& for Li motion. (We discuss
this further below. ) However, we substantially overesti-
mate the modulus and hopping barrier for Li, certainly
much more than for the heavy alkali metals. We may
again take this as an indication that the simple ionic as-
sumption for the charge density of these compounds is
less reliable for Li than for the others. Still, in light of the
extreme delicacy of the shear calculation, we view the
agreement between theory and experiment to be quite sa-
tisfactory for all of these compounds.

Since we not only have a knowledge of the curvature of
the corrugation potential near its minimum, but an essen-
tially complete knowledge of its overall shape as well, we
can relate our computations to a number of interesting
physical properties which have been measured in the
graphite intercalation compounds. For example, quasi-
elastic neutron scattering' in the second-stage compounds
RbC24 and CsC24 indicates that the alkali-metal-atom
motions have both harmonic and diffusive character at
room temperature. That is, the alkali atom hops to a
neighboring lattice site on a significant fraction of the
periods of its vibrational motion. Roughly speaking one
expects this hop frequency to be simply given by a
Boltzmann factor of the barrier height:
vh, ~

-voexp( E& /k& T ). With—a basic phonon frequency
of vo-10' sec ' for the heavy alkali-metal frequency,
this formula gives vh ~-10' sec ', using the E& obtained
from Table I and taking T=523 K, the temperature of re-
cent quasielastic neutron measurements. ' This means
that the alkali-metal atoms should hop very frequently,
about 10' times per second. This gives a diffusion coeffi-
cient in the neighborhood of D-aovh, ~-10 cm /sec,
in rough agreement with D =6—7&(10 5 cm2/sec (found
in Ref. 10). The comparisons made in Table I between ex-
perimental and theoretical diffusion coefficients should
only be considered qualitative. For example, our analysis
of D ignores the contribution from the enthalpy of alkali-
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metal vacancy formation.
For LiC6 we see that at least in the picture presented

above this hopping should be enormously less frequent,
since the barrier height is about a factor of 10 higher. A
recent quasielastic neutron scattering study of Li dif-
fusion in LiC6 finds an activation energy for diffusion
E~ -0.7—1.0 eV which is indeed much larger than that
for the Rb and Cs compounds. This E& is qualitatively
consistent with a previous estimate for the Li activation
barrier as deduced from the kinetics of first-order staging
transformations in Li-intercalated graphite. ' These ki-
netics are in fact excruciatingly slow; it is found that a
staging transformation takes about 200 hours at 240 K.
We can work backward from this number to an estimate
of the barrier height to hopping for Li atoms. It may be
estimated that for the staging transformation to go to
completion, Li atoms must move on the order of 1000 A
(a typical intercalant domain size). Using the standard
formulas of the random walk, we estimate the required
number of hops X as

L 2X-
ao

0

1000 A

2.46 A
=10, (16)

This estimate should be taken as extremely rough; still
it is in the range of the barrier height computed using our
Thomas-Fermi theory and found by the direct experi-
ment. It is somewhat smaller than our LiC6 prediction,
which is in keeping with our predicted C44 being too large
compared with experiment. Reference 9 also obtains the
diffusion constant for Li in LiC6 at high temperatures.
When extrapolated using an Arrhenius law back to
T =S23 K, this gives D —10 cm /sec, about. three or-
ders of magnitude lower than heavy alkali-metal diffusion
constants (see Table I). An indirect confirmation of this
result is given by an analysis of Li NMR in LiC6 (Ref.
69) which suggests that at room temperature the hop fre-
quency defined above vh, z(3&&10 sec ', as compared
with vh, „-10' sec ' for the heavy alkali metals. As the
table shows, our theory gives a D which is ten orders of
magnitude smaller than for the other compounds. This
error should not be taken too seriously; it is simply a re-
sult of our overestimate of E&, combined with the extreme
sensitivity of the exponential Boltzmann factor.

There is a good physical reason why our computed bar-
rier height should constitute an upper limit on the experi-
mentally observed barrier. This height depends strongly
on the separation between C planes; it decreases rapidly as
the host planes move farther apart. (In a test calculation

and the resulting hop time as

t trans 200 hT~ 7 sec,10'

which is extremely long. We may now invert the
Boltzmann factor and estimate the barrier height in LiC6
from the observed kinetics. Taking the harmonic frequen-
cy to be —10' sec ', the hopping success rate is
vo/vh, ~

——1/vh, ~T= 1.4X 10 ' . Therefore

E& ———k&T ln(1.4X10 ' )=0.6 eV, T=523 K.

for NaC8, we find E~ to vary rapidly with sandwich
thickness: dE&/dco-0. 1 eV/A. ) At finite T, the C-plane
separation fluctuates because of the thermal excitation of
bending phonons in the graphite plane. Hopping will thus
be graphite-phonon assisted, and diffusion will be in-
creased. A possible consequence of this prediction is that
the diffusion constant for Li should increase faster with T
than an Arrhenius law would predict, since the effective
barrier height would decrease with temperature. This de-
viation from Arrhenius behavior seems to be seen experi-
mentally. Such nonactivated behavior could also be ex-
plained by the presence of two competing hopping paths
for Li. Experimentally, two different hopping distances
are seen in different temperature regimes. A more
thorough study of the Li total-energy surface would be
needed to explore these possibilities in greater detail.

B.Alkali-metal-atom interactions

The above description of in-plane alkali-metal-atom en-
ergetics contains an important deficiency. As mentioned
above, the above corrugation results are valid only for col-
lective, long-wavelength motions of the alkali-metal
layers; the distance between alkali-metal atoms (i.e., their
average density) is taken as completely fixed. Taking Fig.
9 as our simple model for the interactions in the inter-
calant layer, we have determined the depth of the poten-
tial wells, but we have not obtained any information about
the springs connecting the neighboring alkali-metal
atoms. These springs represent an intrinsic density-
dependent alkali-metal-atom —alkali-metal-atom pair in-
teraction which is mediated by the surrounding graphite
host electrons. We imagine that this interaction depends
only on the in-plane averaged properties of the graphite
planes, and acts independently of the graphite corrugation
potential. If we can estimate these spring constants, we
may then discuss additional properties of the alkali-metal

n+ ~ n+ P

FIG. 9. Top: Schematic representation of the energetics of the
intercalant layer. The alkali-metal atoms interact elastically
with neighboring intercalants (the springs) and move in a poten-
tial produced by the hexagonal carbon substrate. Bottom: Side
view showing the sinusoidal corrugation potential.
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layers which are of current interest; the competition be-
tween commensurate and incommensurate structures, the
existence and nature of domain walls, and ultimately a
start on a realistic statistical mechanics of intercalant
layer phases.

With these goals in mind, we have constructed an ap-
proximate procedure within our Thomas-Fermi theory for
extracting these intrinsic alkali-metal —alkali-metal poten-
tials. Motivated by the point of view that this interaction
can be considered to be independent of the corrugations
imposed by the graphite lattice, we use the homogeneous
exponential sheet model for the graphite host developed
previously. This model involves replacing the real C
valence charge by a model charge which is structureless in
the basal plane and exponentially decaying out of the
plane, and replacing the C cores by 5-function sheets of
compensating charge. This simplified model is capable of
accurately predicting the out-of-plane structural proper-
ties of pure graphite;" thus we will take it as an appropri-
ate model for the plane-averaged properties of the C
planes in the intercalation compound. To be explicit, the
charge-density model which we now use for the alkali-
metal —graphite compound becomes

~G +I —
~

z —nzo I
/a

p(r) =g —o.G5(z nzo—)+ e
2a

p, (r —R„)—
This charge density is shown schematically in Fig. 10. It
consists of 5-function sheets of charge representing the
averaged C nuclei (with areal density oo), a spherically
symmetric pseudoionic density representing the alkali ions
(just as in the more precise calculations explained above),
and homogeneous, exponentially decaying charge slabs

AE =Ez- —AEg. (20)

Here 3 is the area per intercalant and Eg is the corre-
sponding pure graphite energy per unit area. With this
subtraction AE reaches a sensible, finite limit when the in-
tercalant lattice constant is very large and the system is
mostly graphite. This construction also makes the ener-

gies in Figs. 11—14 correspond to the model Coulomb en-

ergies of Ref. 73, in which the substrate energy was as-
sumed to be zero. AE is the proper T =0 free energy
describing the intercalant layer under a particular external
boundary condition, namely one in which the intercalant
layer is free to expand in an infinite graphite gallery and
is not in contact with any external bath of intercalants.

With this in mind, we see that again an important phys-
ical difference is predicted to exist between the in-plane
behavior of the alkali-metal layer in the Li graphite inter-
calation compound and those of the heavier alkali metals.

representing the C-valence-charge density. We take the
decay constant to be a =1.23 A as in Ref. 47, and
the areal charge density is o.G+o.I to account for the
transferred metal charge density. These simplifications to
the charge density mean that many of the Coulomb parts
of the total energy may be evaluated analytically; the Ap-
pendix describes these calculations in detail. We have per-
formed extensive studies of the Li, K, Rb, and Cs first-
stage alkali-metal —graphite compounds. (We do not
study Na in this section. ) A similar calculation of in-plane
binding potentials using a "Wigner-Seitz cylinder" con-
struction has been reported recently, and new density-
functional calculations of binding in pure graphite using a
similar sheet approximation have been reported. ' The
in-plane homogeneity of the graphite charge means that
we may treat the alkali-metal —alkali-metal separation a;
as a continuous variable, without being concerned with its
commensurability with the graphite lattice.

Figures 11—14 show our results for Li, K, Rb, and Cs,
respectively. The energies given are actually the energy
per intercalant with the contribution from an unperturbed
pure graphite unit cell of the same size subtracted out:

O.O

—I.O

E
O —2.0

—3,0

3.0

LiC6
I I

4.0
a (a)

I

5.0
I

6.0

FIG. 10. Sketch of the simplified charge-density model for
the intercalant compound consisting of exponentially decaying
valence charges and spherically symmetric alkali-metal-ion
charges.

FICx. 11. Total energy AET and its various components as a
function of the in-plane alkali-metal —alkali-metal separation a
for first-stage lithium intercalated graphite. Energies are in
eV/intercalant atom. The experimentally observed lattice con-
stant a is indicated.
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F= E(a)—%p+QV„„(r;),

&3kAT
~ 2GAr

(a —ap)'+, (a —ap)
a 3a

22Tp
+ATEg —,++V„„(r,).

3a
(22)

Here we have used A =(&3/2)a (the area per inter-
calant), and the index i in the last term labels the posi-
tions of the intercalant atoms. We wish to connect this
with the free energy for the system shown in Fig. 9, which
is the canonical model for a two-dimensional system with
competing periodicities:

v'3kM AT q p
2A TPuF~ —— (a ap) +—ATES

a 3a

+g GOff (23)

It is clear that the only difference between Eqs. (23) and
(22) is in the absence of the linear term (the term propor-
tional to G). It is possible, however, to simultaneously
redefine the spring constant and the chemical potential
such that the two free energies agree near ap to quadratic
order in the difference (a —ap). The result is

Fap
PM= +P2

kM ——k-
3ap

(24)

This corrected spring constant kM is of particular impor-
tance to us, and it is given in Table I. We see that the ef-
fect of the linear term is only a small correction. kM is
very similar for all of the alkali metals. This is so because
the alkali-metal —alkali-metal interactions are primarily.
determined by the Coulomb interactions described above.
These depend very little on the details of the alkali-metal
pseudopotentials, arising mostly from the layered struc-
ture which is common to all the compounds.

With the free energy of Eq. (23) we can now begin to
form a fairly complete picture of the equilibrium states of
the intercalant layer. The (nearly sinusoidal) corrugation
potential, whose height is given by E1 in Table I, will at-
tempt to force the intercalants into a lattice commensu-
rate with the underlying host potential. However, if the
overall intercalant concentration, as determined by the
external chemical potential p, is not a rational fraction of
the host site concentration, then there will necessarily be
some alkali-metal sites (either vacancies or interstitials)
which are not in perfect registry with the substrate. But
because of the presence of the "springs" connecting the
intercalant atoms (i.e., because of the intrinsic alkali-
metal-atom —alkali-metal-atom interaction) the metal lat-
tice will relax around these mismatched sites.

If the spring constant is strong enough, this relaxation
will force all of the atoms in the crystal out of registry
with the graphite host; this lattice is referred to as "truly
incommensurate" (Ref. 74). If the spring constant is
somewhat weaker, most of the alkali-metal lattice will

remain commensurate with the host, and the mismatch
regions will organize themselves into a pattern of domain
walls (also referred to as "discommensurations" or "soli-
tons"). Such a pattern has an observable effect on diffrac-
tion patterns from such crystals, and such a discommen-
suration pattern has actually been inferred for stage-2 Cs-
intercalated graphite. ' Finally if the spring constant is
very weak, the mismatch region remains disorganized and
a "chaotic" pattern results. The physical picture im-
plied by Fig. 9 is somewhat related to a relaxed lattice gas
model explored recently by DiCenzo.

Using the data collected in Table I we may estimate to
which of these three regimes the first-stage intercalation
compounds belong. The free energy of Eq. (24) is the
two-dimensional analog to the well-known Frank and van
der Merwe energy in one dimension. " This model is
known to possess all three regimes. Furthermore, an esti-
mate exists for the soliton or domain-wall width in this
model. In our notation, this width lp is (at zero tempera-
ture)

ao 2k2

lp-
2 AE

' 1/2

(25)

If this width Ip is less than or on the same order as the
particle separation, then the system is in the chaotic re-
gime. Ip on the order of a few lattice constants indicates
that the system contains well-organized solitons. Very
large lp is a signal for incommensurate behavior. We be-
lieve that it is quite reasonable to apply the formula of
Eq. (25) to the present two-dimensional case, at least for
qualitative purposes. The resulting lp for LiC6, KC8,
RbC8, and CsC8 are given in Table I.

Again the Li graphite intercalation compound is dis-
tinct from the others. The elastic constants kM are all in
roughly the same neighborhood for all of the compounds;
however, because of its quite large corrugation height, the
domain-wall width in LiC6 is quite small, on the order of
the Li-Li spacing. The heavier alkali-metal graphite in-
tercalation compounds have a smaller corrugation and
hence an lo which extends over about five lattice con-
stants. These results are consistent with the Li graphite
intercalation compound containing no well-organized
domain-wall structure, with such structure being possible
in the heavier alkali metals. Experimentally no domain
structure has been seen in the Li graphite intercalation
compounds (although it seems that no careful search has
been made), while these domain walls have been deduced
from diffraction studies of CsCz4 (Ref. 8). In fact, re-
cent modeling of these systems using a Landau free ener-

gy seems to demonstrate conclusively that these com-
pounds do display a honeycomb domain-wall structure.

Our conclusions are thus generally consistent with the
existing experiment. However, we would like to point out
that Refs. 8 and 76 find domain wall widths significantly
narrower than predicted above, calling into question the
quantitative accuracy of Eq. (25). The recent Landau
theory of these materials, although quite successful, can-
not predict the shape of the domain walls; more input
from microscopic theory is required. We note that our re-
sults are also consistent with the presently held view
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that at elevated temperatures (i.e., k~ T)Ei), the Cs
layers (and presumably those of the other heavy alkali
metals) form a classic, positionally disordered two-
dimensional liquid. Thus the picture is that a large frac-
tion of the alkali-metal atoms sit in registry with the car-
bon lattice in the low-temperature phase because of the
moderate size of lo, but can become unregistered at high
temperature. This could explain the recent observation
of a large jump in the shear modulus C44 upon going
from the high-temperature disordered phase in KC24 or
RbC24 to the low-temperature ordered phase. In our
model, contributions to C44 come only from registered
atoms sitting near the center of carbon hexagons. We
might further predict the disordered phase of Li-
intercalated graphite will be of a lattice-liquid type, ' so
that no large jump in C44 should occur at the order-
disorder phase transition. We have already used a
strong-corrugation model for Li-intercalated graphite to
explain the overall features of its T —x (Ref. 14) and
T —p (Ref. 3) phase diagrams.

IV. CONCLUSIONS

We have developed a manageable theory for the
structural properties of the graphite intercalation com-
pounds. The results presented here should contribute to
an understanding of some phenomena of current interest.
For instance, our finding that the corrugation energy of
the graphite host is of large magnitude in the alkali-metal
intercalation compounds suggests an explanation for the
observed long equilibration times in these materials. Such
corrugation effects should be considered and included in
studies on the formation of nonequilibrium domain struc-
ture.

There are a number of simple extensions of the present
work which might be considered in the future. Density-
functional studies could be performed on higher-stage
compounds. Model studies ' suggest that the alkali-metal
graphite interactions are very nearly stage independent; it
would be interesting to check this result using a more mi-
croscopic theory. The ternary alkali-metal compounds
(e.g., K& „Rb„C8) still present an unsolved theoretical
problem with their dramatic elastic and magnetic
anomalies as a function of composition. A suggestion
that an anomaly may occur in the charge transfer as a
function of composition has not received experimental
support. Finally, it is possible that a form of Thomas-
Fermi theory could be applied to the acceptor intercala-
tion compounds. This is an area for which fundamental
theory is almost totally lacking, for which an immense
variety of interesting structural phenomena have been re-
ported. Studies of domain structures in these materials
remain very active.

To summarize, we have performed structural energy
calculations for the alkali-metal graphite intercalation
compounds. The simplicity of our formalism permits a
comprehensive investigation of a wide variety of proper-
ties, including lattice constants, elastic moduli, alkali-
metal atom diffusion constants, activation energies, and
domain-wall widths. Interplane interactions are dominat-

ed by classical Coulomb attraction between charged layers
and hard-ion repulsion. The Li ion is much smaller than
those of the heavy alkali metals, which explains the small-
er lattice constant and large elastic moduli of the Li
graphite intercalation compound. The Na —C interaction
is found to be anomalously weak. The alkali-metal iritra-
plane interaction is dominated almost entirely by
Coulomb interactions, and is essentially the same for all
the alkali metals.
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APPENDIX

—p, (r —R„)I I

I=psheet +pexpo+ pc (Al)

The notation is self-explanatory. Unfortunately it is not
possible to obtain a fully analytical expression for this
Coulomb energy as we can for pure graphite. Still,
many of its components can be computed analytically.
Following a standard procedure, we add and subtract
charge densities in order to obtain separately neutral den-
sities:

P(» ) = (Psheet+PG )+ (Pexpo PT )

I+ (Pe Ppoints) + (Ppoints PG )

=pi+ p2+p3+p4. (A2)

Here pG I T are the appropriate uniform charge densities
and p„„„„represents a lattice of point charges —Z;I I

placed at the intercalant sites. We compute the total
Coulomb energy in parts:

Vc=~c +~c +Vc +Vc+2Vc

c +2/ +2V +2V +2Vc4

Here

(A3)

~ J p;(ri)p, (r2) „
n n

~

rt r2
~

(A4)

In this appendix we present closed-form results for the
Coulomb energy pieces of the Thomas-Fermi energy func-
tional [Eq. (1)] for the simple charge-density model for
the first-stage alkali-metal graphite intercalation com-
pounds of Eq. (19). To repeat this equation, the model
charge is given by

Og+OI
p(r ) =g —trG5(z —nzo) + exp( —

~

z nzo
i

—la)
2a
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The pieces of the sum in Eq. (A3) which must be comput-
ed numerically are as follows:

The remainder of the Coulomb energy components may
be evaluated analytically. The results are

0
Vg ——

3
(A5)

12 2 2
2 Vc 2sraA ocr——TcrG 2 cothP ————P

P 3
(A6)

(1) Vc. This is simply the energy of point charges in
jellium, and is computed by an Ewald summation.

(2) VC + Vc. This can be done numerically by a sin-
gle one-dimensional integral in real space.

(3) Vc + Vc. This, the interaction of the smooth ex-
ponentials with the intercalant ionic potentials, is done as
a sum in 6 space. It is possible to perform it as an r
space integral as well.

I
)4 7TQOO GZ'

2Vc ———
3AO

T

(A7)

22= 2 3 1 1 1 1
Vc 8s——raAoo T ——cothP+ + P——P

8 2P 12 8 sinh P

(A8)

Vc is not computed since it is density independent. Use
of these analytic expressions considerably speeds the com-
putation of the in-plane alkali-metal potentials (Figs.
11—14). As for the other components of the total energy,
the exchange and correlation piece requires a full three-
dimensional integration [done by fast Fourier transform
(FFT) techniques]; the Thomas-Fermi kinetic energy re-
quires just a one-dimensional integral as for pure graphite;
and the gradient correction need not be computed at all
since it does not depend on the basal-plane area per inter-
calant Ao and so remains rigorously constant as the in-
plane lattice constant changes.
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