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Helmholtz free energy of an anharmonic crystal to 0 (A. ). IV. Thermodynamic properties
of Kr and Xe for the Lennard-Jones, Morse, and Rydberg potentials
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We-have carried out a complete calculation of the various thermodynamic properties of Kr and
Xe from the (A,4) anharmonic perturbation theory proposed by Shukla and Cowley [Phys. Rev. B 3,
4055 (1971)],where 1 is the Van Hove ordering parameter. To illustrate the effect of different po-
tential functions on the various calculated thermodynamic properties, we have employed a nearest-
neighbor central force model with the Lennard-Jones (LJ}, Morse, and Rydberg interaction poten-
tials. Along with the 1 results, we also present the results for the quasiharmonic (QH) and the A,

perturbation theory for all three potentials for each of Kr and Xe rare-gas solids. The LJ QH re-
sults are qualitative for most of the thermodynamic properties of Kr and Xe and best QH results are
obtained with the Rydberg potential. The A, perturbation theory results are poor beyond 3 T (T
is the melting temperature) for the LJ potential and somewhat better for the Morse and Rydberg po-
tentials. Best results for P (volume expansivity) and C~ (specific heat at constant pressure) are ob-

tained with the A, theory and the Morse potential. The convergence of the perturbation expansion
improves with the addition of A, contributions and the expansion remains valid up to 40/o of T
for the LJ potential. The range of expansion is much higher for the other two potentials. Whereas
the curvature of most of the calculated curves for the various thermodynamic properties for the k
theory is incorrect, the corresponding curves from the k theory have the correct curvature. The
cancellation among the A, and A, contributions is most dramatic for the LJ potential and less so for
the other two potentials. As T approaches T~, only the Rydberg-potential results, for the A, theory,
appear to be sensible compared with the other two potentials for most of thermodynamic properties
of Kr and Xe.

I. INTRODUCTION

There are several theories of anharmonicity from which
the equation of state of a solid can be calculated. Among
these theories, extensive numerical results have been re-
ported for the rare-gas solids from the various self-
consistent phonon theories of anharmonicity such as the
first-order self-consistent theory' (SC1), the improved
self-consistent theory (ISC), and the lowest-order pertur-
bation theory (PT). In the lowest-order PT calculation, a
nearest-neighbor (NN) Lennard-Jones (LJ) 6-12 interac-
tion potential was employed by Klein, Horton, and Feld-
man. The same potential was also used in the SC1 and
ISC calculations by Goldman et al. Klein et al. con-
cluded that the lowest-order PT breaks down beyond
—,
' T~ where T is the melting temperature. One might

expect that the results for the various thermodynamic
properties will improve if the next set of perturbation con-
tributions is added to the lowest-order PT in the calcula-
tion of the equation of state of a rare-gas solid. The con-
tributions just mentioned consist of the evaluation of eight
contributions to the Helmholtz function (F). The formal
expressions for the eight contributions have been derived
by Shukla and Cowley. Numerical results for the
nearest-neighbor 6-12 LJ potential were obtained by Shuk-
la and Cowley and Shukla and Wilk at one volume
V= Vo, the 0-K equilibrium volume. They also assessed
the convergence of the PT expansion but did not calculate
the equation of state.

However, in a recent publication Shukla and Cowley
have calculated the equation of state for a NN model of a
LJ solid and compared the thermodynamic results for the
A, , A. theories and the Monte Carlo method for the same
model potential. As expected the A. PT did produce an
improvement in the calculated thermodynamic properties
but only up to about 40% of T

The objective of this paper is to calculate the equation
of state of Kr and Xe by including the above-mentioned
corrections to the lowest-order PT. This means that we
calculate for Kr and Xe the lattice constant, volume ex-
pansion, adiabatic and isothermal bulk moduli, specific
heat at constant pressure (Cz) and constant volume (C„),
and Griineisen parameter (y), from the quasiharmonic
theory (QH); from the lowest-order (A, ) PT, where A, is
the Van Hove perturbation expansion parameter; and fi-
nally from the corrections added to the A, PT, i.e., the
perturbation theory of O(A, ).

The two basic ingredients in calculations of this type
are (i) phonon frequencies (co) and (ii) the derivatives of a
potential function (j)(r). In the above calculations we have
employed a two-parameter Lennard-Jones potential, and
one each of three-parameter Morse and Rydbprg poten-
tials, to bring out the effect of potential functions in such
calculations. As stated earlier, the k PT breaks down
beyond 3 T but this conclusion arrived at by Klein
et a/ was valid f.or the LJ potential; whether it remains
true for other potential functions is not known. Our cal-
culation will shed some light on this question.
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In Sec. II we summarize briefly the calculation. of the
contributions to F. The details are omitted because the

calculation procedure has been given previously by Shukla
and Milk. In the previous calculations the LJ-potential
parameters were determined by including the harmonic
zero-point energy contributions derived by Domb and
Salter. In the present work we do not use the Domb-
Salter approximation of zero-point energy in the deter-
mination of the potential parameters. The determination
of the potential parameters for the three potential func-
tions and the calculation of the equation of state are
presented in Sec. III. The numerical results and discus-
sion are presented in Sec. IV and finally the conclusions
of this work are given in Sec. V.

To summarize, then, two central questions are ad-
dressed in this paper. (1) How are the results for the vari-
ous thermodynamic properties affected when different po-
tential functions are used in the calculations to a given or-
der of perturbation theory? (2) How are the results for the
various thermodynamic properties affected when, for a
given potential function, the order of the perturbation
theory is changed from A, to X+

These questions are answered by calculating the various
thermodynamic properties for Kr and Xe to O(A, ) and
O(A, ) PT for two-parameter LJ and three-parameter
Morse and Rydberg potentials. The convergence of the
perturbation expansion is much better with the latter two
potentials as compared with the LJ potential and the A,

and A, results are very much dependent on the choice of a
potential function. The results for the Morse and Ryd-
berg potentials are different from LJ not because of one
extra parameter but due to their different functional
forms. For the various thermodynamic properties the A,

PT gives the wrong curvature for all three potential func-
tions, and this is corrected when the k contributions are
added.

There are some systematics apparent with respect to the
choice of potential or the order of the perturbation theory.
For all three potentials there are similarities in the QH
and A, results and a varying degree of corrections from
the A, PT to most of the physical properties for both ele-
ments Kr and Xe. Only for LJ is the situation extreme
where the addition of the k contribution brings the k re-
sults back towards the QH values. Similar behavior is
seen in the results for Morse and Rydberg but to a much
lesser degree. A large anharmonic contribution to C& is
found for the LJ potential but not for the other two.

Since the results for the LJ potential are not transfer-
able to other potentials, this is the first serious attempt to
compare the thermodynamic results of the different or-
ders of PT (A, and A, ), calculated exactly, for a crystal
model from different potential functions. The existing
literature does not tell us how the equation of state looks
for the Morse and Rydberg potentials even for the
lowest-order A, PT, let alone the O(A,") PT.

II. HELMHOLTZ FREE ENERGY ( F) to 0(A.4)

Shukla and Cowley have derived a/l the contributions
to F of O(A, ) for a centrosymmetric crystal. Since in this
paper we are dealing with such a crystal we need to evalu-
ate the eight contributions (diagrams) given by Eqs.
(9)—(28) in Shukla and Cowley. On expanding the
finite-temperature expressions for these eight contribu-
tions to F, we find their high-temperature limit (T & 8D',
OD is the Debye temperature) expressions. In this paper
we will identify the various contributions to F from the
diagrams given in Fig. 2 of Shukla and Cowley by a sub-
script. Thus Fz, represents the contribution of diagram
2a (Fig. 2 of Ref. 4), etc., and the high-temperature limit
expansion gives the following expressions for
F2„Fzb, . . . ,F2b.. To O(T ) and O(T),
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where in Eqs. (1)—(8), X represents the number of unit
cells, A is the Planck's constant divided by 2~, k~ is the
Boltzmann constant, and T is the temperature. The
numerals 1—6 appearing under summation signs and as
subscripts in @ functions and co's represent collectively
the wave vectors q; and branch indices j;, where
i = 1,2, . . . , 6. The bars over the subscripts denote the
negative wave vector. Thus the phonon frequency
co;=co(q;,j;). In Eq. (9), M is the atomic mass, r~ is a
vector of the direct lattice, e~(q,j) is the ath component
of the eigenvector, and P, . . . (

~
r~

~
) is the Cartesian

derivative of a two-body potential P(r), where each of the
indices a1,u2, . . . , u„assume the Cartesian values x, y,
and z. The prime over the l summation in Eq. (9) indi-
cates the omission of the origin point, and finally the 6
function in Eq. (9) is unity if the argument is zero or a
vector of the reciprocal lattice, and zero otherwise.

There is little need to reproduce here the free energy ex-
pressions of O(A, ) because all the contributions to this or-
der have been evaluated before by Shukla and Mac-
Donald. s We have retained terms of O(T) in Eqs. (1)—(8)
because, as we will see in the next section, they make
small contributions to the quantities involving the first
derivative of T.

Substituting Eq. (9) into Eqs. (1)—(8), all the eight con-
tributions of O(T ) and four contributions of O(T) aris-
ing in F2„F», F2„and F2d have been evaluated for a
range of volumes by the method presented in Shukla and
Wilk. All the necessary Brillouin-zone (BZ) sums, arising
in the plane-wave method and the evaluation of closed
loops in F2„F2b, Fq„and F2d (Fig. 2 of Ref. 4), were
evaluated with step length Z=30 (which gives 108000
points in the whole BZ). The plane-wave method was
used in the calculation of F2, and the scanning method in
the calculation of F2r, Fzg, and F2h. We have used 500
wave vectors in the calculation of F2f and a combination
of 215 odd and even wave vectors in the calculation of
F2g and E2h. The normalization procedure remains the
same as in Shukla and Wilk.

III. DETERMINATION OF THE POTENTIAL
PARAMETERS AND CALCULATION OF THE

EQUATION OF STATE

As mentioned in the Introduction, we have calculated
the lattice constant (a); volume expansion (P); adiabatic
and isothermal bulk moduli (Bs and BT, respectively); Cz,

C„, and y from the QH; and A, and A,
" equations of state

from three different potential functions. The two-
parameter LJ and the three-parameter Morse and Rydberg
potentials are given by

' 12 '6
ro

4z J(r) =e
r

—2 (10)
L

—2a(r —ro) —a(r —ro)@~(r)=e(e —2e ),
r ro

C&~(r) = —e[1+a(r—ro) je (12)

Bg——Vo

aF
BV y=y

BF

=0, (14)

(15)

where, in Eqs. (13) and (14), U is the static energy, Vo is
the volume at 0 K, I' denotes the pressure, and the har-
monic zero-point energy F~ is defined by

' 1/2

g A,(q,j)
1/2

1 2B h(a)),
2 M

where A,(q,j) is the dimensionless frequency which is
evaluated for a range of volumes [characterized by a pa-
rameter a~ involving the first and second derivatives of
@(r)j from the elements of the dynamical matrix. Once
again the details of this type of calculation can be ob-
tained from Shukla" and Ref. 8. The quantity B in Eq.

where subscripts distinguish the three potentials and the
parameters e and ro denote well depth and the nearest-
neighbor distance, respectively. The parameter a appear-
ing in Eqs. (11) and (12) represents the steepness of the
potential function.

We determine e and ro of @LJ from the experimental
values of the sublimation energy (L) and the lattice con-
stant (ao) at 0 K. The three parameters of @M or &bz are
determined from L,ao and the experimental value' of the
0-K bulk modulus (BT). The necessary equations for
determining the parameters are

F=(U+Eh)„, = L, —
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EgH ——U+Fg
i +Fg2

E~ =E~H+F~

E~ =E~ +F~

(17)

(18)

(19)

where U=6NQ(ro) and Fq, ,FI, are the high-temperature

(HT) limit expressions for the quasiharmonic Helmholtz
free energy derived by Shukla and MacDonald [Eqs.
(3)—(4a) in Ref. 8]. The HT limit expression for F&, is

also given in Ref. 8. The calculation of the HT limit ex-
pressions for F&4 of O(T ) and O(T) has been presented

in Sec. II of this paper. The final expressions are too
lengthy to reproduce here but they can be obtained from
Shukla and Wilk.

The minimization of Eqs. (17)—(19) at a given T yields
the minimum volume V(T). The Newton-Raphson (NR)
method was used to find V(T), and the first and second
derivatives of E, needed in the NR method, were obtained
analytically. The other thermodynamic properties were
calculated from the following equations:

(20)

$2F
BT——V

BV
(21)

1 dF
B, aVaT

Cq
——C, + TVBTp

B,=(Cq/C„)BT,
pVBT.

C„

(22)

(23)

(24)

(25)

TABLE I. Dimensionless sum h(ai) as a function of a~.

(16) is defined by [4&"—(1/r)@'j„„and the function
h(a

& ) is evaluated by performing the BZ sum for Z =30.
The calculated values of h (a i ) in the range
—0.02 & a i (0.10 are presented in Table I. For computa-
tional purposes they were fitted to an exponential sixth-
degree polynomial as in Shukla and MacDonald. The
potential parameters for the LJ, Morse, and Rydberg po-
tential functions were determined from the data presented
in Table II. The parameters are presented in Table III.

Once the parameters of the potential function are deter-
mined, the calculation of the various thermodynamic
properties from the QH and A, and A, equations of state
1s carried out, from the following expressions:

TABLE II. Data for fitting the interatomic potential.
Nearest-neighbor distance rp at 0 K (Ref. 9), sublimation energy
L (Ref. 9), bulk modulus BT at 0 K (Ref. 10).

Element

Kr
Xe

ro (A)

3.992
4.336

L (10" erg/mole)

1.115
1.602

BT (kbar)

34.5
36.0

IV. RESULTS AND DISCUSSION

The results for the various thermodynamic properties
of Kr and Xe calculated from the QH and A, and A,

equations of state along with their experimental values'
are presented in Figs. 1—7 and 8—14, respectively. To
bring out the effect of employing the different potential
functions on the various thermodynamic properties, we
have calculated them for the nearest-neighbor interaction
LJ, Morse, and Rydberg potentials. The curves for the
various equation-of-state calculations presented in Figs.
1—7 and 8—14 are labeled with subscripts LJ, M, and R
for each of the three potential functions, respectively.
Now, to simplify the discussion of these results, we will
discuss them separately in the order of LJ, Morse, and
Rydberg.

A. LJ results for Kr and Xe

TABLE III. Potential parameters for NN interaction LJ,
Morse, and Rydberg potentials. rp (A), a (A ), e (10 ' erg).

It is interesting to note that for both Kr and Xe, the
QH results are too high for aT, P, C„, Cz, and y and too
low for BT and B„as compared to the experimental
values.

The results can at best be described as qualitative. The
results, which are obtained by the addition of the A,

terms to the QH free energy, are in agreement with exper-
iment only at the lowest temperatures (slightly higher
then 8D). Beyond this temperature the A, curves for all
thermodynamic properties (except aT and bulk moduli)
start bending downwards as T approaches T . In gen-
eral, our A, results are essentially the same as those calcu-
lated by Klein, Horton, and Feldman.

The addition of the A, terms to the (QH+A, ) free ener-

gy improves the agreement with experiment only slightly
again in the neighborhood of 8D. In contrast to the A,

curves with downward curvature, now the A, curves have
an upward curvature. The A, curve for aT runs parallel,
but below, the QH curve. For C„, the A, curve rises above
the QH curve. Compared to the experimental values the

and A, results diverge in opposite directions, the former

0.10
0.08
0.06
0.04
0.02
0.00

—0.02

h(ai)

4.706 165
4.590436
4.471 387
4.348 685
4.221 932
4.090 646
3.954 230

Xe

LJ

e= 3.248
rp ——3.965

@=4.577
rp ——4.318

Morse

e= 3.254
rp ——3.969
a = 1.556

a=4.576
rp ——4.321
a = 1.375

Rydberg

e= 3.254
rp ——3.971
a =2.194

@=4.576
rp ——4.322
a = 1.941
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S. Morse results for Kr and Xe

In general, for most of the thermodynamic properties of
Kr and Xe the QH results for the Morse potential are
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low as the corresponding curves of the LJ potential and
the curves do not bend downward. Only a slight curva-
ture can be seen in these curves in the region of T-T .
For Kr the shape of the C, curve is correctly given by the

equation-of-state calculation although the calculated
curve lies lower than the experimental points.

The addition of the A, terms produces a marked im-
provement in results for both Kr and Xe. For Kr the
aT, p, C~, and y results are very well reproduced by the

theory in the entire temperature range up to T-T,
and a similar statement is true for Xe in the calculation of
aT, p, C„, and C . The best agreement can be seen for
Cz between the A, results and the experimental values for
both Kr and Xe.

C. Rydberg results for Kr and Xe

The best QH results are obtained from the Rydberg po-
tential. For example, the QH results for aT, p, Cz, BT,
and y, for Kr, are closer to the experimental values than
the QH results from the other two potentials, whereas C„
is just about the same as that obtained from the Morse po-
tential. The same thing is true for Xe, except for y. As
in the case of the other two potentials, the addition of the

terms lowers the values of the thermodynamic proper-
ties and a further addition of the k terms raises them to-
wards the QH results. Once again some degree of cancel-
lation exists between the A, and A, contributions to the
various thermodynamic properties of Kr and Xe. It
seems that the best results for C„, for Kr, are given by the

theory from the Rydberg potential.
The QH results for the three potentials for a property

a, for Kr and Xe, are in the following order:
aLJ &aM & a~ in the case of aT, p, C„, Cz, and y with az
being closer to the experimental value. For B~ and 8„
the above order is reversed. Most of the A. curves, for all

FIG. 14. Griineisen parameter (y) for Xe. Points and lines

have the same meaning as in Fig. 1.

three potentials, have the wrong curvature, except for Kr,
e the A C„curve for the Rydberg potential presses

right through the experimental points.
Although we have included terms of O(T) in the

equation-of-state calculations of O(A, ), i.e., Eq. (19), the
effect of these terms was just about negligible. The poten-
tial parameters of the LJ potential obtained here without
the Domb-Salter approximation of the zero-point energy
are in good agreement with those given in Horton which
were obtained by employing the Domb-Salter approxima-
tion.

V. CONCLUSIONS

We can draw several conclusions from the results of the
above calculations. The results for the various thermo-
dynamic properties definitely improve with the A. theory.
The improvement is marginal for the LJ potential. The
range of validity of the perturbation expansion is extended
from 25% of T~ for the A, theory to about 40%%uo of T
for the A, theory. The use of the other two potentials pro-
duces far better convergence for the A, theory. Excellent
results for the volume expansion (P) and specific heat
(Cz) are obtained for the Morse potential with the A,

theory for both Kr and Xe. Even the QH results are quite
reasonable with the Rydberg potential. Best results are
obtained with the Rydberg potential for the A, theory.
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