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Wetting transitions: A functional renormalization-group approach
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A linear functional renormalization group is introduced as a framework in which to treat various
wetting transitions of films on substrates. A unified treatment of the wetting transition in three di-

mensions with short-range interactions is given. The results of Brezin, Halperin, and Leibler in their
three different regimes are reproduced along with new results on the multicritical behavior connect-
ing the various regimes. In addition, the critical behavior as the coexistence curve is approached at
complete wetting is analyzed. Wetting in the presence of long-range substrate-film interactions that
fall off as power laws is also studied. The possible effects of the nonlinear terms in the renormaliza-
tion group are examined briefly and it appears that they do not alter the critical behavior found us-

ing the truncated linear renormalization group.

I. INTRODUCTION

At the interface between one bulk phase o, of a system
and a wall or substrate, a layer of a second phase, /3, may
form if the wall preferentially adsorbs it (Fig. 1). At a
wetting transition the equilibrium thickness of this layer of
/3 phase diverges. ' Such a transition may be viewed as the
unbinding of the a-/3 interface from the wall. This view
of the transition has been developed by Lipowsky, Kroll,
and Zia and by Brezin, Halperin, and Leibler (BHL),
who consider an effective Hamiltonian for the interface-
substrate separation, z(p),

~= fd" 'p —
~
Vp(p)

~

'+ V(z(p)), (1 1)

where, for a d-dimensional system, the (d —1)-component
vector p specifies a point on the substrate. The first term
in Eq. (1.1) is the a-/3 interfacial tension, o, times the ex-
cess area of the interface due to its fluctuations in posi-
tion, while V(z) is an interface potential which derives
from the interactions between the substrate and the o, and
P phases and the relative free energies of these phases. In
principle, this effective Hamiltonian is obtained by in-
tegrating out all fluctuations other than those of the inter-
face position. Implicit in this Hamiltonian is a short dis-
tance cutoff at, say, length A '. This cutoff must satisfy
crA ~" "&&k~T (equivalent to A ' being large com-
pared to the bulk correlation length) in order to justify ig-
noring possible overhangs in the interface and higher-
order terms in

~

Vz
~

.
If the potential' V(z) in (1.1) were simply a low-order

polynomial in z, then we would have the familiar
Landau-Ginzburg-Wilson Hamiltonian for a continuous-
spin Ising system. A renormalization-group treatment of
such a Hamiltonian can be carried out systematically for
( d —1) near or above four dimensions by expanding V(z)
perturbatively for small z and keeping only a few terms.
However, for the wetting problem we have a very dif-
ferent sort of potential. Because the n-P interface cannot
be in the substrate (see Fig. 1), the potential V(z) should

be large or even infinite for z ~0, thus preventing the in-
terface from fluctuating into this unphysical region. At
the bulk coexistence of the a and /3 phases V(z) will go to
a constant as z~ oo,' we may choose this constant to be
zero. With this choice of zero the potential V(z) is an ef-
fective interaction between the a-I3 interface and the wall.
If this interaction contains an attractive component, then
it may succeed in binding the a-P interface to the wall so
that the expectation value (z ) of the thickness of the film
of the P phase is finite. A wetting transition occurs when,
as the temperature, chemical potential, or another field is
varied, the attractive part of the potential V(z) is no
longer able to bind the interface and (z) diverges. The
total interfacial free energy between the bulk n phase and
the wall may be written

~aw =OPw+~ (1.2)
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FIG. 1. Schematic of a fluctuating interface between phases
a and /3 near to a wall or substrate, shown hatched. The dis-
tance, z, of the interface from the wall varies as function of the
coordinates p parallel to the wall.

(with o —=o ~) in terms of a binding energy per unit area,
Xz, of the a-P interface to the wall. The wetting transi-
tion occurs when X&~0+ and thus Xz plays the role of
the singular part of the free energy for wetting transitions.
Concomitant with the vanishing of Xz, there is a diverg-
ing correlation length parallel to the interface g~~, which is
just the capillary length for the interface. At length scales
shorter than g'~~, the interface fluctuations will be con-
trolled by the surface tension while at longer length scales
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they will be restricted by interactions with the wall.
BHL (Ref. 3) have considered the potential

V(z) = —ae '+be (1.3)
PA RTI ALLY W ET

appropriate for a system at bulk coexistence with only
short-range interactions, ' where b & 0 and gb is the bulk
correlation length in the phase (P in Fig. 1) attracted to
the wall. For bulk dimensionality d =3, they find that
the critical behavior at the wetting transition with this po-
tential in Eq. (1.1) has a very complicated dependence on
the dimensionless parameter

P r
~ AL ~+

COMPLETELY WET

co =kti T~—/4rrgba (1.4)
I

1/2
I

5/2
l

5/2

where T„ is the temperature at the wetting transition.
This analysis is based on a renormalization-group treat-
ment of the interface Hamiltonian, Eq. (1.1), using a dif-
ferent form of the potential, V(z), for each of three re-
gimes, 0&co « —,', —,

'
co &2, and co&2. In the first regime

they simply use the potential, Eq. (1.3), but in the other
regimes they replace one or both of.the exponentials in
(1.3) with Gaussians. We do not find the reasons for
making such substitutions very easy to understand in their
formulation. One purpose of the present paper is to give a
more unified treatment of these three regimes in which
the different forms of the renormalized potential do not
have to be put in by hand. The formulation will turn out
to be useful for analyzing various wetting problems (see
Secs. VII and VIII). To this end we write down a func
tional renormalization-group equation for general d and
arbitrary potential V(z) for the interface Hamiltonian,
Eq. (1.1). This functional approach can be used for any
potential to determine if there are fluctuation corrections
to the mean-field critical behavior at wetting which is ob-
tained simply by minimizing V(z). In some cases non-
trivial critical behavior at wetting can be obtained from
our functional renormalization group restricted to the per-
turbative regime about V(z)=0. The example of the po-
tential given by Eq. (1.3) in d =3 is worked out in detail
below; we obtain some results beyond those of BHL (Ref.
3) and give what we believe is a more unified treatment of
their rather surprising results. New, nontrivial critical
wetting behavior is also obtained in d & 3 for certain po-
tentials V(z) that vary as a power of z for z~ oo.

A summary of this paper is as follows. In Sec. II a
functional differential renormalization-group (RG) equa-
tion is derived for a general interface Hamiltonian and in
Sec. III it is used to derive the upper critical dimension
for the critical wetting problem with short-range interac-
tions. In Secs. IV and V the marginal three-dimensional
case is analyzed in detail using a linear truncated RG.
The results of these sections are best summarized by refer-
ring to Fig. 2, which is a phase diagram for critical wet-
ting in three dimensions, as a function of the dimension-
less parameter co defined by BHL [Eq. (1.4)]. For co &2,
the wetting transition occurs when the strength, a, of the
attractive tail of the interface-wall potential in Eq. (1.3)
goes to zero. In both regime I, 0&~ & —,, and regime II,
—, & co ~2, the film thickness, (z ), diverges logarithmical-
ly as the wetting transition is approached (as a~a, =0)
and the capillary length, g~~, diverges as a power of the de-

FIG. 2. Phase diagram for critical wetting in three bulk di-
mensions as a function of the strength, a, of the attractive tail
of the exponentially decaying interface-wall potential and the di-
mensionless parameter co which is inversely proportional to the
interfacial tension. As the wetting transition is approached
from the partially wet side, the critical behavior will be different
in each of the regimes I, II, and III, which are separated by mul-
ticritical points denoted by stars. Near to the multicritical
points, indicated by P and M, the behavior over a range of po-
tential strength a will be controlled by the multicritical points.
Crossover to the asymptotic behavior occurs in the vicinity of
the dashed and dotted lines. However, across the dotted line the
crossover from P to I will be manifested only as a change in the
amplitude of singularities.

viation from wetting, r = ( T —T~ )-(a —a, ) (with loga-
rithmic corrections in regime II). The critical exponents
vary with ~ and are nonanalytic at the multicritical point
P at ~= —,. For co) 2, regime III, the wetting transition
occurs at a finite strength, a,&0, of the wall attraction.
The film thickness diverges as I/r and the capillary
length diverges as e' ' in this regime. Near to the mul-
ticritical point M, at co=2, a, vanishes as co —2 and for a
large range of r, the behavior will be dominated bg the
multicritical point, at which (z) —I/r and g~~-e'

In Sec. VI, which is somewhat speculative, the validity
of the truncated linear RG, which ignores various non-
linear terms actually present in the full RG, is examined.
It appears that including the nonlinear terms will not alter
the critical behavior found using the linear RG. Sections
VII and VIII are devoted, respectively, to an analysis of
the singularity for complete wetting as the coexistence
curve is approached in three dimensions, and to a discus-
sion of the wetting transitions in less than three dimen-
sions in the presence of power-law interactions with the
wall. Finally, Sec. IX summarizes and discusses the re-
sults of the paper.

II. RENORMALIZATION-GROUP EQUATIONS

In this section we derive renormalization-group equa-
tions for the interface Hamiltonian, Eq. (1.1), to first or-
der in the potential V. This has been done for three bulk
dimensions (d =3) in Ref. 7; here wh will consider general
dimension d. To avoid ultraviolet divergences we impose
a sharp cutoff in momentum space. When the potential V
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z(k)= fd" 'pe'"'~z(p), (2.1)

in (1.1) vanishes, the Hamiltonian reduces to a Gaussian
model, which may be written in terms of the Fourier
transformed interfacial coordinates,

ing the momentum-shell integral. When truncated at this
order, the functional renormalization-group flow, Eq.
(2.8), is simply a linear differential equation (a diffusion
equation with rescaling) and can be explicitly integrated
starting with an arbitrary bare potential Vo(z) at l =0,
yielding

Ho(A, o)=—. f d" '
i
k

i i
z(k)

i

ski &A

(2.2)
(d —1)1

Vl(z) = dz' Vo(z')
v'2vr5( l )

where A is the cutoff momentum. This Gaussian Hamil-
tonian is a fixed point of a renormalization-group
transformation that integrates out those degrees of free-
dom, z(k), with A/b &

~

k
~

&A, and then rescales the
system to new coordinates

p'=p/b, z'(p')=b'" " 'z(p) . (2.3)

We will expand the renormalization group about this line
of Gaussian fixed points (parametrized by o.) to lowest or-
der in the interaction part of the Hamiltonian,

HI fd —'—p V(z(p)) . (2.4)

In order to generate continuous renormalization-group
flow equations we rescale by a factor b =1+l, with I in-
finitesimal. Let us divide z(p) into the part to be in-
tegrated out (the "fast" part),

z~(p) = f d" 'k e '"~z(k),
W &/k/&W

(2.5)

where A'=A/b =A(1 —1) for l~0+, and the remainder
(the "slow" part)

z, (p) =z(p) —z/(p) .

The interaction part of the Hamiltonian may then be ex-
panded in powers of z~(p) (which is of order v'l and
hence arbitrarily small), as

d V(z, (p) )
HI ——fd 'p V(z, (p))+z/(p)

dz, (p

z~(p) d V(z, (p))
( )' (2.7)

=O(V /o. ),

8 V(z) 3 —d 8 V(z)

(2.8)

where

+—
~

+O(V /cr),
1 8 V(z)

g Bz

o(4')'" " I ((d —1)/2)
k, r~'"-" (2.9)

and I (x) is the usual gamma function obtained from do-

The momentum-shell integration is then straightforward
at first order in V(z) and rescaling according to Eq. (2.3)
yields the renormalization-group flow equations for the
interfacial tension and potential,

&& exp I
—[zg(l) —z'] /25 (l)I,

(2.10)

where the width of the convolution, 5(l), is given by

5'(I) =2(e"-"'"—1)/(3 —d)~,
and the rescaling factor in the z direction is

g( l) =exp[i (3—d)/2] .

(2.11)

(2.12)

Note that the parameter I in these flow equations is the
logarithm of the factor by which lengths parallel to the
interface have been rescaled.

In order to investigate critical behavior at wetting tran-
sitions, we rescale until a scale e at which the curvature
at the minimum of the renormalized potential V1, is of
order one. At this scale the fluctuations will no longer be
important and the renormalized correlation length parallel
to the interface will be of order one. The original parallel
correlation length, g~~, is therefore of order e

III. ABOVE THE UPPER CRITICAL DIMENSION, d ) 3

If the fluctuations of the interface are ignored, as is
done in mean-field theory, then for the interfacial Hamil-
tonian, Eq. (1.1), the film thickness (z) is determined
purely by the global minimum of the potential V(z).
Continuous or critical wetting occurs in mean-field theory
when this minimum moves continuously out to infinite z
as a parameter (temperature, chemical potential, etc.) is
varied. In this paper we will consider two asymptotic
(large z) forms of the interfacial potential. If the wall has
only finite-range interactions with the bulk phases, then
an interfacial potential of the asymptotic form

—z/gb z/gb (3.1)V(z) = —ae

is obtained from a Landau-Ginzburg mean-field free ener-

gy at two-phase coexistence, where g& is the bulk correla-
tion length in the phase nearest the wall. ' If the wall has
long-range interactions with the phases a or Il (such as the
van der Waals interactions between fluctuating dipoles)
then a potential of the asymptotic form

V(z) = az "+bz— (3.2)

may occur at coexistence, with exponents I )n ~ 0.
Both of these potentials exhibit critical wetting in mean-
field theory when b ~ 0 and a —+0+. It is also of interest
to consider systems slightly away from bulk two-phase
coexistence which we discuss in Secs. VII and VIII below.
Then the excess bulk free energy per unit area of the film
near the wall, which is linear in its thickness z, must be
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added to the above potentials.
It is straightforward to see within our formulation, that

including the interfacial fluctuations does not alter the na-
ture of the singularities at the critical wetting transition
for dimensions d & 3, as has been argued by various au-
thors. ' This becomes apparent within our functional
renormalization-group scheme if we integrate out the
fluctuations but do not rescale the distances either parallel
or perpendicular to the interface. The unrescaled, renor-
malized potential is then

VI(z) = j dz' Vo(z')exp[ —(z —z') /25 (l)],
&2~5(l)

(3.3)

which is simply a convolution of the bare potential, Vo(z),
with a Gaussian of width 5(l). For d ~3 this width,
given by Eq. (2.11), remains finite as I~ oo, so that renor-
malization only smears the potential over a finite range of
z. This does not alter the nature of the singularities at
wetting for the potentials Eq. (3.1) and (3.2) discussed
above. In fact, for the power-law potential, Eq. (3.2), the
mean-field critical behavior remains valid down to bulk
dimensionality

d, (m) =(3m +2)/(m +2) (3.4)

as has been pointed out by Lipowsky. Our functional
renormalization-group approach is applied to the power-
law potentials in Sec. VIII below. First we will treat the
case of short-range potentials in the marginal dimen-
sionality d =3.

large l, the short distance (small z) parts of the bare po-
tential can affect the renormalized potential at long dis-
tances for large l. Thus we must generally consider the
form of Vo(z) for z near zero. A reasonable form to take
is to assume that for negative z the potential is just a fixed
positive constant c, representing a "soft" wall, while for z
positive, Vo(z) has the same form as for large z:

c, z&0
Vo(z)= 'b (4.5)

be '—ae ', z &0.

V(z) = 8'(z)+R (z) ~A(z),
where the bare parts are the following: the wall

(4.6)

This potential is illustrated schematically by the solid line
in Fig. 3. As we will see, as long as Vo(z) has only one
minimum and does not diverge too rapidly for z large and
negative, the critical behavior near the wetting transition
will not depend on the details of the potential in the re-
gion z & 0. It would be quite reasonable physically to con-
sider a potential with a hard wall, namely Eq. (4.5) with
c—woo. However, our flow equation (4.3), which is trun-
cated at linear order in V(z), cannot properly handle a po-
tential that diverges to infinity. A full renormalization
group, on the other hand, could, in principle, handle such
a potential and we argue in Sec. VI that the critical
behavior obtained using the truncated flow equation (4.3)
and a soft wall is probably correct even for the hard wall.

To analyze the behavior of the renormalized potential
for large l, it is convenient to divide the potential into its
constituent parts:

IV. CRITICAL WETTING IN THREE DIMENSIONS

In three dimensions, the spatial rescaling factor g(l) for
lengths perpendicular to the interface which is given by
Eq. (2.12) is not needed at lowest order in the potential,
and the differential flow equation (2.8) reduces to the sim-
ple form

~() c, z(0
0, z&0,

the repulsive tail

—2z

( )
be, z)0
0, z&0,

(4.7)

(4.8)

av 1 a'v=2V+-
Bl 0 Bz

(4.1)
and the attractive part

—ae ', z&0
In this section we will investigate the case of short-range
interactions with the wall so that for large z the bare po-
tential Vo(z) has the form given by Eq. (3.1). It is con-
venient to measure distances in the z direction in terms of
the bulk correlation length gb which we henceforth set
equal to one. The flow equation then involves a dimen-
sionless "diffusion" constant

0, z&0. (4.9)

1
CO =

rr4

in terms of which we have

a v a'v
=2V+m

Bz

(4.2)

(4.3)

5 (l)=2col . (4.4)

Since, in contrast to the case for d & 3, 6 diverges for

The width 5(l) of the convolution in Eq. (2.10) which
solves Eq. (4.3) is then simply FICx. 3. Schematic plots of the interface-wall potential as a

function of distance, z. The solid line is the bare potential Vo

and the dashed line the effective renormalized potential, Vl, for
the longer-wavelength fluctuations of the interface at scale e'.
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(z) =z* . (4.12)

In order to investigate the critical behavior near wet-
ting, we renormalize the potential until the curvature at
its minimum, which is at z =z, is of order one and
monotonically increasing. This occurs at the scale e
given by

9 V
(z )-1 . (4.10)

az2

At this scale the fluctuations are of order one and so the
parallel correlation length, gi)(l*) will also be of order one.
From the length rescaling Eq. (2.3) we then have that the
original correlation length parallel to the interface is

)-e" . (4.11)

At critical wetting this correlation length diverges, so
l*~m. In the completely wet portion of the phase dia-
gram the renormalized potential never gets a minimum
with a curvature that is of order one and increasing.

The average position of the interface, (z), will similar-
ly be given by the position, z~, of the minimum in the re-
normalized potential at scale l'; since there is no rescaling
of perpendicular distances,

while for p &4'

Rl(pl) = b 1 1 2el(2 —p, /4coj

V'4m' V i 2 —p/2' (4.20)

The renormalized wall potential for large l is dominated
by the small negative z parts of 8"0 for all p & 0 so that

W ( l )- c 1 l(2 —p'/4co) 2a1lP &4m.co ~l p
e (4.21)

z =3coi+ln(2b/a) . (4.22)

The curvature of the potential at zm is

8 Vl(z)

az2

2
(2—2') l

z 2b
(4.23)

The minimum in the full potential moves to higher z and
its value at the minimum changes under renormalization,
as is shown schematically in Fig. 3.

We now analyze the various possible regimes. It is
clear by inspection that for p &4', 8 is negligible rela-
tive to R for large l. If we assume the minimum of Vl is
in this regime, then we have by simply combining Eqs.
(4.17) and (4.19) the minimum at

The behavior of the various parts of the renormalized po-
tential can be obtained straightforwardly for large l by
performing the convolution in Eq. (2.10) by steepest des-
cents. This can most easily be done if the distances z are
scaled by l, anticipating that the important distance scales
will be of order l. We define

from which we obtain that

1 1
ln —.

1 —co a

Substituting into Eq. (4.22) yields

z* =(1+2')l*,

(4.24)

(4.25)
z =pl,

whence

(4.13)

21

y((pi) i )/2 dp' V (p'i )e
—l(P —v, ') /4' (4 14)

v 47tco

so that the ansatz that the minimum at l* occurs with

p &4' is justified only for m & —,'. In this regime, cu & —,',
which BHL (Ref. 3) call regime I, the critical value of a is
a, =0, so that we may take a —~= T —T, yielding

and it is then straightforward to perform a steepest des-
cent integration for large I.

Specifically, we have for the attractive part

l 1/2
e»f "dp el( )' ((' ))'—/4~—) — (41')

v'4rlco

so that the exponent in the integral is maximized at

and

I*
( 1/ )1/(1 —a))

1+2' 1(z) =z* = ln—
1 —co

= (1+2')in/)i,

(4.26)

(4.27)

ps =p —2' (4.16)

Al(pl)= —ae" + "' for p) 2' . (4.17)

Conversely, for p &2', the integral in Eq. (4.14) is dom-
inated by p' near zero, yielding. for p & 2co

Thus for p &2' and l~oo the integral will be dominated
by the saddle point at p,', yielding

2l —z 2/4a)l

y ( ) ae l(2+co) —z+
v 4'lrcol

1

2 —z /2col

in agreement with BHL.
For ~& —,', the minimum in Vl, occurs for p &4' so

that Eq. (4.20) for Rl must be used. However it is still
possible that the minimum occurs for p &2' so that Eq.
(4.17) is still valid. We thus make the ansatz that at
z*, 2~ &p & 4m so that

/tl(pi) el(2 —p /4u)) 1+0( 1/i)i
V'4vrcu v'i 1 —p/2'

(4.18)
21 —z /4col+"

V4~col z
(4.28)

be l (2+4' —2p ) (4.19)

Thus the renormalized A (z) is a Csaussian at short dis-
tances z &2col and decays as an exponential at long dis-
tances z &2ml. Similarly, for p&4m

since we can no longer neglect 8'l relative to Rl. In
evaluating the derivatives of Vl with respect to z, it can be
seen that derivatives of the parts in large parentheses in
Eq. (4.28) will always yield terms which are smaller by
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powers of 1/l than those from the exponentials. Thus, to
the desired accuracy for l large, we can replace the terms
in large parentheses by their values at the minimum of V~.
The terms in V~ from R~ and 8'~ then have the same
form and we can replace their sum by

(4.29)

c) V(z)
az2

2l —p2 1/4a)
e

z=p i v'4~col l a

leading-order contribution to c) V~/c)z, Eq .(4.37), will
vanish at the minimum. The first nonvanishing contribu-
tion to the curvature at the minimum, pm, is given by

This is equivalent to the form used by BHL (Ref. 3) in
their regimes II and III.

By minimizing V~(z) and setting the second derivative
at the minimum to one, we find that the assumption
2col' &z* &4col* is justified for

(co (2, (4.30)

which defines regime II. Again, the critical value of a is

p~ =&8co+O((lnl)/I) .

Thus the critical value of a is given implicitly by

(4.39)

(4.38)

Note that the order 1/l terms in K~ do not play a role and
can be neglected. The curvature can only be of order one
for large l if

a, =O,

but now we have

1
+co/8 —1/(2+ co —+8')

7- 1I1

(4.31)

(4.32)

K„(a„p,=v'8') =0 . (4.40)

For a &a„ the curvature at the minimum of V~ will de-
crease exponentially for large l while for a & a, it will in-
crease exponentially. If we write r-a —a, and expand
p and K (p) around p= V'8' and a„we obtain from

Vi/~z =O
and p (l) —V'8'-r+O(1/l), (4.41)

while from

(4.33)

which agrees with BHL (Ref. 3) except for a minor alge-
braic error of theirs in the logarithmic part of Eq. (4.32).
Note that for co= —,, the leading exponents in Eq. (4.32)
and (4.26) agree.

If p &2' at the minimum of V&„ then the situation is

somewhat more complicated. This will happen for co ~ 2
which defines regime III. In this regime, 3, R, and 8'
will all have the same leading asymptotic behavior for
large l and fixed p up to prefactors which depend on p:

we find

l*[p (l*)—/8']+3(co/8)'/ lnl =0 .

This yields

(z) =&8'(lug~~ ——,'1nlng'~~) .

Since r- (lnl*)/l*, we have

1 1 1
g~

~

—exp ln + ln ln +O(1)
C~ Cw C~

(4.42)

(4.43)

(4.44)

V( l) 21 —P I/4'K)(cc)

47760 l

where

(4.34) with C a nonuniversal (co dependent) constant so that

1 1 1(z) =V'8co ln +lnln +C~ C~ C~
(4.45)

It is clear that to leading order

and,

Vi,
Bz l Bp 2~

8 V&

2 V&
()z 4co

(4.36)

so that at the minimum, K~ must vanish to leading order
in 1/l. This implies that the critical value of a will be
nonzero, in contrast to regimes I and II. In order to
analyze the critical behavior we need to calculate the
derivatives of V~ to next order for l large since the

K&(p) = — + + +O(1/l)
1 —p /2' 2 —p /2' p /2co

(4.35)

X~= —e '
V,„(z" ) . (4.46)

Note that just above a„ the curvature at the minimum of
the renormalized potential starts off at order one, but first
decreases as a power of l before it increases exponentially.
We must thus be careful to stop integrating only when the
curvature increases back to order one.

Although the form of the potential used by BHL (Ref.
3) in regime III does not yield a renormalized potential of
the form Eq. (4.34), the differences do not affect the criti-
cal behavior. Equation (4.43) disagrees with BHL (Ref.
3) due to an algebraic error in their expression for (z).
From Eqs. (4.35) and (4.40) it can be seen that the critical
value of a approaches zero linearly as co~2+. This
behavior was not found by BHL.

The binding free energy per unit area, Xz, is given by
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It is straightforward to show that in each of regimes
I—III,

III critical behavior. For example, we can write
g~~

in
terms of rM -a in the form

B Vi, (z)
V(, (z* )—I+ m (4.47) (5.7)

Equation (4.46) then implies that

2 (4.48)

with the crossover exponent / = 1 and K a nonuniversal
constant. The limits of:-(x) are

so that hyperscaling is satisfied without the logarithmic
corrections which one might have expected at this upper
critical dimension d =3.

V. CROSSOVER AND MULTICRITICALITY
FOR co NEAR ~ OR 2

:-(x ) —Inx ——,ln lnx +D for x && 1,
«r ~x

~
&&1,

:-(x)~+ for x~ —I+,
:(x)=oo for x & —1,

with D, E, and F universal constants.

(5.8)

For completeness, in this section we quote some results
for the behavior near the multicritical points separating
regimes I and II, and II and III, which we denote I' and
M, respectively (see Fig. 2). The results can be rea'dily de-
rived, as in the preceding section.

At co= —,, the behavior is identical to regime I. As
co~ —,

' there will be a crossover in the amplitude of, say,

g~~, for r of order

—8/e~
&c (5.1)

where e= —, —co and 8 is a constant. As ~—+ —,+ the
behavior for ~ &&~, will be like that at I' while the asymp-
totic critical behavior for regime II (which contains Inc)
will only be reached for z «~, . This crossover is indicat-

ed by the dotted and dashed lines in Fig. 2.
Near the multicritical point M at co=2, the behavior is

more interesting. At co =2,

(5.2)

and

(z) =4(in/~~ ——,inlng~~)-r (5.3)

so that both the correlation length and (z ) as functions of
r-(T —T„) diverge most rapidly at co=2, while (z) in
terms of

g~~
is midway between the regime II and III re-

sults. For co —+2 the regime II critical behavior will hold
fof

7 ((Vc ~—2 Q)

which should naively be expected since

(5.4)

(5.5)

for co —+2
However, in regime III, the asymptotic critical behavior

will be valid only for

(5.6)

Surprisingly, the constant C in Eq. (4.44) for the correla-
tion length does not diverge as co~2+. Because of the
anomalously narrow critical region on the regime III side,
as shown in Fig. 2, the crossover scaling function for a
and e small will be very singular and not show the regime

VI. NONLINEAR EFFECTS
AND VALIDITY OF RESULTS

In the preceding two sections, we derived the critical
behavior of a particular model potential Vo(z) in three di-
mensions using a linear truncation of the full
renormalization-group equations. In this section we will
examine the validity of the-results.

What we are really interested in is an interface which is
constrained to have z positive, i.e., an infinite potential for
negative z. As mentioned previously, the truncated linear
RG used in this paper clearly cannot handle such a poten-
tial correctly and we must consider the effects of non-
linear terms in the RG flow equations. Before proceeding
with a discussion of such effects, it is instructive to con-
sider what class of potentials will yield the same critical
behavior under the linear RG as the model analyzed in
Secs. IV and V. If we restrict ourselves to potentials with
a single minimum which is controlled by the balance be-
tween an attractive and repulsive exponential tail with the
leading large z behavior given by Eqs. (4.8) and (4.9), then
this is primarily a question of the behavior of Vo(z) for
negative z, i.e., the wall part W(z). It is easy to see that
for z-p/ with p positive and fixed and l large, the renor-
malized wall potential WI(z) will have the same form as
Eq. (4.21) as long as Wo(z) increases more slowly than an
exponential for large negative z. Physically, it would ap-
pear reasonable to replace a hard wall with a soft wall
which grows rapidly for z & 0 (say, as e~~ ) or perhaps
even with the constant potential wall used in Sec. III.
One might hope- that general possible nonlinear terms in
the RG flows could then be handled perturbatively about
the linear solution. It can be shown, however, that this
will not work even for the constant wall potential. This is
because for large l, VI(z) will be large for a range of z and
nonlinear terms in the regions where it is large can pro-
duce large effects on the behavior in the important region
of VI~(z), i.e., z near z~. We thus cannot resort to general
perturbative arguments to treat the nonlinear RG flows
but must carefully consider the origin and form of the
nonlinearities.

There are two natural ways that one might proceed.
This first would be to consider a sof't-wall potential
(which is amenable to the momentum space RG approach



254 DANIEL S. FISHER AND DAVID A. HUSE 32

BV =2V+co
2

l

1 BV
2 Bz

(6.1)

should at least qualitatively describe the leading nonlinear
behavior for small V.

We are thus led to ask what is the magnitude of
(BV, /()z) for the parts of the potential at scales 0&s &l
which affect Vl near its minimum. More precisely, in the
linear approximation of Sec. IV we can write

2(l —s)
V ( )

e jd i V ( i) —(z' —z) /4'(l —s)

v 4m'(l —s)
(6.2)

and then ask how large V, (z') is for the z' which dom-
inate, the integral in Eq. (6.2) for l =1* and z near z*. We
will call this dominant z, zD. In regime I, it is straight-
forward to see that the dominant parts of V, (z') are ex-
ponentially small until l —s is of order one. Therefore the
nonlinear terms will only enter at the final stages of the
renormalization and not modify the form of the singulari-
ties. For regimes II and III, on the other hand, the
analysis is slightly messy. What is found is that the im-
portant parts of the repulsive and wall parts of V, are
where z' is near

used here) and analyze the effects of various nonlinear
terms in an exact differential RG. ' The second ap-
proach would be to consider an approximate RG which
bounds the renormalized potential when it is large and
reduces to the linear RG used in Sec. IV when the poten-
tial is small with errors which can be controlled. Neither
of these approaches is easy to implement, the first because
exact differential RG's (Refs. 5 and 10) are rather compli-
cated and clumsy and the second because of the dual re-
quirements placed on such an approximate RG. We will
therefore here just discuss why we believe the linear RG
results are likely to be correct and leave a more careful
treatment for future work.

Although an exact differential renormalization group
must contain many functions of several momenta (for ex-
ample, the potential will not just be a function of the real
space z), it is instructive to consider a "toy" RG which
contains some of the potentially dangerous terms in order
to investigate the reasonableness of the linear truncation.
One of the potentially most dangerous terms involves con-
tributions to the renormalization of the potential propor-
tional to higher powers of V. Since a constant potential is
only trivially renormalized, we know that nonlinear terms
can involve only derivatives of V with respect to z. The
lowest-order term has the form ((1V/Bz) . (As mentioned
above such terms cannot be treated straightforwardly per-
turbatively. ) Since the fluctuations of the interface which
are integrated out will more often go into regions where V
is smaller, the nonlinear terms will tend to decrease the re-
normalized V; this is in fact what is found in a perturba-
tive functional RG derived by one of us. The truncated
flow equation

and 1n regjme III

V, (zD) -exp[ —,(s/1)lnl ——', ins] (6.5)

with 8V, /Bz' the same order as V, in both regimes. Ex-
pressions (6.4) and (6.5) are smaller than order one except
for s small and (l —s)/s &1/1nl. Thus, the local effects
of the nonlinear terms on V, (z') should be small in the re-
gion of z' which dominates the behavior near the
minimum at scale l*. However it is possible that the cu-
mulative effects of the nonlinear terms in the regions fur-
ther away (for smaller z') could (as mentioned previously)
build up to affect the renormalized potential in the impor-
tant region. The sign of the nonlinear term in Eq. (6.2)
and the general argument that the nonlinear terms will
suppress the growth of the potential suggest that this is
not the case. The regions where V, (z') is large do not
contribute significantly in the linear RG. If the nonlinear
terms suppress V, in these regions, their effects on the im-
portant region of Vt(z) will decrease and thus still be
negligible. On the other hand, the effects of the regions
where V, (z ) is small will be determined by the linearized
RG flow. Thus it is natural to expect that nonlinear
terms of the form in Eq. (6.1) will not affect the asymp-
totic critical behavior. Similar qualitative arguments can
be made, for example, for the effects of renormalizations
of the local surface tension which are of order V .

Since the full RG equations are very complicated, how-
ever, it would be more straightforward if one could argue
that the effects of any reasonable form of wall, in particu-
lar an infinite hard wall, is bounded above at long dis-

—z ~/4a) l 21tances and length scales by e ' i e /V l and has this
limiting behavior (up to functions of z/i) for Vt smaller
than one. At this stage, it is not clear how to demonstrate
this. Some bounds can simply be derived, however, by
noting that the e factor in the renormalized potential is
just the area of the interface at length scale e'. It follows
that even at a distance z of order one (i.e., the cutoff)
from a hard wall, the renormalized potential will be
bounded above by a number of order unity times e
Hence the behavior near the wall is not underestimated by
the linear RG. Hopefully, careful arguments can be made
which yield the desired bounds convincingly; however, a
careful definition of the renormalized potential is clearly
necessary.

We note that in regime III, in addition to the effects of
a repulsive wall, the effects of a short distance attraction
must also be analyzed when it has a strength near the crit-
ical value of order one. This is likely to be rather more
difficult. The exactly soluble two-dimensional problem
which also has a transition at a critical strength of order
one" should provide a useful testing ground for approxi-
mate methods.

To conclude this discussion, it is almost certain that the
critical behavior in regime I is given correctly by the
linearized RG, but in regimes II and III, at this stage is is
only a reasonable speculation that the results of BHL and
Secs. IV and V are correct.

zD ——zs /l

for which in regime II

V, (zD )—exp[(s /2i)lnl ——,
' ins ]

(6.3)

(6.4)

VII. SINGULARITY AT COMPLETE WETTING

A related problem to critical wetting is the divergence
in the film thickness for repulsive wall interactions as the
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coexistence curve is approached by varying, say, the
chemical potential, p. The effective wall potential V will
again have a wall part which we take to be a constant for
z &0, a repulsive exponential part ae ' with a positive
and of order one, and an attractive linear potential 5z with
slope proportional to the deviation, 6, of the chemical po-
tential from coexistence. We thus take

( Z ) —1/(m —n)

—(m +2) /2(m —n)
+

I I

where

(8.3)

(8A)

the interfacial fluctuations will not alter the mean-field
crjtjcal behavjor, whjch js

V( )
c) z&0
ae '+6z, z &0.

~-a-(T —T~) .
(7.1) For exponents

(8.5)

In mean-field theory, we have the capillary length

g
—1/2

II

and the mean film thickness

( z ) =In(1/5) .

(7.2)

(7.3)

n &m, (d) &m (8.6)

in (8.1), the critical behavior is determined by the long-
range tail of the attractive part of the potential and the
wall or short-range limit of the repulsive part of the po-
tential. In this regime (which is analogous to regime II)
the critical behavior is

It is straightforward to see that when we include fluctua-
tions jri three dimensions, there are two regimes, one cor-
responding to the minimum in the renormalized potential
being in the exponential tail of the repulsive part of the
other to it being in the short distance regime affected by
the wall. We thus have, for co & 2,

( )
—I /(m n)—

—(m +2)/2(m —n)

(8.7)

(8.8)

with the critical point still given by (8.5). In the third re-
gime,

g
—1/2

II
(7A) n ~m, (d), (8.9)

and

(z) = In —=(2+co)in/2+co 1

2 5 II ~ (7.5)

while for co&2, Eq. (7.4) still holds but

(z) =v'Zco ln ———lnln-l4 S

=v'Bco(in/~( ——,
' ln 1ng (() . (7.6)

Thus the critical behavior of the capillary length remains
mean-field-like for all co while the coefficient of the
ln(1/5) in (z ) varies. This latter effect should be testable
since the surface tension and gb are measurable and hence
co can be determined.

VIII. CRITICAL WETTING WITH LONG-RANGE
INTERACTIONS

m &m, (d)= 2(d —1)
(8.2)

Our functional renormalization group can also be ap-
plied to the power-law potential

c, z(0V(z)= . (8.1)—az "+bz, z &0,
where we have n ~ m and b and c positive. For this po-
tential and dimensionalities d & 3 we again find three re-
gimes of critical behavior. However, for a given dimen-
sionality and potential, the critical behavior is indepen-
dent of the surface tension, unlike the case of d =3 and
exponentially decaying V(z) discussed above.

When the subdominant power law obeys

the wetting critical behavior is determined, purely by the
short-range part of the potential. This critical behavior is
governed by a fixed point which involves a nonzero poten-
tial and therefore appears to be outside of the scope of our
perturbative approach. In this regime, the critical value
of a is greater than zero.

The power-law potential, Eq. (8.1), can also be used
away from bulk coexistence. Then the linear term in the
potential is given by n = —1. Thus the critical behavior
on approach to complete wetting is as in Eqs. (8.3) and
(8.4) for I &m, (d), and (8.7) and (8.8) for m ~m, (d),
where n = —1 must be used in both cases. Note that in
this case there can be no regime with a, &0.

Kroll and Lipowsky" have examined the case ofI~~ in two dimensions, where the critical behavior can
be calculated using a transfer operator technique. They
do indeed find the critical behavior given by (8.7) and (8.8)
for n & m, (2) =2. For the marginal case n =2, they find
that the wetting transition occurs when the attractive part
of the potential is still finite and exhibits an essential
singularity of the form (z) -exp(w '/ ). This curious re-
sult is reminiscent of the Kosterlitz- Thouless' and
roughening' transitions and therefore one might hope to
rederive it using a renormalization group, but it is outside
of the scope of our present linear functional approach.

IX. CONCLUSIONS

In this paper we have used a linearized functional re-
normalization group to analyze the critical behavior near
second-order wetting transitions. The upper critical di-
mension falls out very simply in this formulation. In
three dimensions, the rather complicated critical behavior
found by BHL (Ref. 3) for short-range interactions is
rederived using this functional RG. New information on
the phase diagram and multicritical behavior is yielded, in
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particular the behavior near to the multicritical point
co=2 below which the interface can be bound to the wall
with an arbitrary weak potential and above which it can-
not. We find that the critical strength of the attractive
substrate potential goes to zero linearly with ~—2. For
co &2, the film thickness in units of the bulk correlation
length diverges as In~ with a coefficient which is a un&ver-

sa/ function of co. However for co&2, (z) —I/~. The
marked difference between these behaviors, and the
universality for co &2 should be verifiable experimentally.
For co near two, the behavior will be dominated by the
multicritical point at which (z ) —I/r and there will only
be a narrow critical region for (co —2) small and positive,
as shown in Fig. 2. This may complicate interpretation of
experimental or numerical results.

So far, we have said very little about the behavior near
wetting transitions for short-range interactions in dimen;
sions less than three. In two dimensions, the critical
behavior is known exactly by various methods " (z)
diverges as I/r and

g~~ as I/H. As in regime III in d =3,
a nonzero critical strength of the attraction to the wall is
needed to bind the interface. The behavior between two
and three dimensions should be similar to d =2 and re-
gime III with the correlation length exponent v diverging
as d~3 . It may be possible to perform a 3 —e expan-
sion about the behavior in regime III, although at present
it is not clear how to do this. Controlling the effects of
the nonlinearities in the RG fIows will almost certainly be
necessary to carry out such an expansion.

At this stage, it is not clear what is the regime of validi-
ty of the linear truncation of the RG flows used here in
three dimensions, although, as discussed in Sec. VI, we
speculate that the results of this paper should should sur-

vive a fuller treatment. This should be simplest to show
for three dimensions in regime I where the effects of fluc-
tuations are small and the nonlinear terms in ihe RG are
most likely to be negligible. It is hoped that approximate
variational RG's which reduce to our linear RG for small
potentials should be useful both for checking the results
discussed here and perhaps for investigating related prob-
lems.

There are many other applications of the linear func-
tional RG introduced here. Several of them, including the
behavior as the coexistence curve is approached in the re-
gion of complete wetting and the effect of long-range
substrate-adsorbate potentials were investigated in the last
two sections. Another problem which should be amenable
to this approach is tricritical wetting where the wetting
transition changes from first to second order. This is like-
ly to yield very rich behavior.

Finally, we note that the systems investigated here pro-
vide examples of problems which are more simply treated
in terms of the full Wilson RG scheme of a many param-
eter Hamiltonian space (here a function) than in terms of
a few parameters.
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