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The interaction of a single impurity with a charge-density wave (CDW) cannot be described by
Ginzburg-Landau theory. In the present paper a one-dimensional microscopic quantum theory is
presented considering only the backward scattering of the electrons by the impurity at zero tempera-
ture. This theory considers the strong perturbation of the CDW inside the amplitude coherence
length, which perturbation is dominated by the Friedel oscillations at short distances. It treats the
CDW within the framework of the mean-field approximation, and sums up the backward scattering
to all orders in perturbation theory. The main features of a self-consistent treatment of the mean
field is briefly outlined and the modification can be embodied into the renormalization of the impur-
ity scattering. The results obtained are sensitive to the impurity-scattering strength. In first order,
the results of the rigid CDW are reproduced; in second order, the previous results by Barnes and
Zawadowski are obtained. The largest effects are in the strong-scattering region. The following
physical quantities are calculated: electron density, ground-state energy, density of states, and the
force exerted by the impurity on the CDW as a function of the relative position of the impurity with
respect to the CDW, and a solution of the equation of motion is found. Considering the electron
density in the intermediate-coupling-strength case, the Friedel oscillations dominate at short dis-
tances well inside the amplitude coherence lerigth. In the charge density, the Friedel oscillations and
the CDW are additive to a good approximation. Outside the amplitude coherence length, the
Friedel oscillations tunnel into the CDW gap. In the density of states at the impurity site, the singu-
larity at the gap edge is smeared out and a pair of bound states appears in the gap if the CDW and
the Friedel oscillations are out of phase. Further bound states appear also outside the conduction
band. The effective potential describing the interaction of the CDW with the impurity is very non-
sinusoidal in the intermediate-coupling-strength region, but becomes more sinusoidal for very weak
and very strong coupling. The effect of this nonsinusoidal potential in the equation of motion is in
the enhancement of higher harmonics appearing in the narrow-band noise, but their intensities
remain monotonically decreasing. Among the observable effects predicted are the following: the
temperature dependence of the ratios of the intensities of the harmonics in the narrow-band noise,
the effect of the nonsinusoidal potential in the Shapiro steps, and the appearance of Friedel oscilla-
tions in NMR and diffraction experiments.

I. INTRODUCTION

Thirty years ago Frohlich' proposed the charge density
wave (CDW) state as a candidate for carrying coherent
current on macroscopic scale, however, strong experimen-
tal evidences for that idea appeared in the literature only
in the last few years. The first material in which the slid-
ing in an incommensurate CD%' has been observed is
NbSe3. The crucial experimental discoveries that have
been made are the nonohmic conductivity with a critical
electric field (threshold field) which must be exceeded to
have the CDW sliding, and the narrow band noise,
which means an ac response for dc applied voltage. For
more experimental details we refer to the excellent review
articles that have appeared in the literature (see Ref. 4).
Most of the theoretical approaches are classical, namely,
the CD%' is considered as a rigid object ' moving in a
periodic potential with periodicity equal to the wave
length of the CDW, or a deformable medium
described by the classical theory of elasticity. The latter is
essentially a Ciinzburg-Landau theory where only the

phase of the CDW is deformed but its amplitude is taken
unchanged. In all of these theories the pinning of the
CDW by impurities is manifested in the threshold field.
For a long period of time, the only quantum approach to
the problem had been proposed by Bardeen, "' who sug-
gested that tunneling in the vicinities of the impurities is
responsible for the weak coupling between two macro-
scopic quantum states. Recently, Barnes and
Zawadowski' have proposed that the weak scattering on
impurities may result in a weak coupling between the two
quantum states corresponding to the right and left moving
CDW states. In this sense their theory shows a strong
resemblance to Bardeen*s theory, "' but without the idea
of Zener tunneling. This theory exhibits also a strong for-
mal analogy with the theory of Josephson junctions.
There are several other approaches as well, e.g., where
smaller commensurate regions are separated by transition
regions of the soliton type. ' Some recent experiments
have been interpreted as direct evidence for the generation
of the narrow-band noise by the regions of the electric
contacts. ' The relevant theories are based on formations
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of vortices' or phase slip centers' near the contacts.
The present work is an extension of the theory of

Barnes and Zawadowski' and based on the physical ideas
summarized in Ref. 17. In the previous work, ' the analo-

gy with the Josephson junction is emphasized, this treat-
ment is focused, however, on the amplitude and phase
perturbation of the CDW in the immediate vicinity of a
single impurity. The present study is motivated by several
theoretical and experimental problems.

Considering the theoretical problems, the following are
the most important.

(i) In the classical model where the CDW is treated as a
single particle, any internal motion or deformation of the
CDW is completely ignored.

(ii) The Efetov-Larkin and the Fukuyama-Lee-Rice
theory of the CDW is capable of describing the long-range
deformation but certainly does not deal with any pertur-
bation on a length scale shorter than the amplitude coher-
ence length go ——u~/ho where uz is the Fermi velocity and
ho is the gap characterizing the CDW.

(iii) The microscopic processes have been recently con-
sidered by Barnes and Zawadowski' to second order in
the backward scattering on the impurity. The higher-
order processes, however, have not been considered; there-
fore, the physical relevance of those calculations has
remained somewhat in doubt.

(iv) Friedel oscillations' must occur in the conduction-
electron density around an impurity in any metal. As the .

CDW gap is small this oscillation must exist in the CDW
state as well. As both the periodicity distance of the
Friedel oscillation and the wavelength A, of the CDW are
determined by twice the Fermi momentum kF, therefore,
a strong interaction and competition between the CDW
and the Friedel oscillation is expected around the impuri-
ty.

From the point of view of the experiments the follow-
ing questions are related to the present work.

(i) Does the effective potential, by which the interaction
between the impurity and the CDW and the phenomeno-
logical taken into account, have a sinusoidal form or is
there a strong deviation from that?

(ii) Is A, or A, /2 the periodicity of that effective potential
as has been suggested by Monceau et al.?'

(iii) Do the ratios of the harmonics in the narrow-band
noise depend on the temperature or not?

(iv) Does the magnetic interaction with magnetic im-
purities contribute to the pinning of the CDW or not?

The role of magnetic impurities has been recently stud-
ied experimentally and a theory has been worked out
considering the Josephson-type processes ' to second order
in the magnetic exchange coupling. The extension of this
theory is, however, beyond the scope of the present paper.

Concerning the theoretical motivations (iii) and (iv),
further remarks will be made.

The CDW phase is characterized by the formation of
electron-hole bound pairs with total momentum +Q and
with total spin S =0 ( Q =2'/A, ). There are two different
types of pairs with momenta +Q, respectively, which are
condensed forming two macroscopic quantum states (see
Fig. 1). The interference between the left- and right-going
condensate results in the formation of the CDW. The

kF

FICx. 1. 1D dispersion curve with the two types of electron-
hole pairs (labeled by 1 and 2) forming the CDW. The arrows
are indicating the two backscatterings on the impurity which
represent a transition between the different pairs.

second-order term in the acceleration of the CDW due to
a single impurity calculated by Barnes and Zawadowski'
corresponds to the transition of two electrons from the
same side of the dispersion curve to the opposite one by
backward scatterings at the impurity. Thus, this process
contributes to the transition between the two different
types of pair (see Fig. 1). The right- (left-) going pairs are
characterized by the macroscopic phase —qr (+p). The
phase y also determines the position of the CDW. The
rate of the pair transitions is proportional to
sin[2(y —q&o)], where the phase po is determined by the
position of the impurity. Thus, the position of the CDW
with respect of the impurity determines whether the num-
ber of right- or left-going pairs increases in this scattering
process, or in other words, whether the acceleration of the
CDW due to the impurity is in the right or left direction.
In the case of a CDW moving with constant velocity the
phase y of the CDW varies monotonically, thus the ac-
celeration and the transition rate oscillate in time. There
is, however, a difference between the present case and the
Josephson junction, because the two condensates of the
CDW are located in the same volume, just as in the case
of superfluid He3 where the pairs show the Leggett oscil-
lation in the presence of an external magnetic field.
There is another difference, namely, the third order in
perturbation theory gives a finite contribution to the ac-
celeration of the CDW, in contrast to the Josephson ef-
fect. The origin of this difference is that the electrons
move in an effective periodic potential induced by the
CDW and the scattering on that results also in back-
scattering with momentum transfer +Q. Thus, e.g., a
transition of an electron from right to left may occur as
two right-left scatterings on the impurity and a left-right
scattering on this effective periodic potential, which tran-
sition is the second of the processes depicted in Fig. 2. In
the mathematical sense, the scattering due to the effective
potential appears as the anomalous left-right (right-left)
Green's function GL~ (G~l ) and the process is described
as

TGI.z T,
which is the first correction to the backscattering ampli-
tude T.

The motivation concerning the Friedel oscillation
deserves also a longer discussion. The electron density
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FIG. 2. Diagrammatic representation of the scattering of an
electron from right to left in the perturbation theory.

around an impurity is shown schematically in Fig. 3. At
the impurity the electrons are affected by the impurity po-
tential which has a height of about 0. 1—1 eV depending
upon whether the impurity is weak (neutral) or strong
(charged). Furthermore, the electrons move in the mean
field potential due to the CDW which has the amplitude
of the CDW gap 50-0.01 eV. Since at the impurity site
the effect of the impurity is the dominant one, the Friedel
oscillation must be formed around the impurity. If the
height of the impurity potential is comparable with the
bandwidth D then the amplitude of the Friedel oscilla-
tions approaches the total electron density in the band.
Because of the large damping of the Friedel oscillations at
larger distances measured from the impurity, there exists
a crossover distance xo beyond which the CDW dom-
inates the Friedel oscillation. The main phenomena is
that the impurity tries to lock the phase of the oscillation
in order to have the maximal or minimal electron density
at the impurity depending on the sign of the impurity po-
tential. In general this locking phase is different from the
phase y of the unperturbed CDW; thus these two dif-
ferent phases must be matched in the crossover region

S(X)

CDW

Fr i ede l oscillati on

0 X

FIG. 3. Schematic plot of the electron density around an im-

purity. The region of mismatch between the regions dominated

by Friedel oscillations and by CDW is represented by the dotted
line.

around xo.
The picture of the interaction between the sliding CDW

and the impurity is very different from that in Ginzburg-
Landau theory, in which the phase y(x) of the CDW is a
slowly varying function of the space coordinate x, and
that phase determines the electron density at the impurity
site which interacts locally with the impurity. In the
present theory, if the impurity is strong, then the phase of
the CDW is locked at the impurity and the interference
between the Friedel oscillation and the CDW determines
the interaction energy and the force F exerted on the
CDW by the impurity. It must be emphasized that the
Friedel oscillation is dominant over a few atomic dis-
tances (a) around the impurity, while the phase of the
CDW is slowly varying on the length scale of the ampli-
tude coherence length go. In most of the case go»xo,
thus the phase of the CDW cannot be very different on
the two different sides of the impurity just beyond the
crossover region (xo (x (go). In the present theory the
interaction with the impurity is treated in perturbation
theory. It will be shown that this theory provides the
modification of the CDW only in the intermediate vicini-
ty of the impurity x & go and does not produce the long-
range phase deformation of the CDW. In a realistic case,
the long-range deformation acts to minimize the
mismatch of the phase in the crossover region. In the
case of a single impurity in an infinitely long sample, the
mismatch always disappears due to the long-range defor-
mations, but that is not the case in the presence of many
impurities. Thus the present theory gives the correct de-
formation of the CDW on very short length scales x & go
only. The long-range deformation is beyond the scope of
the present paper and that must be obtained from the
Ginzburg-Landau theory, ' where the CDW impurity in-
teraction is taken from the present theory. The
Fukuyama-Lee-Rice theory ' of that type provides the
long-range phase coherence length ( known as the Lee-
Rice length (g »go for weak impurities).

The basic scheme of the formalism applied in the
present paper is as follows. The interaction leading to the
CDW is treated in the mean field approximation and the
perturbation by the impurity is treated in the same
manner. First the mean field is taken from the case
without impurities and later the main features of a self-
consistent theory are briefly outlined. It will be shown
that the qualitative picture presented is not affected by
taking the mean field of the impurity-free case.

The high degree of anisotropy of the conductivity and
the structural data support that these type of materials
such as NbSe3 are quasi-one-dimensional. Instead of us-

ing the realistic, but very complicated Fermi surface, it is
widely accepted to adopt a model with a Fermi surface
consisting of two almost-parallel planes. The role of the
nesting of these planes was discussed in details by
Gor'kov and Dolgov, who have shown that the one-
dimensional model leads to a qualitatively correct picture
in a mean field approximation. The shortcomings of the
one-dimensional model are the lack of the extension of the
perturbation in the perpendicular directions. In our prob-
lem the extension of the Friedel oscillations in perpendic-
ular directions depends on the interchain coupling. The
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region of the Friedel oscillations around the impurity has
a cigar shape. The behavior, however, in the longitudinal
direction is effected only slightly. In this paper for the
sake of simplicity a strictly one dimensional problem is
treated in the mean field approximation keeping in mind
that in reality the Friedel oscillations are three dimension-
al.

Therefore the model to be treated is strictly one-
dimensional and for sake of simplicity only the backward
scattering on the impurity is treated.

In Sec. II the formalism is presented. Section III is de-
voted to the calculations of the electron density and the
order parameter at the impurity site and to the ground-
state energy. In Sec. IV, the electron density is obtained
at finite distance. Section V contains the result for the
density of states and for the bound electron states which
may appear as has first been pointed out by Gor'kov and
Dorokhov. In Sec. VI the force exerted on the CDW by
the impurity is calculated as the derivative of the interac-
tion energy with respect of the position of the CDW. The
single particle model for the moving CDW is discussed in
Sec. VII with the force derived in Sec. VI. In the Con-
clusion the experimental consequences of the present
theory are briefly summarized. Appendices A and B are
devoted to the calculation of the CDW acceleration in
third order of perturbation theory using the real time
technique in order to check the validity of the simpler
method of Sec. VI. The formalism of the wave function
of BCS-type is quoted in Appendix A and applied in Ap-
pendix B. Finally, in Appendix C the self-consistent
theory is outlined.

II. FGRMALISM
where k =+Q/2+p and

(2.4)

where ak and ak are the free-electron creation and an-
nihilation operators in one dimension, eI, =uz(

~

k
i

—kF)
is the kinetic energy linearized near the Fermi momenta
+kF, uz is the Fermi velocity, Q is the wave vector of the
CDW (Q =2kF), and for the momentum p, a symmetri-
cal cutoff pp D/——uz is applied, where the energy D is of
the order of the bandwidth. That approximate dispersion
curve is depicted in Fig. 4. .

One of the most important approximations to be ap-
plied is that Ap is taken to be uniform and not affected by
the presence of the impurity. In a self-consistent approxi-
mation, the change 56(x)=b,(x)—bp(y) due to the im-
purity must be fed back into Eq. (2.2). The Green's func-
tions are, however, sensitive to an appropriate space aver-
age of 56(x) taken over a region which has a characteris-
tic size of the amplitude coherence length known as the
BCS length g'p ——uF/b, p. As will be seen, 5b, (x)/Ap is rela-
tively large only in the intermediate vicinity of the irnpur-
ity (few atomic distances), which is a region small com-
pared to g, thus the change M, (r) can be taken into ac-
count by a weak renormalization of the impurity scatter-
ing as will be shown in Appendix C.

In the mean-field approximation the definition of the
energy gap bp(p), the quasiparticle energy E(k), and the
gap equation are of the BCS type; thus

~P('P) g y (a —Q/2, a +Q/2, (2.3)
p, c7

and

H =H,i+H; p . (2.1)

The Hamiltonian H to be treated consists of the Harnil-
tonian H, i of the interacting electron gas forming the
CDW and of Hi ~ describing the interaction between
electrons and a single impurity,

2Ep

which gives for Ao

27TUF
bo ——D sinh =2D exp

27TUF

(2.5)

(2.6)

The part H, &
must contain the kinetic energy of electrons

and the interaction responsible for the formation of the
CDW which may be a direct electron-electron interaction
or electron-phonon interaction. In the latter case H, ~

in-
cludes the phonon part as well. The formation of the
CDW without the impurity will be treated in the mean-
field approximation, which can be formulated either by
using the anomalous Green's functions introduced by
Gor'kov or by introducing a BCS-type ground-state wave
function and quasiparticle operators following the Bogo-
lyubov formalism applied to superconductivity (for the
latter see Appendix A). In the mean-field approximation,
the interaction is embodied into the uniform gap "field"
6p(p) =ape'+, with phase y and an effective Hamiltonian
HcDw can be introduced,

CDW ~ ~kak, ak,
k, o. k p kF kF+pF 0 0 kF -pp kF kF+po k

where the effective electron-electron coupling g (0 in-
cludes the phonon exchange, D is the symmetric band-
width cutoff, and s is the degree of spin degeneracy (in
the real case s =2), otherwise the spin index will be
dropped in the paper.

In the usual way the electron field operator can be split

+ bp(y) ~a~+Q/2 ~ap Q/2 ~+c.c.
p, o

(2.2)
FIG. 4. 1D dispersion curve. Only those electrons with mo-

menta p are taken into account in our model, for which holds

kF PO ( i p ~
(kF+PO ~
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into left (L) and right (R) moving parts, '

g( x) =gl (x) +g~ (x),
with

f (x)=, g e'""ak with a, =R,L,1

ak ()0)

(2.7)

(2.8)

where cd and cpR are arbitrary phases. The difference
q&=q)1 —q)z is associated with the real-space position of
the degenerate ground state of the CDW. Thus, the total
electron density p (x) at position x is (see Appendix A)

p' '(x)=s(gt(x)f(x)) =s[po —p)cos(QX —&p)], (2.11)

- with

aIld

D
pp=

KUF
(2.12)

pi=
Ap

SKUFg
(2.13)

where po is the average electron density for one spin direc-
tion and p) is the amplitude of the CDW and the dimen-
sionless coupling is g = g /2rruF. Furthe—rmore, the
phase of the gap is given as

~,(x)=~,e "(2" ~) (2.14)

In Eq. (2.11), po is determined by (gzgz ) and (QL 1iiL ),
while the cross terms (/~pl ) and (gl fi() contribute
to p&.

In order to study the role of impurities, one can consid-
er the most simple interaction Hamiltonian 0],

H) ——V g Q (R; )g(R; ), (2.15)
R;

where V is the local electron-impurity interaction poten-
tial and R; is the position of the impurity "i". In the
general case V may depend on the momentum transfer q,
and the values V(q=0) and V(q=+Q) are of impor-
tance. The calculation can be simplified if the forward
scattering V(q =0) is dropped and only the backward
scattering T=V(q=+Q) is kept, which of course is a
strong limitation. Thus, in this case the Hamiltonian for
a single impurity located at the origin has the form

H; r
——T[git(0)PL, (0)+pl. (0)pit(0)] . (2.16)

where L is the length of the system and +=+1 on the
right-hand side of Eq. (2.8) stands for the right (R) and
left (L), respectively. Considering an incommensurate
CDW (no umklapp processes) without impurities the
number of left and right electrons are conserved; thus the
following two quantities are conserved, '

N = dx x x, a=LR . 29

This conservation law can be manifested by the following
gauge transformation

(2.10)

G~p(x, x';r —~')

i [(Q/2)(ax —Px')+ &)&
—yi)] ~ (o)=e G~px —x &1

—7 (2.18)

where 6 ~p depends only on the differences of the argu-
ments, and it is independent of the gauge; thus its Fourier
transform can be written as

G ~p(x x', r r')— —(0)

e "
G~p(p, i co„), (2.19)

where o)„=(2n+1)~13 ' and —Po &P &Po (Po &kF)
Furthermore

and

G zz (p&ice„)= G L,I.'( —p, ice„)

1+(uFp/Ep ) 1 (uFp /EI& )—'+
2 l co~ —Ep leo~ +Ep

(2.20)

G rg(p&i(u») =6 gg(p&iiu„)

~0

2' l co~ —Ep

1

le~ +EJ
(2.21)

(see, e.g., Ref. 23). .

The main part of the paper is devoted to calculating the
effect of the impurities on the total electron density p(x)
at position x, the gap b.(x), and the change in the thermo-
dynamical potential Q. These quantities are given as fol-
lows:

p(x)=s g 6 ~(x,x;~~—0),
a, P=L, R

(2.22)

and

b, (x) =sgnG+L, (X&x;r—+ —0), (2.23)

This Hamiltonian does not show the gauge invariance
given by Eq. (2.10); thus the ground state is not degenerate
any more as the impurity can pin the CDW in a prefer-
able position. It follows also from the gauge transforma-
tion that any result obtained for y=O can be generalized
for a CDW with arbitrary position (given by (p) by the
substitutions T~Te+'~ and T~Te '+ in the first and
second terms in the right-hand side of Eq. (2.16), respec-
tively.

Although our calculation will be valid only at zero tem-
perature, for convenience, the finite-temperature Green's
function will be applied and the zero-temperature limit
[P=(k~T) '~oo] will be taken afterward.

The definition of the Green s function including the ef-
fect of impurities is

G p(x,x';r r')=——(, T Ip (x,z)/is(x', r')J ), (2.17)

where ~ is the complex time variable (see, e.g. , Ref. 27).
Following the real-space technique of Ref. 26, the

Green's function without impurities can be written in the
form
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impurities correspond to normal or anomalous Green's
functions (G~p). Typical sections of the ring are also
shown in Fig. 5. The actual calculations of the quantities
presented here are the subject of the next section.

FIG. 5. Typical ring diagram for the perturbation expansion
of the thermodynamical potential. The crosses represent the
electron impurity scattering process. Typical sections of the
ring diagrams are also shown.

III. PERTURBATION THEORY
FOR THE ELECTRON DENSITY AND THE ORDER

PARAMETER AT THE IMPURITY SITE
AND FOR THE GROUND-STATE ENERGY

The first step is to consider the effect of the impurity
on the Green's function. The Dyson equation for the
Green's function (2.17) with interaction (2.16) can be
given in a matrix form,

QQ= f dT', (H;~p(T')) (2.24) G p(x, x';ico„)= G~p(x, x';icon)

+G' r'(x, O;icon )trsgsp(O, x';i co„), (3.1)
(see, e.g., Ref. 26).

The later expression can be rewritten by using Eqs.
(2.16) and (2;17),

T
6Q=s dT'lim 6+I 00 & +GL~ 00;& z- .

0
(2.25)

This simple form of the thermodynamical potential is due
to the fact that the interaction H;„, contains only two fer-
mion operators. Thus the present calculation of the ther-
modynamical potential corresponds to the summation of
the ring diagrams depicted in Fig. 5, where the lines con-
necting the crosses representing the interaction with the

where for backward scattering t is off-diagonal
t&~ ——T5& ~ and summation is applied over the indices
occurring twice. The summation of the perturbation
series can be carried out exactly, because only
G p(0, 0;ico„) appears in the intermediate steps. The gen-
eral dependence of Gnp(x, x';icon) on x and x', however,
cannot be given in a closed algebraic form. Thus we solve
first the case x =x'=0 and we use that result to calculate
50 by applying Eq. (2.25).

The solution of the Dyson equation (3.2) for
G p(0, 0;i co„) may be written in the following matrix:

(o)
1

~n )]aP d . g(o T(g o g o g o)g(o) )l&n L& LR RL LL RR

(0) (0) (0) (0)

GLI
(0) x =x =0, i~„ (3.2)

where

d (icon) = 1 —T(gtt(+GRL)n=n'=0, (n&n
(o) (0)

+T (GLRGRL, GLL GzR)n=n'=0 t~n '(0) (0) (0) (0) y (3.3)

In the calculations of the different physical quantities
at finite temperature, it would be a very difficult task to
perform the energy sums. Therefore, the present work is
restricted to the zero temperature case. In this case
(P~ oo ) the sum is replaced by the integral as

The unperturbed Green's function can be calculated by in-
tegrating Eqs. (2.19), (2.20), and (2.21) with respect to the
momentum. Thus, one obtains

f dco. (3.7)

and

GRR (0&0& t con )=GLL (0 0& t co&n )

~ )n C(~n) '
2v~(co„+ b,o)

' (3.4)

First we calculate three quantities which occur in Eqs.
(2.22)—(2.25). Using Eq. (3.4) the well-known calculation
provides

lim G~~(0,0;r) = lim f dco e ' 'G~ '(0,0;ico)dcor—+ —0 w~ —0 2lT'

GLt('(0, 0;i con ) = [Gt(L'(0, 0;i con )]'
60 e'~C (co„),

2vF (co„+t)),() )
' ~

~here

2 DC (co„)=—arctan z& +g2)) j2

(3.5)

(3.6)

which reproduce the results of Ref. 26 in the limitD~ 00 ~

D Po (a=R,L, ),
2&UF 2

(3.8)

where po defined by Eq. (2.12) is the unrenormalized elec-
tron density wltich is not affected by the interaction lead-
ing to the formation of the CDW.

Considering the difference lim, o [G (0,0,~)—G~~(0, 0,~)], one can set r=0, as that quantity can be
transformed to an integral with respect to co and the in-
tegrand behaves as co at large energies. Furthermore,
both quantities in the integrand are odd functions of ~
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G (0,0;r~ —0)= (a=R,I )
2

(3.9)

Turning to the anomalous Green's function, a straight-
forward calculation leads to the identity

[see Eqs (3.2)—(3.4)], so the result vanishes. Thus the im-
purity does not affect the quantity

(3.10)

Ggg(0, 0;r—+ —0)=[Gyp(0, 0;r~ —0)]*

e llPQ

e '

27TUFgS 2
where Eqs. (3.5), (3.6), and (2.6) have been considered and
the amplitude p~ of the CDW has been introduced [see
Eq. (2.13)]. The effect of the impurity on the anomalous
Green s function is given by the following nontrivial in-
tegral,

oo

Ggg (0,0;r —0)=- d co
2&UF

e'+C(co)ho T
( 2+ +2)1/2 + C(~)

b 01+ cosy 2, C(co)+
T T

uF (~0+~')'~' 2UF
C (tu)

(3.1 1)

which is obtained by inserting Eqs. (3.3), (3.4), (3.5), and
(3.6) into Eq. (3.2).

In order to carry out analytical calculations, the in-
tegrand in Eq. (3.1 1) is approximated by choosing the fol-
lowing approximate form C,„~(co) instead of the function
C(co) given by Eq. (3.6)

where

p„(0)=s g G«(0, 0,&—+ —0)=spa,

p, (0)=s [Ggg (0,0,r~ —0)+c.c.),

(3..14)

(3.15)
fol co + coo,

C pp(co) = 2 D
(&0+~ )

]/2 for 67 ~ QPO

(3.12)

where coo 2D/m, which ——reproduces C(co) exactly in the
limits of small and large co. C,~~(co) and C(co) are depict-
ed in Fig. 6 to give a good comparison.

The accuracy of this approximation will be checked in
two different ways: (i) by calculating certain limit analyt-
ically; (ii) by numerical integration of the integral in Eq.
(3.1 1).

Using the results derived above, different physical
quantities will be calculated.

(i) Electron density at the impurity site. The electron
density at x =0 given by Eq. (2.22) and it can be split into
two parts arising from the normal and anomalous Green's
functions as

where according to Eq. (3.9) the impurity affects only the
anomalous part p~ (0), which can be calculated by using
Eq. (3.1 1). This is true only in the case of backward
scattering because the forward scattering results in a con-
tribution to G«(0, 0,&) which contains simultaneously
parts even and odd in the energy.

The phenomenon of interest is that the impurity pro-
duces Friedel oscillations in the absence of the CDW,
which hinders and modifies the formation of the Friedel
oscillations. Thus, first p, (0) is calculated without the
presence of the CDW. Using Eqs. (3.11), (3.15), and (3.6),
one gets

2s T 7TUF arctan D co
p, (0)=- dco,

m uF 0 1+(Tlat) arctan (D/to)

(3.16)
p(0) =p„(0)+p,(0) (3.13)

which has been evaluated analytically in the limiting cases
of small and large couplings. The results are

p, (0)= —s
T 4D

'7TUF VF
(3.17)

0.5-

and

D
p, (0 ) = —sgn( T)s

77UF
= —sgn( T)spo for

~

T
~

~ oo,

(3.18)

0
2 Gd

D

FIG . 6. C ( co ) function (solid line) and its approximation
C pp( & ) (dashed linc} given by Eq. {3.12).

where in the second case only the large ~ region contri-
butes to the integral. The more accurate asymptotic form
of p, (a) can be obtained by multiplying the right-hand
side of Eq. (3.18) by [1 (4uF/~T) ]. —

Thus, by considering Eqs. (3.13) and (3.18), one obtains
in the infinitely strong-coupling impurity case
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0 for T~+ oo,

spp for Tn(0)~ (3.19)
Q(0) )I

Qp
2—

which means that the repulsive impurity pushes out all of
the electrons and the attractive one fills up the band com-
pletely at the impurity site. The actual value of the latter
result is sensitive to the form of the cutoff. The weak-
and strong-coupling regions are separated by a crossover
region of intermediate strength coupling

~

T/2vF
~

—1.
The case of mutual presence of the impurity and the

CDW is more complicated. The integrand in Eq. (3.11)
will be approximated by inserting C,&z(cp) instead of
C(cp), and then the calculation of p, (0) becomes straight-
forward. The result is

~p
p, (0)= — cosy

&U~

arctanA 1 —( T/2vF )+
[1+(T/2vF) ]

where

(3.20)

2
m.Ap

2D
T+

2UF

1/2

VrAp Tcos++
2UF

r

TD arctanA 1

~'vF ~ 1+(T/2vF)'
—2

I I I

-1 0 f 2 T
2VF

FIG. 7. Electron density at the impurity site is plotted
against the dimensionless scattering strength for three different
positions of the CDW. The details near zero coupling are en-
larged.

4D tB=ln — 2, r arccos(t),
( 1 t2)1/2

with

( T /UF )cosgT=
1+( T /2vF )

(3.21)

(3.22)

(3.23)

1
p, (0)= —ppsgn(T) 1+0

4VF 4D 1+ coscp Apln +0
p T3

(3.24)

where the y-independent and cp-dependent parts are calcu-
lated in different orders in 1/T as T~+ oo. The terms
given here can be reproduced exactly using the original
form of the function C ( cp ).

The comparison of the approximation given by Eq.
(3.20) with the numerical integration of the original in-
tegral in Eq. (3.11) shows that the error drops drastically
as T increases. Namely at T =0 we have found an error
of 10%, at T/(2vF) —2 the error is about 2%, and the re-
sult becomes exact as T—++ ~.

The validity of the approximation can be checked in the
limits as T~O and T~+m.

As T~O the present result can be compared with the
exact result of Eq. (3.17). The relative error is
[In(2/n)+ 1 j/ln(2Dhp ') which is about 0.1 for
D/b. p —100.

In the strong-pinning case, T~+ao, Eq. (3.20) pro-
vides TcI

2Up

w 1 ((1 )J
as b,p/D-10 and g -0.1.

The intermediate strength coupling -region -~ T/(2vF)
~—1 is dominated by the impurity effects at the impurity

site x =0. In this region the dependence of p, (0) on the
position of the CDW cannot be approximated by a simple
cosy [in this region, t as given by Eq. (3.23) is of the order
of unity and this results in a complicated y dependence of
p, (0)].

The strong-coupling region can be characterized by an
almost completely occupied or empty electron band at the
impurity site depending on the sign of the coupling [see
Eq. (3.19)]. This behavior is influenced very slightly by
the position of the CDW [see Eq. (3.24)]. In contrast to
the intermediate-strength-coupling case, the cp dependence
of p(0) is again simply cos(y)-like.

(ii) 50 thermodynamical potential due to the impurity

I

The dependence of p, (0) on the dimensionless strength
of the impurity coupling T/2vF is shown in Fig. 7 for
three different CDW positions (values of y). The findings
can be summarized as follows.

In the weak coupling -limit [ ~
T/(2vF)

~
&&1], the

CDW is slightly deformed, thus there are only small
corrections to the cosine dependence of p, (0) on the CDW
position [according to Eqs. (3.10) and (3.15),
p, (0)= —pecos(p), see also Eq. (2.11)].

The crossover value of the coupling T„=+vrvFb, p/gD
divides the two regions in which either the CD& or the
effect of the impurities dominates the charge density p(0)
at the impurity site. Considering the realistic case
D/6p » 1, the crossover coupling strength T„ is in the
weak-coupling region
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As the force exerted by the impurity on the CDW will be
calculated from B5Q/By, therefore, the main part of the
discussion is left to Sec. V.

Using Eq. (2.25) for 5Q and the definition of p, (0) [Eq.
(3.15)], the thermodynamic potential 5Q can be expressed
in terms of p, (0) as

T
5Q(T)=s I dT'p, (0)

I r . (3.25)

The most striking feature of 5Q is that at large T,

5Q(T)= —s
I
T

I
pp+O(T ), (3.26)

which follows from Eq. (3.18).
A more accurate expression can be derived by using Eq.

(3.11) and introducing C,~„(co) instead of C(tv). The fi-
nal result can be obtained using Eq. (3.20),

4D mhp ~50
5Q = —— A arctanA — arctan

~2 2D 2D

e'+ Pi
GL~(0,0;r~ —0)= hp ——— e'~ .

sg 2
(3.28)

The main point of the present work'is that the impurity
induces the Friedel oscillations around the impurity which
is described also by the anomalous Green's function. At
small coupling, Eq. (3.11) has a simple form,

T 2D
GL~(Q, Q;r~ —0)= —p~e'" — — ln2

2vF a vF

and the CDW is only weakly perturbed.
In the case of infinitely strong coupling, the result

(3.29)

which is a correction to the result given by Eq. (3.26).
(iii) Anomalous Green's function at the impurity site

The anomalous Careen's function at x =0 is given by
(3.11), where the time difference is r~ —0 as in the order
parameter. In the absence of the impurity the anomalous
Green's function Gl~(0, 0;~~ —0) describes the oscillat-
ing charge density in the CDW,

0
t ln + (1 t ) —arccos(t) ——4D 2 1/2

mhp 2
D

GL~ (0,0;r~ —0)= — sgn( T)
2&vF

(3.30)

(3.27)
Concerning the accuracy of this expression, the discussion
following the similar expression for p, (0) [Eq. (3.20)]
holds.

It is interesting to note that in the large T limit the
term depending on the position of the CDW is indepen-
dent of T and that is proportional to —sgn( T)b,pcosy,

is nof, affected by the CDW, but is determined by the
band cutoff D, which results in an upper limit for the os-
cillation amplitude just as in the case of the electron den-

sity p(0) at the impurity site [see Eq. (3.19)].
For an arbitrary coupling strength T the co-integral in

the expression Eq. (3.11) can be approximated by intro-
ducing C,~„(co), and the final expression is

lim GL~(0, 0,~)=-
t—+ —0

~o;+ arctanA 8e'~ +
2m vF A 1+( T/2uF )2

TD
277 UF

arctanA 1

1+( T/2vF )

2b, p B ( T/2uF )
+ cos+ .

n.vF [1+(T/2uF) ]
(3.31)

This expression reflects again the competition between the impurity and CDW, as in the exp«»ions (3 20) and (3 2» «r
p(0) and 5Q.

The CDW order parameter modified by the impurity is defined as

g(x) = —gsGL~(x, x,r~ —0) . (3.32)

Using Eq. (3.3Q), the rate of the enhancement of the order parameter at the impurity site can be obtained for infinitely

strong coupling,

Q(0) D D (T~+ co) .
Qp b,p 1+in(4D/mb. p)

(3.33)

Thus the enhancement can be on the order of 20, as Db/-p1 0a0nd g -0.1 for a typical CDW. The relative absolute

value
I
&(0)/&p

I
for arbitrary coupling strength is calculated using Eqs. (3.31) and (3.32) and shown in Fig. 8 for three

different positions of the CDW. In the competition between the CDW and the Friedel oscillations the crossover occurs
at the coupling strength T„defined in the discussion of p(0). Depending on the relative position of the CDW and the

impurity and on the sign of the coupling T, the interference between the CDW and Friedel oscillations may result in
enhancement or in destruction. If the position of the CDW is such that the contribution of the Friedel oscillations and

the CDW have the same amplitude but opposite signs a complete cancellation can occur, thus b, (0)=0. T»s can happen

in the crossover-coupling region ( T=T„). As
I
T„

I
/(2v~) && 1, in the intermediate-coupling region the Friedel oscilla-

tions always dominate. However, at the impurity site,
I

b, (0)
I
/b, p && 1 and the effect of the impurity drops «f very fast

inside the region of the CDW amplitude coherence length kp=uF/b, p (see Sec. IV). The phase 4 of the perturbed order

parameter is also shown in Fig. 9 [h(0) =e'
I
h(0)

I ].
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IV. FRIEDEL OSCILLATIONS SUPERIMPOSED ON THE CDW

Until now, only the effect of the impurity at the impurity site has been studied. This section shows how the Friedel
oscillations around the impurity are superimposed on the CDW.

p)For this problem we need the unperturbed Green's function G' p(x x—',ico„) at finite space argument. Considering
Eqs. (2.19), (2.20), and (2.21), the momentum integrals can be performed and one obtains (see Ref. 26)

G ~~(x,ico„)=6 IL ( x—, tco„)=—
2 2, +sgn(x ) exp — (b,p+ co„)'/

(
2 ++2)1/2 VF

(4.1)

G Lz(x,ico„)=G FL (x,ico„)= —
2 2, /2 exp — (4p+co„)"1P1 . "1P1 . P lx I 2 2 1/2

2uF(co„+b p) uF
(4.2)

These expressions are valid in the range
~

x
~

&& uF/ D. At the atomic and at smaller distances (
~

x
~

(uF/D) the term
proportional to sgn(x) in Eq. (4.1) decreases sharply and tends to zero as x~O. Furthermore, at small distances, for
large energy co„, in addition to the decay factor exp[ —

~

x
~

(hp+co„)'/ /uF], another decay factor occurs in the expres-
psion for G ~~(x,i co), which is similar to the function C(co) introduced by Eq. (3.6). Due to the large symmetric momen-

tum cutoff pp D/vF (see——Fig. 4), in addition to the Friedel oscillations another type of rapid oscillatory term occurs.
This term behaves as sin(ppx)/ppx, which in contrast to the other terms at large distances

~

x
~

~ gp, does not contain the
exponential decay factor exp[ —

~

x
~

(hp+co„)'/ /uF]. This new term is a consequence of the sharpness of the momen-
tum cutoff. Choosing a more realistic smooth cutoff, these new terms disappear. Thus, they are considered unphysical
and will be dropped.

Using Eqs. (4.1) and (4.2) the Dyson equation (3.1) can be solved for G I1(x,x,ico„) in a straightforward manner, and
the results are

GLz(xx, ico„)=Gpss(0 ico„)+ 2 e '~"exp[ —2
l

x
I
(ap+con)'"/vF]

4vF

and

(~p+co'. ) 1+
UF

~pe ~—2'�„—6p2l 2 2

b pC(co„) T
cosy 2 2, + C2(co)

( Qp+ co„) 2vF

(4.3)

2¹

T
2VF

FICx. 8. Amplitude of the order parameter in 50 units at the
impurity site is plotted as the function of the dimensionless
scattering strength for three different positions of the CDW.
The details of the curves near zero coupling are enlarged.

FIG. 9. The phase of the order parameter is plotted as the
function of the CDW position for different values of the dimen-
sionless scattering strength.
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GLL(x,x,iso„)=GLL'(O, iso„)— 2 sinipexp[ —2
I
x 1(~o+tun )' /uF]

2Up

1

2 2 ]/2 b,oC(iu)
(b,o+co„) 1+ cosy 2,&

+(&'+ „)' ' C(to )

(4 4)

Turning again to the zero temperature case, most of the integrals with respect to co can be performed and one obtains for
Ix l

»uF/D

GLR(x,x,~~ —0)=—~p . a . xe-'& . e'++to K, 2
27TvF gs go

—tKp 2
4o

~ exp[ —2x cosh(y /go) ]+ cosy(tocosy —e''P)
coshy+ t

(4.5)

and
r

hp x
GLL(x,x,~~ —0) = — sinyto Eo 2

2&Ug ko

m exp[ —2xcosh(y/go)]
p coshy+ t

(4.6)

where Ko and K~ are the modified l3essel functions and

T/uF

1+( T/2uR )
(4.7)

and where t is given by Eq. (3.23). In the following we
will use the expansions Ko(x) = —ln(x/2) and E&(x)
= 1/x for x « 1, and the fact that the integral occurring
in the expressions above is nonsingular as x ~0.

The electron density can be obtained by inserting Eqs.
(4.6) and (4.7) into Eq. (2.22), and one gets the following
expression for the perturbation of the CDW

I

maximum at
~
T/2'

~

=1 (to ——1). Thus for larger cou-
pling, it decreases. This is special for our model, where
only the backward scattering is taken into account. In the
present case, the effective coupling to~0 as T~+ op in
contrast to the more physical model with both forward
and backward scattering where resonant scattering with
phase shift m. /2 corresponds to the infinitely strong cou-
pling.

The CDW order parameter A(x) modified by the pres-
ence of an impurity can be obtained by inserting Eq. (4.5)
into Eq. (3.32) and one obtains

p(x) —p (x)=s for uF/D « ~x
~

&&go,
to cos(Qx)
2m ix i

—lQX

b.(x)=Doe "~" P'+s gt
2 x

(4.9)

(4.8)

where only the most singular term in the variable x is
kept, corresponding to the well-known Friedel oscillations
around the impurity. It is interesting to note that accord-
ing to Eq. (4.8) the charge density around the impurity

~

x
~

&&go is just the sum of the contributions corre-
sponding to the CDW and to the Friedel oscillations. It
can be seen from Eqs. (4.5) and (4.6) that there are further
interference terms proportional to tob;o, but they are less
singular in x at small distances. For intermediate
strength couplings at small distances, the Friedel oscilla-
tions dominate the CDW. Their amplitudes become com-
parable at a crossover distance xo gotogs/2. Beyo——nd
this distance, the CDW has the larger amplitude. Furth-
ermore, at distances outside of the coherence length

~

x
~
)g'o, the Friedel oscillations cannot be formed, be-

cause, in the case of the free-electron gas, at such dis-
tances the Friedel oscillations that builds up of electron-
hole pairs with energies smaller than the gap Ap, which
are not available in the presence of the CDW. Thus the
Friedel oscillations penetrate into the region

~

x
~

~ go by
tunneling, which is manifested by the exponential decay
of the modified Bessel functions for large arguments.

It is interesting to mention that the amplitude of the
Friedel oscillations as a function of the coupling T has a

which is valid in the interval uF/D &
~

x &jo. The func-
tion b, (x) has a zero at x =+xo but only for special posi-
tions of the CDW, namely, at y=m for T&0 and at y=0
for T &0.

V. DENSITY OF STATES AND BOUND STATES

The interaction of the electrons with the impurity
modifies the electronic density of states. Furthermore, as
has first been pointed out by Gor'kov and Dorokhov,
bound states may appear in the CDW gap localized
around the impurity. Recently, Nozieres called the at-
tention to the appearance of a bound pair of states above
and below the conduction band.

A. Density of states

The electron density of states at position x is given by

p(x;~) = —— »m Im(GRR+ GLL +GRL+ GLR )x;isa„.
1T l co& —+OP+ l 5

(5.1)

In the case of no impurity, the density of states is of the
BCS type, and can be obtained by inserting Eqs. (3.4) and
(3.5) into (5.1), and the result is
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I
~+bpcos(gx —y)

(p) if»& l~ I
&~p

p x;co) = muF (tp —Qp)

0 if Iso
I

&b.p,

where there is a (cp —b,p)
'/ singularity at the edge of the gap.

In the presence of the. impurity, the density of states is obtained at the impurity site by considering Eqs. (3.2)—(3.5)
and Eq. (5.1)

p(0;co) = lim Im
1

7TUF I co& ~co+ l5

60coscp+ l co~
C -+

(g2+ 2 )1/2

60Ccos+1+ +
V (

2 ++2)1/2

TC
2UF

TC
2UF

(5.3)

As we are interested in the region
I

co
I
«D, we may take C(co)=1 [see Eq. (3.6)]. The final form obtained for

I
co

I
& b.p by analytical continuation is

p(0;~) =
KUF T1+

2UF

1 —( T/2VF )
co+ 60cos+ 1+( T/2uF )

2
2 2 1/t'2 0+ 2 2 i/2(tp —&p)

'2 (5.4)

The main new feature of this result is that the density of states is rounded in the region
I

co
I

& b,p, as
p(0;tp)-(to —b,p)' . At the points co=+A,p of the previous singularities p(0; I

ip
I
=b.p) becomes zero (see Fig. 10). This

formula shows also that in the case of no CDW the density of states near the Fermi level
I

to
I
«D is always suppressed

by the impurity as p(0, co)- [1+(T/2vF) ] '. That is a consequence of the formation of the bound state outside the con-
duction band, which will be discussed at the end of this section.

B. Bound states in the gap

Using Eq. (5.3), the density of states in the gap is obtained by analytical continuation,

Z+5(tp+tvp) if T cosy & 0,
p 0;co

0 if Tcosy&0,

for
I

co
I

& b.p, where the energy of the bound state cop ls

and the strength of the pole is

~p It
I

1 [1—(T/2uF) ]cosy&

1+(T/2VF) 2 2I[1 (T/2uF) ]—+[( T/VF)si nq] I'

(5.5)

(5.6)

(5.7)

The pair of bound states is obtained only if the perturba-
tion of the electron gas by the impurity is out of phase
with the unperturbed CDW ( T cosy &0). The positions
of these bound states are symmetric with respect to the
Fermi level, but their weights are different. For weak
coupling

I
T/2vF

I « 1, the binding energy goes as
m0-t and Z+-t. In the special case t = —1 the two
bound states collapse and they are at the Fermi level
co0——O. For even stronger coupling, the energy of the
bound state co0 goes to the continuum again which might
be a special consequence of the backscattering. The ex-
pression in the large parentheses on the right-hand side of
Eq. (5.7) is always less than unity, thus

Z+ (2 (5.8)
1+(T/2uF ) gp

where the BCS length is introduced.

The extension of the wave function of the bound state
in the real space is estimated by studying the density of

' states in the gap far from the impurity using Eqs. (4.3)
and (4.4). The dependence on x arises from the exponen-
tial factor, which after analytical continuation has the
form

exp[ —2
I
x

I
( b, —top)

' /vF ]=exp( —2
I
x

I I
t

I
/4 p)

where t is given by Eq. (3.23), and gp is introduced and
Eq. (5.6) is taken into account. Thus the size of the
bound-state wave function is r p gp/ I

t I, which is ——larger
than the BCS length gp as

I
t

I
& 1. This result is

coherent with the weight factor Z+ of the bound state at
x =0, as the amplitude of the wave function at x =0 is
inversely proportional to the size of the state [compare
with Eq. (5.8)].
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Q {0;M)JfyF
b E.q. (3.26) is exactly the energy of th b d
which can b

e oun state coo,
can be seen by comparing Eq. (5.9) with Eq. 2.12.

VI. PINNING FORCE

I
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I

/

T
/—=0

2vF

YF
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impurity site at =3m/4 f
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e impurity-
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ity at energies co =+5 .

- ype singular-
CO = O.

C. Bound state outside the conduction band

Nozieres ointed
4

states which occur
p

'
out the existence of a pair of b doun

ccur for arbitrary values of the cou lin
strength. For weak couplin these bo

e coup ing

ear e conduction band, and therefore their behavior is
sensitive to the band and th ff h . re

~ ~ ~ ~ ~

striking limit is the stron -cou ling-coup ing case, where our result
must e in ependent of the detailed features of the model
because the bindin ener
t e andwidth.

'
g nergy can be large compared with

The energy of the bound state co i d
d f o E . (5.3)

t e approximation C(co„)-(2/n )(D/~„o«co

T 1—D.
UF 77

(5.9)

In th e case T~ —~ (T~~) the densit of sta
side the conductio
F il I h f

'on an is lar e onl bel
e; us, e.g. , or T/(2UF) « —1

p(0;ai &( —D)) = 5(a)+
~
TD/~Dr

I

D
7TUF

Furthermore, according to E . (5.4) h
'n e conduction band disappears in the lar e-T lim'

'

y si e, all of the density is concentrated
'

pied) and gives the total electron density at the im
q. . . In this consideration, the correct

analytical continuation of (b, +co "a 0 co„' is important when
q. . is evaluated. It can be shown that the

1 1

(4.3) and (4.4) . Fi
n y ocalized on the impurity sit L Esi e Lsee qs.
]. mally, the interaction ener 5Qrgy given

(6.3)

is expression can be sirn lified es
that the ele

simp i ie essentially by assuming
e e ectron gas is perturbed onl in

the Fermi ener Thergy. us, in this case,

+app
= (+R +I. )

2
(6.4)

is a very good approximation for P and is widel us
the case of a one-dirnen

'
1

an is widely used in
- irnensiona e ectron gas.

The interaction between the CDW
result

e and the impurities
ults in a force acting on the CDW. The force

on the positions of. tp
' of. t"e impurities relative to the CDW

As far as the CDW o
' '

position can be characterized b onl
a single phase, the foree orce depends on the quantities

; —y=y; —y, where i labels the impurit 'th
t' R d = Rp; =QR;. The position of the CDW can b
characterized by a sin le

' '
eg e phase y only if the size of the

considered is smaller than the Lee and Ri
oh 1 thg & ph which is much larger than the 8CS

amplitude-coherence length (in the cin e case of the weak pin-
ning &ph~~go as /pi, ~10 cm and g ) 10
they are corn arable in

o) cm, but
p ra e m the case of strong pinning. As we

ave seen in the previous section ea
e well inside the range of the length go. If the

distances between the impurities are smaller than
by the impurities are not additive, be-

cause the Friedel oscillation-type deform t'e ormations overla

clusters of i
in e energy. In this case

avoid these difficulties, only a sin le im uri
e were completely rigid, then the force

would be proportional to sin(y; — ) ' Inho, th CDW '
d fo

p sinusoidal dependence might be
strongly modified. For the sake of simplicity, the im uri-
ty is considered with position X =0 h

i Therm
e pmning force can be defined i t d'ffin wo i erent ways.

(i) hermodynamical perturbation theor h
S III to 1 1 to ca culate the interaction energ 0( ) b-

and the impurity [see Eq. (3.27)j. The
force can be defined as the derivat' f h'

yive o t is energy Q(
with respect to the position of the CDW, thus

BQ
+ih = —Q

Btp
(6.1)

where Q is the proportionalit factori y actor between the position

due to the impurit
ange o t e momentum P carried b t

puri y
y he electrons

'=(") (6.2)

where the total momentum P f ho t e electrons is

P = gkakak .
k
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In this section we consider the first definition and in
Appendix 8 show the equivalence of the two definitions
discussed above, where complete agreement has been
found by calculating the second and third orders in per-
turbation theory. This complete equivalence, however, is
somewhat surprising, as P,„~ rather than the exact defini-
tion (6.3) but has been used for the total momentum P. In
order to clarify this point, we also show that for the
thermal average of BP,~~/Bt, the identity

(6.5)

holds to all orders in perturbation theory. This result
strongly indicates that in the backscattering model, the
application of the approximate form P,z& leads to exact
results.

In the following, after proving the identity (6.5), the ac-
tual expression of the force is calculated by using the first
definition.

The operator BP,~~/Bt is calculated by using the Ham-
iltonian (2.16), and one obtains

Bt
= —i (PH) =QT[g~ (0)QL, (0)—pl. (0)g~ (0)],

(6 6)

which is similar to the accelerator operator introduced by
Barnes and Zawadowski. ' The thermal average of this
expression can be given in terms of the anomalous Green's
function (see Sec. III) and the result is

(
Pvv =iQs [GI~ (0,0,r~ —0) —G~l. (0,0,&~—0)],

th

(6.7)

where the spin degeneracy is also taken into account. On
the other hand, BA/Bcp can be calculated on the basis of
Eq. (2.25) of A. Inserting the expressions (3.2) and (3.3)
the integral with respect to T' can be performed exactly in
Eq. (2.25), which yields the right-hand side of Eq. (6.7).
Thus (6.5) holds.

The pinning force F,q given by Eq. (6.1) can be calcu-
lated by using the expression (3.11) for A, and one obtains

BQ T C(~)~o(~o+~') '"
F,~ ———Q = —sQ sing dao

By v o 1+(T/v )cospC( )b, (5 + )
'i +(T/2u ) C ( )

(6.8)

where the function C(co) is defined by Eq. (3.6). The integral with respect to co can be carried out in the weak- and the
strong-coupling limits, and the results are

~0—Q sing if
7T V g 2VF

(6.9)

Qs hosiny sgn( T) if (6.10)

In both cases, the pinning force shows a sinusoidal sing dependence on the position y of the CDW. This form is strong-
ly modified in the intermediate strength coupling region. In order to show that, the function C(co) is approximated by
C,~~(co) as given by Eq. (3.12), and the integral can be performed. The result is

T
F,I, ———Qs b,o sing

'1TVF

arctanA+
1+ T

2VF

2, iz arccos(t)
(1 t')'~'—

(6.11)

where the notations are introduced in Sec. III and the er-
ror due to the approximation in C(co) has also been dis-
cussed there. The dependence of the force on the coupling
strength T is shown for three different values of cp in Fig.
11. The dependence on cp is clearly not sinusoidal, as the
force for y=~/6 is different for y and m —y as is shown
in Fig. 11. The deviation from the sinusoidal form is the
largest around the coupling strength

~

T/2vz
~

—1, where
the amplitude of the force shows a maximum. The posi-
tion dependence of the force is shown in Fig. 12 for an in-
termediate coupling T/2u+-0. 9.

The origin of the large deviation from the sinusoidal
form can be traced back by noticing that the denominator
of the integrand in Eq. (6.8) has a zero at co =0 for the pa-
rameter values T/2u~= 1 ( T/2u~ —1), y=m (@=0)——

and the integral becomes divergent. In the region around

these parameter values the integral is anomalously large.
FinaHy, we comment on the position dependence of the

force Fu, (p) and the potential Q(y). In the intermediate-
strength-coupling region T/2u~-l, the force is linear
around the stable equilibrium position y=O of the CD%'.
The interval in which the force is linear (see Fig. 12) or
the potential is quadratic (see Fig. 13) is larger than in the
case of a sinusoidal potential. Thus the renormalized po-
tential has a stronger resemblance to a periodic quadratic
potential than to the sinusoidal potential. Furthermore,
the top region at the maximum is narrower. For negative
coupling T/2vI;- —1, the stable equilibrium position is
at p = +m, but the main features are unchanged.
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FIG. 11. Dependence of the force on ton the dimensionless
th at three different positions of theimpurity-scattering streng a

for =m/6 andCD&. The difference between the curves for y =m an
f ture of the thermo-qo=5m. /6 demonstrates the anharmonic .eatu

dynamical potential.

VII. CLASSICAL EQUATION OF MOTION
%'ITH A DEFORMABLE CD&

I h' tion we generalize the classic
'

al model for thent issecio
he CDWmotion of the CDW. In the original model, the

al obect and its position was
characterized by a single coordinate x =Q y. is o-

in a eriodic potential with periodicity
A, =2 ~~ ' which was representing the interac ion

n the CDW and the impurities. As the p ahe hase of thetween t e
r onl a domain of size ofCDW can be deformed, however, on y a

can be described by t ethe phase coherence length (ph
classical model. In this case the potential arises. from t e
impurities in suc a omain.

the domain is very large, there is a argeities in e
' t rference among the forces exerte yd b the impuri-tive inter erence

homogeneous average over the imp
'

y pim urit osi-ties, as a omoge
hus onl the fluc-1 ds to complete cancellation. Thus, on y

~ ~

res onsible for atuations in the impurity positions are resp

FIG. 12. The dependence of the forcee as the function of the
lue of the coupling strengthCDW position at a typical value o

T/2DF ——0.9.

FIG. 13. Effective potential (solid line) acting on the CD& is
lotted as the function of the CD& position at a typical value of

h T/2v =0.9. For comparison a quadraticthe coupling strengt vt; ——

line) otential fit-(dotted-dashed line) and a sinusoidal (dashed line) potentia it-
ted to the effective potential at @=0are also shown.

f The osition of the potential in real space isp
determined y e pb th hase y =QR; of those impu

' '

nds to the largest fluctuation in the distri-

similar to one due to a single impurity, u
is proportiona1 to the amplitudde of the fluctuations in t e

to X , w ereimpuri y pit hases, thus it is proportiona
ain. In theis the number of impurities in a doma'

original classica1 mo e e pg' '
d 1 th eriodic potential was either

or arabolic. In the present case according top
the discussion at the end of Sec. VI an ig. , e
of the potential is strongly perturbed yb the interaction,
and it is between a sinusoidal and and quadratic one.

or a domain can beThe classical equation of motion or
written as '5, 6

(7.2)

k- d strong-coupling cases, the orce is
sinusoidal in a fairly good approximation [see qs.
and (6.1D)], thus

F= —aQ b,o5 sin&p, (7.3)

I +y = —el' +F,x dx
(7.1)

dt

where m is re ate o
" ', ' rdi-1 d t the Frohlich mass, x is the coordi-

/Q is the damping, E is the electric field,nate x=y/, y is e a
Fis ro or-is t e num er oh b of electrons in the domain, an

'
p p

VI thus1 t . the force calculated in Sec.tlona 0
Q(BQ/8 ), where a is a proportionalitynalit factorF=—a

Assumindepen ing on e
'

p a' the impurity distribution, etc. '
g

that the motion o t ef h CDW is overdamped the mertia
case theterm is roppe in ma d n most of the works. In this case t e

equation of motion for the phase is

d . Q 1 2 550(y)¹E—aQ— —
dt y y
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where 6 is the following parameter:

7TVFg
if « 1,

2VF

(7.4)
sgn( T)s if ~~ 1,

2UF

and for the sake of brevity, the equilibrium position deter-
mined by the impurity distribution is taken to be at y=0.

The solution of Eq. (7.2) with the force (7.3) is

dy eXQ E &r—
if E&E~,

dt y E Eicos(—toot)
(7.5)

where

Er =~o
eX

(7.6)

is the threshold field above which periodic motion exists
and the frequency too corresponds to the periodicity of the
motion of the classical object,

' 2 1/2

(7.7)
T

QeXo=
y

As it has been shown previously, ' ' the motion in the
periodic potential becomes very strongly anharmonic as
the electric field approaches the threshold field Ez. The
Fourier expansion of the solution of Eq. (7.3) is

2x =Io+ g I„cos(ntuot)
dt

(7.8)

where

en (Ep Ep ))/p
y E~ E

1/2 n

(7.9)

The ratio of the subsequent harmonics I„+&/I„ is a
measurable quantity and the present model gives

2 1/2

—1 (7.10)E

for the weak- and strong-coupling limits.
Considering the intermediate-strength-coupling region

around T/2uF -1, the equation of motion (7.2) cannot be
solved by analytical methods. Using the numerical solu-
tion of that equation the Fourier coefficients can be deter-
mined numerically. The ratios of the subsequent harmon-
ics are shown as a function of n for different CDW
current in Fig. 14. It turns out that the character of the
solutions in the intermediate-strength-coupling region
T/2vF —1 is not very different from the weak- and
strong-coupling results, in spite of the strong anharmoni-
city characterizing the pinning force. The only significant
difference is in the frequency spectra of the ratios of the
subsequent harmonics, which is no longer independent of
n, as is indicated by Eq. (7.10), and they are enhanced at
larger electronic fields. This enhancement does not mean,
however, that the intensity of higher harmonics could

FIG. 14. Ratio of the intensity of the subsequent harmonics
in the narrow band noise I„+&/I„ is plotted as the function of n

for different values of the CDW current i 0 (circles), 3 io

(crosses), and 5io (triangles), where io is an arbitrarily chosen
current flow using an electric field just above the threshold field
E&. The value of the dimensionless coupling strength is
T/2u~ ——0.8.

exceed the intensity of the first one. The temperature
dependence of these ratios will be shortly discussed in the
Conclusion.

VIII. CONCLUSION

Bardeen" has pointed out that quantum phenomena
might play an important role in the dynamics of sliding
CDW. The subject of the present paper is the quantum
corrections to the distortion of the CDW around a single
impurity, thus all the terms of the perturbation series in
the backward scattering by an impurity are summed up.
The results obtained have been interpreted as a competi-
tion between the CDW and the Friedel oscillations formed
around an impurity. These calculations are the extension
to all orders in the perturbation series of the previous re-
sults derived by Barnes and Zawadowski, ' using the anal-
ogy with the Josephson junction. The results presented
here reproduce those obtained previously in second order
perturbation theory.

The scheme of the present paper is that the interaction
leading to the formation of the CDW is treated in the
mean-field approximation, which is at first taken as in the
absence of the impurity. This approximation is checked
in Appendix C. There it is shown that the renormaliza-
tion of the mean field by the impurity is equivalent to the
adjustment of the impurity potential by approximately
10%. Thus the qualitative features of the present results
are not altered.

The method applied is the equilibrium thermodynamic
Green's function technique. For comparison the time-
deperident perturbation theory is also used, with adiabatic
switching of the impurity potential as has been done in
the previous work. ' The equivalence of these two
methods is checked in the first three orders of perturba-
tion theory.

In the model treated here, the electrons are strictly one
dimensional and have linear dispersions. The latter re-
striction does not affect the results essentially. Further-
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more, in the impurity scattering, only the backward
scattering is kept. In a realistic case the forward scatter-
ing is also important. The role of the forward scattering
is under study and that will be presented elsewhere.

The calculations are performed at zero temperature to
keep the calcula, tions as simple as possible. The previous
calculation based on the singularity to the Josephson junc-
tion has been carried out, for arbitrary temperature how-
ever. ' The CDW acceleration due to the impurity ob-
tained previously goes to zero faster than the CDW ener-

gy gap in second order in the perturbation. These results
indicate that all of the higher-order corrections tend to
zero faster than the first order classical term as the tem-
perature approaches the CDW critical temperature T, .
Thus, in the vicinity of T„ the classical theory is correct.
It is worthwhile to mention the well-known result that the
size of the Lee-Rice domain inside which the phase of the
CDW is coherent, becomes infinitely large as the critical
temperature is approached.

The one-dimensional (1D) nature of the model treated
here does not affect most of our results as far as the phase
of the CDW is slowly varying outside the region of the
Friedel oscillations. Considering, e.g., the charge density
at the impurity site, the Green's function G(0,0;ice„) with
space coordinates taken at the impurity site occurs, which
is not very sensitive to the 1D nature. The Friedel oscilla-
tions and, especially, their extension in the perpendicular
direction are very sensitive to the three-dimensional (3D)
character. The region where the Friedel oscillations dom-
inate the CD%' has a cigar shape. The situation is, how-
ever, completely different in the case of a very strong im-
purity. In the strictly 1D case, the impurity divides the
CDW into two parts and the phases of these parts are ar-
bitrary on the two sides of the impurity. The electron can
pass the impurity only by tunneling. Furthermore, the
tunneling of an electron-hole pair through the barrier cou-
ples the two CDW's on different sides and there is a cou-
pling energy similar to the case of Josephson junctions.
The situation is very different in 3D, because a single im-
purity cannot divide the CD%' into two pieces, thus that
can only distort the CDW strongly around the impurity.

All of our results are expressed in terms of the dimen-
sionless backscattering strength T/2uF. Taking a square-
like potential barrier with height V and thickness d
(atomic distance & d & go) the order of magnitude of the
backscattering amplitude can be estimated as T- Vd, thus
T/2uF-fi 'Vd/vq —V/D. Thus the weak- and strong-
coupling terminologies are very close to those used by Lee
and Rice.

Our results concerning the Friedel osciHations superim-
posed on the CDW can be summarized as fo11ows.

(1) If
~

T/2v~
~

&&1, the CDW is only weakly per-
turbed.

(2) If
~

T/2u~
~

&10 ', the Friedel oscillations have a
larger amplitude at the impurity site than the amplitude
of the CDW. Furthermore, the phase of the oscillations
around the impurity is locked to the impurity.

(3) If
~

T/2uF
~

—1, the Friedel oscillations even affect
states at the band edges.

(4) If
~

&/2u~
~

&&1, the top of the Friedel oscillations
is chopped off at the band cutoff.

In the realistic cases
~

T/2uF
~

is not extremely weak;
nor is it likely to be larger than unity. Thus,

i
T/2uF

i
-0.1—1.

The effect of the impurity on the density of states at the
impurity site is to destroy the singularity at the edge of
the gap, making it smoothly rounded, as is shown in Sec.
V. If the Friedel oscillations are out of phase relative to
the CDW, then a pair of bound states occurs in the gap.
In the strong-impurity case, the CDW is strongly de-
formed and the Friedel oscillations are never out of
phase. Thus the bound states are not formed. In the case
of weak impurities, the relative impurity phase
tp; =QR; —y is a random variable and the energies of the
bound states depend on the position of the impurity rela-
tive to the CDW. Considering the density of states at the
impurity sites if the average is taken over the impurity
phase y;, then one finds that some parts of the gap near to
the gap edges are filled with states. As the extension of
the bound states in real space is at least the amplitude
coherence length go, we predict that the gap edges are
smeared out if the averaged impurity distance is compar-
able to or smaller than the coherence length $0. That
must be seen in the optical or tunneling experiments.
The bound states happen to be very similar to the two
proton bound states with zero total momentum in super-
fluid He, ."

Outside the conduction band another pair of the bound
states always occurs for arbitrary coupling T If the c.ou-

pling is weak
~

T/2v~
~

&&1, then these states are sensi-
tive to the details of the band structure near to the energy
cutoff. In contrast to the bound states in the gap, these
bound states are well localized around the impurity site as
their binding energy is large. The existence of these
bound states is independent of the details, however, e.g.,
the bound states exist for a tight-binding band with even
larger binding energy.

The Friedel oscillations are formed well above the
CDW transition temperature. The occurrence of the gap
below T, appears as a cutoff in the long-distance tail of
the Friedel oscillations at distances greater than the am-
plitude coherence length go. As the gap increases, the
Friedel oscillations become more localized in real space.
Furthermore, it is shown [see Eq. (4.8)] that to a good ap-
proximation, inside the amplitude coherence length, the
Friedel oscillations and the CDW are only superimposed.
The crossover distance xo, where the Friedel oscillations
and the CDW have comparable amplitudes, is approxi-
mately xo & 10 'go for a realistic case.

The NMR and x-ray scattering are the appropriate
tools to study the Friedel oscillations. In principle, the
Friedel oscillations appear as a short-range order in the
x-ray diffraction pattern. In the case of magnetic impuri-
ties, ' these oscillations are momentarily magnetically po-
larized. Thus they must show up in the magnetic form
factor of the impurity, which can be studied by incoherent
neutron scattering.

The force exerted by the impurity is calculated as the
derivative of the interaction energy with respect to the
CDW position [see Eq. (6.1)]. On the other hand, Barnes
and Zawadowski have calculated the acceleration of the
CDW using a time-dependent technique. ' The results
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obtained by these two different techniques are compared
in Sec. VI and Appendix B, and through the first three or-
ders of perturbation theory, complete agreement is found.
Concerning the force F, the main result is that it depends
on the CDW position approximately in a sinusoidal form,
and strong deviation from that occurs only in the range

The deviation from the sinusoidal form of the force has
observable consequences when dc and ac voltages
[V=Vp+ V~sin(cot)) are applied simultaneously to the
sample. Varying the dc voltage Vo causes the frequency
mp( Vp) of the generated narrow band noise changes also.
At the voltages Vp for which the ratio of the generated
narrow-band noise frequencies to the frequencies ~ of the
applied ac voltage is a rational number, so called Shapiro
steps ' ' occur in the dc current as a function of the dc
voltage Vp. Theoretically, if the equation of motion given
by Eq. (7.2) is overdamped and the force is sinusoidal,
then the Shapiro steps occur only at harmonics and not at
subharmonics. As is shown in Sec. VI the force is never
exactly sinusoidal. Therefore, the subharmonics must ap-
pear, in agreement with the experiments.

Concerning the generated narrow-band noise discussed
in Sec. VII our results and their consequences can be sum-
marized as follows.

The first harmonic with the so-called washboard fre-
quency coo, predicted by the classical theory, must always
be present.

There are contributions to the harmonics of higher or-
der due to the anharmonicity of the effective potential de-
rived in Sec. VI.

Approaching the critical temperature of the CDW the
contributions to the harmonics of higher order arising
from the anharmonicity of the effective potential gradual-
ly disappear and near to the transition temperature the
model with the sinusoidal potential becomes more accu-
rate. In this case, the ratios of the intensities of the har-
monics are given by Eq. (7.10).

In the case of backscattering and single impurities in
the range of the BCS coherence length, the intensities of
the harmonics are gradually decreasing with increasing n
(J )&,~)).

The case with several impurities inside the BCS coher-
ence length is not considered, but it is very likely that it
does not change the main behavior described above.

The forward scattering however, plays, an important
role, and preliminary studies shows that the effective po-
tential may be further modified and in some special cases
the second harmonic might be larger than the first.

Magnetic impurities due to the exchange coupling with
the conduction electrons contribute to the intensity of
higher harmonics, but not to the first one. '

There has been some speculation concerning experimen-
tal data that the lowest observable harmonics might have
the frequency twice the washboard frequency co=2mo. '

This speculation is not supported by the present study. In
the case of (TaSe4)2I, however, the intensity of the second
harmonic I2 exceeds the intensity of the first I& at low
temperature. Furthermore, as the critical temperature is
approached, the intensity of the second harmonic I2 de-
creases faster than that of the first I&, and the first be-

comes the largest. This behavior is consistent with the
assumption that the large second harmonic contains quan-
tum correction and that may be due to magnetic impuri-
ties or due to the presence of forward scattering. In our
opinion it would be worthwhile to carry out further exper-
iments in these directions, especially with magnetic im-
purities.

Summarizing the applicability of the present theory, the
basic condition is that the CDW phase varies slowly in the
Lee-Rice domain and stronger phase deformations occur
only in the immediate vicinities of the impurities. In this
case the amplitude of the CDW order parameter is almost
unperturbed except by the Friedel oscillations around the
impurity. Under this condition the classical deformable
CDW theory developed by Efetov and Larkin and by
Fukuyama, Lee, and Rice can be applied on the length
scale larger than the amplitude coherence length gp, but in
order to take into account the effect of Friedel osci11ations
around the impurities, an effective potential must be in-
troduced for the impurity-CDW interaction in the
Ginzburg-Landau equation. However, if the phase of the
CDW changes rapidly near to the impurity but outside
the region of the Friedel oscillations x &xp, then the am-
plitude of the CDW must be reduced substantially around
the impurity. For example, if the phase of the CDW were
opposite on the two sides of the impurity just outside the
region of the Friedel oscillations (xp(x (gp), then the
CDW amplitude would vanish at the impurity site. This
phenomenon is related to the ideas of Gor'kov' and of
Ong, Verma, and Maki, ' where phase-slip centers or vor-
tices are discussed, and in an intermediate region the nor-
mal phase is formed.
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APPENDIX A

In Appendix B the time-dependent perturbation theory
with adiabatic switching will be applied. The correlation
functions appearing could be expressed in terms of
Green's functions with several time arguments, but their
analytical properties had to be taken carefully into ac-
count. In order to avoid these difficulties, the correlation
functions will be calculated directly using the explicit
form of the ground-state wave function. The ground-state
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I /pL iyR
&k, ~+uke &k+g, ~ (A 1)

wave function
l
0) is given in a form similar to the BCS

wave function and the electron creation and annihilation
operators will be expressed by quasiparticle operators of
Bogolyubov type. In this appendix, the ground-state wave
functions and the quasiparticle operators for the CDW
will be listed.

The CDW is considered in mean-field approximation
given by Eqs. (2.2) and (2.3). The Hamiltonian can be di-
agonalized by introducing the following quasiparticle
operators,

uk, ~k+Q, II a —k', lo) .'«I. ++~) t
k' {&0),o.

k'~k

(A 1 1 )

Finally, the expectation value of the electron density
operator p(x) = g g (x)g (x) in the ground state is

p'o'(x) =s g (uk+vk)+2s g ukvkcos(Qx —y)
k (&0) k (&0)

(A12)

f3», uke ~k, vke +»+{?,

where uk and vk are real and satisfy the identity

(A2)

which must be compared with Eq. (2.11) [see Eqs.
(A5)—(A7) and Eq. (2.5)].

APPENDIX 8
2 2

uk, cr +vk, 0. (A3)

E(k) = ho+
2

(A5)

y~ and yL are the phases of gauge transformation given
by Eq. (2.10) and the momentum k runs over the left-
hand side of the momentum space —2k+ & k &0. For the
quasiparticle operators a k and pk, the Fermi commu-
tation relations holds.

The diagonalized form of the Hamiltonian (2.2) is

HcDw= QE(k)(Pk, Ok~+a k a k +1), (A4)
k, a

where the quasiparticle energy is
2 1/2

The force exerted on the CDW by the impurities has
been calculated by Barnes and Zawadowski' using the
linear-response theory where the interaction is switched
on adiabatically. In their calculation the force is calculat-
ed up to second order of the perturbation theory and this
method can be extended to higher orders. On the other
hand, in Sec. VI the force is derived from the thermo-
dynamical potential which is calculated in all orders of
the perturbation theory. In order to show the equivalence
of these two methods we are going to calculate the force
in third order of the electron impurity interaction T by
using both methods.

The electron-impurity interaction can be expressed in
terms of the quasiparticle operators introduced in Appen-
dix A and one obtains

and uk and vk are defined as

1/2
1 ~k —~k+g

uk ——— —1—
2 2E (k)

(A6)

R;~p =ZTs cos+ g ukvk
k (&0)

k, k', o.
gl(k k )(Pk, Pk', +a —k, W —k',

and

1 ~k —~k+g
2 2E(k)

1/2

where

+ g gq(kk')a k p» +cc. (81)

and in case of linear dispersion ek ——(
l
k

l

—kF)VF the
term ek —ok+~ has- a simpler form 2vFp where
k = —Q/2+p.

The ground-state wave function
l
0) has the following

simple form

g, (k, k') = Te'"vkuk + Te '~ukvk,

gp(k, k') = Te'~ukuk Te '~V»V/, . —
(82)

(83)

The first term of the Hamiltonian (81) reproduces the
result for the interaction energy in first order

lo)= II
k (&0)

(A8) TLeeEPF (y) = — cosy .
77UFg

(84)

where
l
0) is the vacuum state. This ground-state wave

function describes the free CD%' by the build-in phase
coherence between the states with momenta p +Q/2 and
p —Q/2, furthermore, these state cannot be occupied
simultaneously in the ground state.

The actions of the quasiparticle operators on the
ground state are

The corrections to the interaction energy are deter-
mined by calculating the thermodynamical potential,

Ml = ——((S),—1),

where

a, .l
o)=pk.

l
o)=o,

-'-.,-l»= H --..-lo).
k' ( &0),o.

k'~k

(A9)

(A10)

PS = T, exp — H; ~(r)dr (86)

and, in terms of graphs, the index c means that only the
connected diagrams have to be calculated. Using the
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quasiparticle representation of the electrons, the thermo-
dynamical potential 5Q can be calculated in the limit
P~oo in a direct way by taking the expectation value of
the S matrix for the ground state and the integrals with
respect r can be carried out exactly. The results of these
calculations are the following in the second and the third

I

orders of the perturbation expansion:

T2 1 —[5()/E (k)E(k')]cos(2y)E(2)(~)
2 k k, E(k)+E(k')

and

(87)

E(3)(+) 1 1 1

2 k k k E(k)E(k )E(k ) E(k)+E(k ) E(k)+E(k )

1 1 1

E(k") E(k)+E(k") E(k')+E(k") (88)

Following the method presented in Sec. VI the force can be calculated as the time derivative of the total momentum P
of the electrons which is approximated by P,~~ introduced by Eq. (6.4). The expectation value of BP,~~/()t, at a given
time t, can be expressed by the evaluation operator U(t) as

0 U~t Ut 0
BP,

dt g dt (89)

where
t

U(t) =T,exp i J —H; ~(t')dt'

The expression of Eq. (89) can be written as

( 0 0 +i J dt'(0~ [H; „(t'),dP/dt] ~0)dt g dt 00
J

(810)

+ f dt' J dt "(0
~ [[H;,(t'), 8 P/Bt], H;, (t")]

~

0) . (811)

The operator r)P,~~/(3t given by Eq. (6.6) can be expressed in terms of the quasiparticle operators as

&pp 2TQs sin%'g ukvk+iQ g Ig3(k k )(~—kW —k', +13k 13k ) [g4(k k )(t kPk'cr c—c ] I

~ I

at k k, k', o

where

g3 (k, k '
) = Te ' "vk uk Te ' ~uk vk'—

g4(k, k') = Te'~ukuk + Te

A straightforward calculation leads to the following result:

(
1

(812)

(813)

(814)

3 hP 1 1

k k k" E(k) E(k')
1 1 1

E(k") E(k)+E(k") E(k')+E(k")

") and (81S) shows that the identity

(81S)

where the denominators E(k)+E(k") and E(k')+E(k
are the energy denominators of the perturbation theory
and the expressions in front of them arise from the coher-
ence factors g;(k, k') (i =1—4). The time-ordered dia-
grams corresponding to the process considered here are
shown in Fig. 15. The third-order diagram is just a
correction to the second-order process in which one of the
excited quasiparticles is scattered once more on the im-
purity.

The comparison of the results given by Eqs. (87), (88),

BP happ (816)

holds at least up to the third order in coupling T. This
result supports the idea discussed in Sec. VII, that the cal-
culations of the force E by switching the interaction adia-
batically and by deriving from the static energy lead to
the same expression.

T b. sin 3 s 1 1 1

„k.„- E(k)E(k')E(k") E(k)+E(k') E(k)+E(k")
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BP
imp p t

H imp

Himp {a)

time

FIG. 15. Diagrammatic representation of the perturbation
expansion of the time derivative of the total electron momentum
P. The crosses represent the electron impurity interaction.

(b)
V Vn n

APPENDIX C

The basic approximation of the present calculations is
that the interaction responsible for the formation of the
CDW is taken into account in a mean-field approximation
where the mean field bo(y) in Eq. (2.2) is not renormal-
ized by the impurity scattering. The typical mean field
diagram is depicted in Fig. 16(a) and the simplest renor-
malizations due to the impurity is shown in Fig. 16(b).
Such renormalizations occur as a renormalization at the
order parameter b, (r) which has been calculated in Sec.
III. In the following, the tendencies of these renormaliza-
tions will be investigated and the order of their magni-
tudes will be estimated.

A rough representation of the renormalized order pa-
rameter can be given by using Eqs. (3.33) and (4.9) in a
simplified form

purity Hamiltonian given by Eq. (2.16), thus it can be tak-
en into account as an additional term 6T to the backward
scattering amplitude T,

6T-2D ~g ~

a,T
2UF

(C2)

where h(r) is multiplied by the diameter a of the core re-
gion. This can be simplified by using the estimation
a/up-D ' (alkuF-D ') and one obtains

FIG. 16. Typical mean-field diagrams of the energy gap A.
g represents the effective electron-electron interaction and the
crosses represent the electron-impurity interaction. (a) shows a
typical diagram without impurity while (b) shows the renormali-
zation of the energy gap due to the impurity.

2UF 2
5T-gT, (C3)

e '~ ~x~&—/2 a
X 2

(Cl)

which gives the correct features and orders of magnitudes
for T/2uF &1 in the region around the impurity where
&(r) » bo. The factor e '&" occurs because of the
anomalous Careen's function in the self-energy loop. The
most drastic effect can be expected from the core part

~

x
~

& a /2 which shows strong resemblance with the im-

thus the correction is small as g && 1.
The tail of the renormalized order parameter given by

Eq. (Cl) can be considered as well, but the long-range part
contributes only to the matrix element between electrons
whose momentum difference is very close to Q. Thus the
renormalization of the mean field by the impurity can be
taken into account by a renormalization of the impurity
backward scattering amplitude (strength and momentum
dependence) but that renormalization factor cannot be
very different from the unity.
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