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Previously reported ESR studies of P-doped silicon have been analyzed in terms of donor clusters.
Simulated spectra based on a Poisson distribution of clusters and a binomial distribution of hyper-

fine intensity inadequately described the peak heights of the experimental data. In the present re-

port, an alternative approach is taken which simulates the effects due to topological hyperfine and
cluster-cluster interactions. A computer-generated system of donors is partitioned into clusters, re-

taining all interdonor exchange energies greater than some critical J,. The matrix eigenvalue prob-
lem for each cluster is solved numerically and the results used to calculate transition energies and

probabilities. Simulated spectra produced in this manner show good quantitative agreement with

the data.

I. INTRODUCTION

ESR transitions associated with strongly coupled
donors have been understood since the explanation of
donor-pair lines by Slichter. Since that time there have
been many ESR studies of donor clusters, both experimen-
tal and theoretical. 9 " The early measurements of
Feher et al. showed signals from clusters of two, three,
and four donors in the low-concentration regime. Also
observed, as the concentration is increased to the inter-
mediate regime, is the "broad background line" studied by
Cullis and Marko. Theoretically, Marko and Shimizu'
have extended the pair calculation to include weakly cou-
pled pairs. Shimizu s work also predicted transitions aris-
ing from strongly coupled donor triads, including some
transitions lying outside the main hyperfine lines. These
results were used to explain features of the broad back-
ground line.

In a previous report, ' hereafter referred to as I, experi-
mental results of ESR experiments on Si:P were described.
The ratio of the integrated intensity under the outer hy-
perfine lines to the total integrated intensity was found to
vary with donor concentration in a manner consistent
with a Poisson distribution of donors. Simulations based
on Poisson statistics and a simple binomial distribution of
hyperfine (hf) intensity, however, inadequately described
the detailed features of the ESR spectra. The differences
between the ESR simulations and the data were described
qualitatively in terms of topological hyperfine broadening
and cluster-cluster interactions. Topological hyperfine
broadening first appears in clusters of three as seen in the
results of Shimizu. ' The cluster-cluster effects arise
from interdonor interactions that are inevitably ignored
when a system of donors is partitioned into clusters.

In the present work, computer-generated systems of
donors are partitioned into clusters in an approach dif-
ferent from the Poisson method used in the previous
work. In addition, the matrix eigenvalue problem is
solved numerically for each cluster, with transition ener-
gies and probabilities calculated. The resulting calculated
spectra simulate the effects of the above mechanisms, and

allow quantitative comparison with the data.
Background information is presented in Sec. II. Section

III discusses the approach used in defining clusters and
presents the resulting donor-cluster statistics. The ESR
simulation methods and results are presented in Sec. IV,
with conclusions given in Sec. V.

II. BACKGROUND INFORMATION

The ESR spectra of Si:P for donor concentrations less
than 10' cm show only the two lines arising from iso-
lated donors and centered at the resonant magnetic field
hv/gp~. The splitting of 42.6 G arises from the hyper-
fine interaction between the donor electron and its nu-
cleus, ' with two lines corresponding to the two magnetic
sublevels of the phosphorus nucleus. The linewidth of the
hyperfine lines in this concentration range arises primarily
from unresolved hyperfine interactions with nearby 9Si
nuclei. As the concentration is increased above 5&10'
cm, a line, first observed by Fletcher et al. ,

' appears
midway between the hyperfine lines. As explained by
Slichter, this line arises because of strongly coupled pairs.
The spin Hamiltonian for two donors was taken to be

2

A = g gp~HOS, —g Jtj(R)St SJ+A ht,

where A ht is generally expressed as
n

A ht ——g AIt. S;=A(I( S)+I2 S2), (2)

with Sl and S2 being the electron spins, Il and I2 being
the nuclear spins, and J representing the exchange energy.
In the limit that J&&A, the total spin remains a good
quantum number and, keeping the diagonal terms, the en-
ergies become

E=—(m ) +m 2 )M+ —[S(S + 1)——,]l+gp, WHOM .J 3
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The allowed transitions, AS =0 and AM = + 1, are located
at Hp+3 (pl

~ +111')/2. For Si:P, this corresponds to
three equally spaced lines at —2/2, 0, and 3 /2 (relative
to Hp) with intensities of 1:2:1,respectively. Calculations
carried out in the same spirit for higher-opder clusters
lead to similar results. For clusters of size k, neglecting
off-diagonal terms, there will be 0+1 equally spaced
lines between —3 /2 and 3 /2, and 2 /2, with relative in-
tensities given by the binomial coefficients. Lines have
been observed at the positioris described above for clusters
of size 2, 3, and 4.

The relative magnitude of the various cluster lines were
used in I to gain insight into the question of donor-cluster
statistics. One approach is the partitioning of the silicon
host into cells of volume V„where V, is a measure of the
range at which interdonor interactions have a significant
effect on the spin properties of interest. The distribution
of donors in these cells, assuming the donors enter into
the host in a uniformly random manner, is determined by
Poisson statistics. Given a value of V„ the relative num-
ber of clusters of size k is known to be

)k —1 —(n)

kf
(4)

where (n ) =ND V, . Assuming Poisson statistics and a bi-
nomial distribution of hf intensity, simulations of ESR
spectra can be generated for different values of (n).
Simulations are presented in paper I based on the above
assumptions, using the same trial line shape for each line i
of the spectrum. It was found that in each case studied,
there was no single value of (n ) that produced cluster-
line peak heights in agreement with the data for all cluster
lines simultaneously.

The ratio of the integrated intensity under the outer
lines to the total integrated intensity, as determined from
Poisson statistics, is I,„„,/I„„&——e " . It is shown in
I how this ratio, as determined from experiment, varies
with XD. The dependence is in agreement with Poisson
statistics, with the slope yielding a value of
V, =8.2&10 ' cm . Assuming a spherical volume, this
value of V, corresponds to a critical radius of 125 A.

Marko and Shimizu' have carried out calculations for
J-A. In this intermediate case, deviations from the sim-
ple binomial distribution of hf intensity appear. Shim-
izu' has also determined the spectra of clusters of three
donors in the limit that the three interdonor exchange en-
ergies are much larger than A. The results can be ex-
pressed in terms of a single parameter, 6, where

tan(28) =V 3(JQ3 J3) )/(JQ3++3) —2J)g) .

Cullis and Marko noted the inadequacies of the Shim-
izu' calculation, pointing out the importance of higher-
order terms in the hyperfine energy. These effects are of
major importance in explaining the differences between
the data and simulations in paper I.

Computer-generated distributions of donors have been
used to analyze a variety of spin properties in doped sil-
icon. ' ' Kummer et al. ' and Walstedt et al. ,

' in their
work on amorphous antiferromagnetism in n-type silicon,
developed a model for the spin susceptibility. There, ran-
dom systems of donors were computer generated within

some volume, and then partitioned into clusters by break-
ing bonds when the interaction potential became less than
some critical value. Cluster eigenstates were calculated
exactly for each cluster and used to calculate the spin
properties of interest. Interactions between clusters were
treated in a mean-field approximation. Franzen and Berg-
gren' extended the calculation to find the magnetic field
dependence of the specific heat in n ty-pe silicon, also us-

ing a mean-field approach to cluster-cluster interactions.
They used the donor-donor spacing as the criterion for de-
fining clusters, breaking bonds between donors separated
by more thorn 200 A. Bhatt and Rice ' calculated spin
susceptibilities in a pair approximation assuming Poisson
statistics. The cell volume was assumed to depend on
temperature, and was modified to account for the pres-
ence of clusters greater than size 2. Andres et al. ' ex-
tended the pair approximation and also used computer-
generated clusters in a manner similar to Walstedt et al. '

and Kummer et al. ' A more sophisticated approach has
been used by Bhatt and Lee ' to study spatially random,
antiferromagnetically coupled spin systems. In their ap-
proach, high-lying energy levels are discarded iteratively,
with the system scaled to preserve the low-lying states.

III. COMPUTER-GENERATED CLUSTER
STATISTICS

In this work, the donors are situated on randomly
chosen silicon lattice sites. The pairwise exchange in-
teractions in the Heitler-London formalism are as given
by Miller and Abrahams. In addition, there is a phase
factor, which arises from the discrete nature of the silicon
lattice. The spatial average of this phase factor is —,'.
Hence, a distinction can be made between the complete
form of the exchange energy, including the phase factor,
and the spatially-averaged exchange energy, which de-
pends only on the magnitude of the interdonor spacing,
the phase factor having been replaced by its average.

The system of donors is partitioned into clusters using a
critical exchange energy, J„ in much the same way as
done in Kummer et al. ' and Walstedt et al. ' A donor is
taken to be a member of a given cluster if it is exchange
coupled to at least one other donor in the cluster with en-
ergy greater than J, . This has been done for a system of
1000 donors at 2.5&10' cm using nine values of the
critical exchange energy. Each value of J, corresponds to
a value of R =R, via the spatially averaged exchange-
energy expression. In Fig. 1, the fractional number of
clusters of size 1, 2, 3, and 4 is plotted versus (R, /R, „),
where R„=ND ' is the average donor spacing. The
probabil'ity that the nearest neighbor of a given donor lies
at a distance between R and R +dR is

4rrNDR exp( 4rrNDR /3)dR .—
The probability that a donor has no other donors within a
distance R, is then known to be

exp( 4vrNDR, /3 ) =exp(—4vrR, /3R,'„) . —

In the absence of the phase factor discussed earlier, this is
simply equal to the ratio X;/X. Figure 1 shows that
X;/N does indeed decrease exponentially, although not as
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FIG. I. Modified cluster statistics based on computer-

generated donor distributions. Open points are the results of
partitioning a 2.5&&10' cm system using a variety of critical
exchange energies. Solid points correspond to the partitioning
of a 9X10' cm ' system with a J, of 4.4 mK. Results are
plotted versus (R, /R„), where R, and R„are defined in the
text.

fast as occurs in the absence of the phase factor. As noted
by Bhatt and Rice, ' the distribution of phase factors
reduces exchange couplings by more than the average
value of —,', leading to an enhancement of the number of
isolated donors in Fig. 1. To compare the statistics embo-
died in Fig. 1 with Poisson statistics, it is useful to estab-
lish a connection between their respective predictions for
isolated donors. The partition using J, =J(R =8a* )

=4.4 mK (where a* represents the effective Bohr radius
of phosphorus donors in silicon) yields the same number
of isolated donors as predicted by Poisson statistics using
the value of V, given by intensity analysis. This value of
J, can be compared to the hyperfine energy A =5.6 mK.
This comparison is of interest since the results studied
here and in paper I are analyzed in the high-temperature
limit. In this limit, population effects are not involved
(cf. Bhatt and Rice, ' Franzen' ), and the hyperfine ener-

gy is the parameter of interest. The solid points in Fig. 1

show the results for a generation of 2500 donors at
9&&10' cm for J=4.4 mK. The donor concentration
scale in Fig. 1 is obtained by fixing R, =8a =138 A.
The increase of R, from the value of 125 A reported in I
arises from the effects of the phase factor noted above.

Having fixed R, to give results for isolated donors
similar to those predicted by Poisson statistics, some com-
parisons can be drawn. A significant result is the decrease
in the number of pairs and the increase in the number of
higher-order clusters relative to Poisson statistics. The
fractional number of pairs Nz/% for the 9X10' cm
system is 0.18 according to Poisson statistics, while the

computer calculation gives a value closer to 0.1. By the
time one reaches 2.5 & 10' cm, one expects
Nz/N=0. 13 from Poisson statistics, while the computer
calculation gives a value between 0.02 and 0.03. As a typ-
ical example of where Poisson statistics, as a technique for
defining clusters, breaks down is a pair where one member
interacts with J & J, only with the second member, while
the second member interacts strongly with both the first
donor and others as well. The Poisson approach yields re-

sults that depends on the placement of the origin of the
network of cells of volume V, . This approach inevitably
discards some exchange energies larger than J, . The ap-
proach used above unambiguously describes the size of a
cluster and keeps all exchange energies greater than J, .

IV. SIMULATED SPECTRA

The results of Marko and Shimizu' are obtained by
calculating the matrix elements of the Harniltonian given
in Eq. (1) using single-particle spin functions. The matrix
eigenvalues and eigenvectors are used to evaluate transi-
tion energies and probabilities. The results of Shimizu
can be obtained in the same way, ignoring off-diagonal
terms in the hyperfine energy. Shirnizu' used the results
for pairs to simulate the ESR spectrum of a low-
concentration sample, assuming Poisson statistics. In the
present work, 20 generations of 50 donors each at 9& 10'
cm were partitioned using a J, =15.4 mK. All clusters
of size greater than 4 were then broken up into smaller
clusters. The matrix elements of the hyperfine and ex-
change interactions, for clusters of size k, were calculated
using the 2 combinations of single-particle spin func-
tions. The resulting 2 &2" matrix was then solved using
the scientific subroutine package available on the Digital
Equipment Corporation VAX-11/780 minicomputer at
the University of Rochester. The resulting eigenvectors
and eigenvalues were used to calculate transition energies
and probabilities. The process was repeated for the vari-
ous combinations of nuclear spin states. The same line
shape used in the simulation of Fig. 2 of I was attributed
to each transition generated here. This approach au-
tomatically includes topological effects apparent in Table
II of Shimizu' for donor triads. These effects were con-
sidered qualitatively in I (see the discussion of Fig. 8 of I).
A mean-field approach to intercluster interactions was not
used here and, in fact, these interactions were ignored in
each simulation. Trends arising from the inclusion of
progressively smaller values of J, simulate effects of these
interactions. Hence, the process described above has been
repeated for several values of J, .

The results for the 9&&10' cm system are shown in
Fig. 2. Curve (a) of Fig. 2 is generated using the binomial
distribution of hf intensity as was done in Figs. 2 and 5 of
I but with statistics determined in the manner described
above rather than using Poisson statistics. Spectra (b),
(c), and (d) of Fig. 2 are the results of explicit evaluation
of matrix elements as described above for J,=15.4, 4.4,
and 0.78 mK, respectively. Also shown, superimposed on
curve (d) of Fig. 2 as a dashed curve, is the experimental
data shown in Fig. 2 of paper I. The entire process was
repeated for nine samples of 50 donors at 2.5& 10' cm
The results are shown in Fig. 3.
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FIG. 2. Simulated ESR spectra for the 9&&10' cm Si:P
system. Simulation (a) assumes a binomial distribution of hy-
perfine intensity with statistics corresponding to J,=4.4 mK.
Simulations (b), (c), and (d) are generated from explicit solution
of the matrix eigenvalue problem for partitions corresponding to
J,=15.4, 4.4, and 0.78 mK, respectively. Experimental data
from Ref. 12 is superimposed (dashed line) on (d).

(a)

Experimentally, parameters of interest are the ratio of
the central line peak height to the outer line peak height
(y, /y, „„,) and the ratio of the triad peak height to the
outer line peak height (y, /y, „„,). Table I gives (y~/y, „„,)
for both systems and (y, /y, „„„)for the 9X 10' cm sys-
tem. The results show that the modifications in statistics
inadequately explain the disagreement of the central-to-
outer line peak height ratio between theory and experi-
ment. The number of pairs in the 9&10' cm system is
reduced by nearly a factor of 2, with most of these pairs
going into a cluster of three and four donors. Those pairs
going into odd-size clusters no longer contribute to the
central-pair line. In general, the enhancement of higher-
order clusters also reduces the cluster contribution to the
outer lines (e.g., —, of the intensity of two pairs reside in
each of the two outer lines, while —,', of the intensity of a
cluster size of 4 lies there). For the 9&&10' cm system,
where most of the intensity of the outer lines arise from
isolated donors, the peak height ratio of the central-to-
outer lines decreases. In the 2.9&10' cm system,
where the outer lines arise primarily from clusters, the
outer line is reduced more than the central line and the ra-
tio actually increases.

Comparison of curves (a) and (c) of Figs. 2 and 3, both
of which are generated for J, =4.4 mK, provide a mea-
sure of the effects of topological hyperfine interactions as
well as including some of the effects of clusters with
J&&A. For both systems, agreement improves dramati-
cally. The simulations in curves (b), (c), and (d) of Figs.
2 and 3 include progressively smaller exchange energies.
In the sense that simulations in curves (c) and (d) of Figs.
2 and 3 each include the largest pairwise exchange ener-
gies between the clusters of the previous simulation, this
approach models the effects of cluster-cluster interactions.
This approach shows little effect in the 9X 10' cm sys-
tem, while the agreement with experiment in the 2.9 X 10'
crn system improves as smaller interactions are includ-
ed. It should be noted that the limitation to clusters of
size 4, while not very restrictive in the 9&10' cm sys-
tem, should have more serious consequences in the
2.9)& 10' cm system. Visual inspection of the simula-
tions show that the effect of including weaker interactions
is a broadening that reduces the magnitude of both outer
and central lines.

(b)

TABLE I. ESR simulation results.

(c)

9.0&& 10'6 cm

X.~souter 3 t /3 outer

2.5 && 10' cm

X, ~souter

Poisson
statistics
Modified
statistics

0.56

0.45

0.19

0.16

1.37

1.65
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FIG. 3. Simulated ESR spectra for the 2.5&10' cm Si:P
system. Simulations (a) through (d) are the same as those
described for Fig. 2.

R, =7.27
R, =8
R, =9

Data

0.28
0.29
0.30

0.23

0.09
0.12
0.14

0.11

0.64
0.74
0.84

0.99
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V. CONCLUSIONS

The approach used in this work to define clusters as-
sumes a randomly distributed system of donors, as does
the Poisson approach. The present approach has the ad-
vantage of unambiguously characterizing the clusters, and
retaining all interdonor exchange energies above a given
value, J, . The resulting statistics show fewer donor pairs
in the concentration range of interest, relative to Poisson
statistics, with a greater number of clusters of size 4 and
larger. The modification of statistics by itself inadequate-
ly explains the differences between the earlier simulations
and the experimental data.

The discrepancies arise partially because of the choice
of J, =4.4 mK used in the partition of the system of
donors. The ESR spectrum of a cluster with exchange en-

ergies slightly greater than 4.4 mK are not well described
by the binomial distribution of hf energy, since this ener-

gy is comparable to the hf energy of 5.4 mK. In addition,
it is incorrect to ignore exchange. interactions less than,
but comparable to, 4.4 mK in magnitude, since these in-
teractions also have impact on the allowed ESR transition
energies. Finally, topological effects, such as those

described by Shimizu cause deviations from the simple
binomial hf intensity distribution, even for strongly cou-
pled clusters.

Comparison of. spectra (a) and (c) in Figs. 2 and 3
shows the effects of those donor clusters with exchange
couplings comparable but greater than 4.4 mK, as well as
the topological effects in those clusters. Comparison of
spectra (b), (c), and (d) shows the effect of including ever
smaller exchange energies in the calculation. The first
comparison is of primary importance in the 9)& 10' cm
system; while the 2.5 & 10' cm system is more sensitive
to the inclusion of smaller exchange energies. In both sys-
tems, the simulations attain satisfactory quantitative
agreement with the data.
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