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Electric field dependence of the binding energy of shallow donors
in GaAs-Ga& „Al„As quantum wells
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We report theoretical results on the electric field dependence of the impurity binding energy in
quantum-well structures. The field is assumed to be constant and applied parallel to the growth
axis. Several impurity positions are considered. As a result of the field™induced electronic polariza-
tion, the impurity binding energy may be decreased or increased depending on the impurity location
in the quantum well.

I. INTRODUCTION

Recently the problem of the presence of an electric field
in quantum well (QW) structures has given rise to some
interest. When applied along the growth axis (longitudi-
nal electric field), the electric field alters the QW confine-
ment energies. Mendez et a/. ' have observed a strong de-
crease of photoluminescence (PL) signal and a red shift in
the PL peak position for increasing field strength I'. Bas-
tard et al. proposed variational calculations of the eigen-
states in an isolated QW structure subject to a longitudi-
nal field. The results of Mendez et a/. ' were only qualita-
tively explained by this model. Miller and Gossard ob-
served intrinsic and extrinsic PL in Be-doped GaAs-
Ga(A1)As QW's for a longitudinal electric field. They ob-
served strong changes in integrated photoluminescence
but small shifts in energy positions of exciton and impuri-

ty peaks. Chemla et al. and Wood et al. studied room-
temperature excitonic absorption peaks when an electric
field is applied to a multiple GaAs-Ga(A1)As QW struc-
ture.

More recently, Alibert et al. performed electroreflec-
tance measurements on GaAs-Ga(A1)As QW's subject to a
longitudinal electric field. They observed a red shift in
excitonic structures which was explained in terms of a
shift in energy levels. Brum and Bastard have calculated
the electric-field-induced dissociation of excitons in QW s
using variational methods. The calculated results were in
qualitative agreement with the data of Wood et al.

In this work we calculate the effect of a longitudinal
electric field on the binding energy of hydrogenic impuri-
ty. We limit our considerations to field strengths for
which the notion of quasibound states in the well remains
valid (for stronger fields the electron is swept out of the
well). The effective-mass approximation is used and
donor levels are considered. Two envelope-function
models are considered: (i) a simplified model based on
variational calculations of the energy levels in which the
effective-mass discontinuity between the host materials is

neglected; (ii) a more elaborate model which can take into
account this discontinuity and solves exactly the problem
of a QW perturbed by a longitudinal electric field.

Specifically it appears that the variational and exact
treatments of the electric effects give almost the same re-
sults when a single effective mass is used throughout the
whole structure. Moreover, we show that the impurity
binding energy is enhanced or diminished depending on in
which half of the QW the impurity is located.

II. THEORY

In the effective-mass approximation the Hamiltonian of
a hydrogenic donor when an external field is applied in
the z direction is

H =Hp+H]

with
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~

e
~

I—'z2 2

2 az I (z) az (2)

g2 2
H ) ——— V'g-

K[x +3/ +(z —z; ) ]
I

where z; is the impurity position along the growth axis
and 6(x) is the step function [6(x)=1, if x ~0, 6(x)=0
if x&0]. In Ho we have expressed the kinetic energy
operator in a way compatible with the work of Ben Daniel
and Duke.

In this work we focus our attention on the impurity
states attached to the ground QW subband. The way we
have divided the total Hamiltonian is dictated by the rela-
tive orders of magnitude of the QW, electrostatic, and
Coulomb potentials, respectively. The carrier motion
along the growth axis is essentially dominated by Hp
since the Coulomb potential well produces an effect of the
order of 10 meV. This has to be compared with the bar-
rier potential (0.2 eV) and the F-dependent potential ener-
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gy drop along the QW thickness I. (0.1 eV if I.=100 A
and I' =10 kV/cm). Once the z motion is determined by
Ho, the carriers are bound around the impurity in the
layer plane via H~, the in-plane Coulomb attraction being
the average of the 1/~ r —r;

~

potential over the ground
state of Ho.

To find the eigenstates of Ho we used two approaches:
a variational one and an exact one. In the variational
treatment we consider that the effective mass and the rela-
tive dielectric constant are constant throughout the whole
structure. The ground-state wave function Po(z) is rather
easily guessed if one notices that the electric field skews
the zero-field QW wave functions towards one interface.
This effect is taken into account via a multiplicative ex-
ponential factor' on the F=O QW wave functions. Once
$0(z) is known, ' the impurity wave function is chosen in
the form

g{r)=NEO(z) exp( ri/I, ), — (4)

where N is a normalization constant, A, is a variational pa-
rameter, and ri ——(x,y). Using a two-dimensional Fourier
expansion of the Coulomb interaction, the expression
which has to be minimized is

g2 e2
E~(A, ) = — J dq&I(qi )

2m',

X
1 +Ep(+), (5)

[1+(Aqi/2) ]'~

where Eo(F) is the lowest eigenstate of Ho [for details, see
Eq. (7) of Ref. 2] and

+ Oo
2I(qi)= J dz

~
Pp(z)

~
exp( —qi ~z —z;

~
) .

The binding energy is then given by

E;=ED—minE;(A, ) .

Instead of using this variational method, one may per-
form an exact calculation for Ho since in each kind of
layer the potential is linear in z and the effective mass is
constant. To deal with the effective-mass discontinuity,
an appropriate Hamiltonian is derived from a two-
dimensional (2D) effective-mass approximation since the
quantum-well potential breaks periodicity in the z direc-
tion in the absence of the impurity and of the electric
field, dispersion curves can be grouped into 2D subbands
which result from quantization in the z direction. For
narrow or moderately narrow wells, we can consider that
the impurity states are derived from one subband. For the
values of I' considered here (so that we neglect the tunnel-
ing effects) these considerations remain valid. The equa-
tion then can be written

Eo — V'i+ U(ri) F'(ri) =E;F(ri),
g2

2m'

where Eo is the minimum of the 2D subband, mj is the
2D effective mass derived from the band structure in the
absence of the impurity, and U(ri), the effective impurity
potential, is an average over z of the Coulomb potential
created by the impurity. " The solution of Eq. (8) is ob-
tained using a variational treatment. The trial wave func-
tion is

F(rz)=¹
and the impurity binding energy is given by Eq. (7) where
E;(A, ) is

f2
Ei(A, )=EO+

~
— f dz

~

f(z)
~

z —[A i(2z/A, ) —Xi(2z/1, )]—1
2mj A,

'
(10)

where A ~ and N& are the first Struve and Neumann func-
tions, and f(z) is the ground eigenstate of the one-
dimensional potential well (Fig. 1) corresponding to the
2D subband minimum. The exact solution of Ho, f (z), in
each region of space (Fig. 1), is a linear combination of
the two Airy functions A; and 8;. The six unknowns ex-
isting in these solutions are obtained using the wave-
function and current-density continuities at the inter-
faces. The two other conditions are obtained by assum-
ing that the function tends toward zero when z tends to-
ward infinity and that the function must remain finite in
region I (i.e., we neglect tunneling effects). The solutions
obtained are applied in Eq. (10) to obtain E;(A, ).
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II. RESULTS AND DISCUSSIONS

The parameters used in our calculations are ~=13.1,
m*=0.067mo where mo is the free-electron mass. The

FIG. 1. Conduction-band profile of a quantum well (thick-
ness L, barrier Vb) subject to an electric field F applied along
the growth axis z. The z origin is taken at the center of the
quantum well. eFL denotes the potential energy difference be-
tween the z = —L/2 and z =L/2 interfaces.
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barrier potential is Vb
——400 meV [x -0.38 for the

GaAs-Ga(A1)As]. We calculated the value of E for which
we no longer obtain an exact solution, but an approximate
solution. - For well thickness about 30—100 A this limit is
about 300 kV/cm.

In Fig. 2 are reported the eigenenergies found with the
exact solution of the one-dimensional potential and com-
pared with the variational solutions given in Refs. 1 and
2, for a QW of a thickness of 100 A. We observe that the
shift of the energy levels is underestimated in the varia-
tional calculations. However, the difference is not very
large and is more pronounced at the larger electric fields
(for F=300 kV/cm we have

~
AEO

~

13%%uo). In spite of
this discrepancy the values of the impurity binding energy
appear to be almost independent of the envelope function
used. Both models lead to the same numerical values.
This is due to the high stability of E; in relation to the po-
tential integral

f+"«
~
q(z)

~

'[p'+(z —z, )']-'"
and the good description obtained by the variational en-
velope functions.

In Fig. 3(b) we plot the values of the impurity binding
energy versus the electric field strength for a QW thick-
ness of 100 A for various positions of the impurity:
z; =L /2, L/4, 0, —L/4, —L/2. We observe that for im-
purities placed at z; &0 the impurity binding energy de-
creases with increasing field strength. For z; &0 the im-
purity binding energy increases with I'". This is associated
with the electric-field-induced deformation of the electron
wave function; the latter tends to concentrate near the in-
terface z;= —L/2 (see Fig. 1). The effect of the electric
field is more pronounced for thicker QW's.

This is illustrated in Fig. 3(a) where the QW thickness
is 200 A. Figure 3(a) exemplifies the competition between
the effects of the electric field and of the barrier con-
straint. Beyond a certain field F (which is L dependent)
the barrier constraint predominates and the impurity
binding energy tends to saturate at large I'. In fact for
large enough F (or L) the rectangular QW effectively
reduces to a triangular quantum well. The impurity prob-
lem becomes in effect equivalent to finding the bound
state of an electron moving in a plane z, = L/2+dF—
(where dF -F '~

) and being attracted by a Coulomb im-
0
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thickness (a) L=200 A and (b) L=100 A. Vb ——0.4 eV. Five
impurity positions are considered: (a) —L/2; (b) —L/4; (c) 0;
(d) L=/4; and (e) L/2.

1

purity located in the plane z =z;. It is interesting to ob-
serve that the distance between those two planes becomes
independent of L for on-edge impurities, implying that
the on-edge impurity binding energy should become in-
dependent of L if L is large enough. These qualitative
considerations are supported by calculations. We show in
Fig. 4 the L dependence of the on-edge impurity binding
energy for several values of F. Clearly the curves flatten
at large enough L if F is nonzero. One may evaluate the
critical thickness L, beyond which the other (z =L/2)
potential barrier is no longer felt by the carrier in the fol-
lowing way. Let X(z+L/2) be the wave function of the
triangular well cornering at z = L/2. If the chara—cteris-
tic distance g of the electron from the z = L/2 wall be-—
comes smaller than L/2 one may safely assume that the
other wall will have a negligible effect on the electron
wave function. This will imply that the binding energy of
the impurity located at z = —L/2 will become indepen-
dent of L. If one approximates X(z+L/2) by a Fang-
Howard wave function, '
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-12—
E
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-16
0

l

100 200 XC
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FICs. 2. Comparison of energy-level shifts versus electric field
for a conduction electron in a finite GaAs quantum well with
L=100 A and Vb ——0.40 eV. Dashed line: variational results
(Refs. 1 and 2). Solid line: exact calculations (Airy functions).
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FIG. 4. Impurity binding energy vs QW thickness. Vb ——0.4
eV. Four values of the electric field are considered: I'=0, 100,
150, and 200 kV/cm.
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X(z+L/2) =(b'/2)'i'(z+L/2)

Xexp ——(z+L/2) z) L—/2;b

g here is given by

12eFm
' 1/3

3
b

Thus the critical thickness L,, will be given by
1/3

9I. =2
4 m, I' (13)

showed a shift in electron-acceptor luminescence energy
to higher values with increasing electric field. Also, they
observed a change in peak enhancement from electron-
acceptor (center) luminescence to electron-acceptor (inter-
face) luminescence for increased fields. Our results con-
firm their arguments justifying the int;erface peak
enhancement with increasing electric field since it in-
creases the impurity binding for impurities localized at
z;= L/2—. However, the experimental results obtained
do not permit a quantitative analysis of the energy shift
because of the great difficulty of measuring the electric
field.

0
For F=10 V/cm, L, =128 A. This estimate is in

rather good agreement with the results shown in Fig. 4.
All these calculations and considerations were done for

a donor impurity. The experiments performed by Miller
and Gossard on Be-acceptor QW's of GaAs-Ga(A1)As
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