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Density of impurity states associated with inversion layers
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In this paper we obtain the density of states for electrons bound to Na+ impurities at the
semiconductor-insulator interface of a metal-oxide-semiconductor structure, when an inversion layer
is established by an external electric field. Impurity bands are calculated for several values of the
screening length, the distance from the impurities to the inversion layer, and the impurity concentra-
tion. Results for the bandwidths and the peak values of the density of states are compared with ex-
perimental data.

I. INTRODUCTION

It seems to be well established by now that electrons in
dynamically two-dimensional systems, like metal-oxide-
semiconductor (MOS) inversion layers, do not show a tru-
ly metallic conduction. In these systems the conductivity
shows a logarithmic divergence at very low temperature,
even for extremely weak disorder, in what is generally
called the weak-localization regime. ' In a typical silicon
MOS field-effect transistor (MOSFET) the roughness of
the oxide-semiconductor interface is not important as a
scattering mechanism when the applied gate voltage is not
very high. In such cases disorder is mainly generated by
impurity scattering, which is therefore the cause of locali-
zation. Impurities are also responsible for a tail in the
conduction band, giving rise to activated conduction at
low gate voltage.

Besides their importance in providing a scattering
mechanism for conducting electrons, impurities in MOS
structures have attracted attention because they allow the
existence of bound states associated with the inversion
layer. These bound states are much like shallow levels in
doped semiconductors, and have been extensively studied
both theoretically' and experimentally. '

It has been shown that sodium impurities (Na+) can be
made to drift through the oxide by an electric field and
moved close to the oxide-semiconductor interface. Sam-
ples have been produced for which the impurity concen-
tration is fairly well known. When the concentration is
increased the bound states at different sites start to over-
lap and a broadening of the energy level occurs. Such
impurity-band formation below the first electron subband
has, in fact, been observed in MOS structures.

Impurity-band formation in heavily doped bulk semi-
conductors has been explored for the last two decades.
Much interest in this area is aimed at studying the metal-
nonmetal transition. It is commonly accepted that at
high concentration two mobility edges occur inside the
band, defining an interior range of extended states sur-
rounded by regions where states are localized. When the
concentration decreases, the two edges approach each oth-
er, an Anderson transition occurring when they coincide.
A transition can also occur when the Fermi level crosses

the mobility edge. However, at very high concentration,
corresponding to a very large bandwidth, the Fermi level
occurs at an energy for which a large number of extended
states exist. It can happen that for such a situation the
impurity potential is so strongly screened that no bound
state is allowed to exist. In that case, impurities play the
role of scattering centers for the conduction electrons and
are also responsible for the conduction-band tailing.

Impurity bands associated with inversion layers in a
MOSFET should behave differently. Whenever the sys-
tem is kept in the electrical quantum limit, i.e., as long as
the electron system can be considered as dynamically two
dimensional (2D), the impurity potential will always show
at least one bound state, however large the screening.
Therefore, the impurity band should always occur. In ad-
dition, because the density of states for the free carrier is
independent of energy, the screening is independent of
carrier concentration.

In this paper we study the impurity band associated
with a 20 inversion layer, assuming the impurities are
Na+ charges randomly distributed close to the
semiconductor-oxide interface. We start with bound
states obtained according to the Stern-Howard (SH)
theory. The 2D system of electrons bound to an irregular
lattice is described by a tight-binding model with structur-
al disorder. The effect of disorder is worked out accord-
ing to the Ishida-Yonezawa method. ' This is shown in
Sec. II. In Sec. III we show numerical results obtained for
several distances from the Na+ ion to the inversion layer
and different screening parameters. In Sec. IV we present
our comments on the results obtained and other con-
siderations.

II. DENSITY OF STATES

The model for which our density of states is worked out
consists of a set of impurities randomly distributed on a
very thin sheet in the oxide at a distance zo from the in-
version layer. We can consider, for instance, the impuri-
ties close to the oxide-semiconductor interface. We as-
sume a very thin inversion layer, although this approxi-
mation could be relaxed in the theory after a few adjust-
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ments. %'e also assume that the electron-impurity in-
teraction is screened by the free electrons according to the
SH calculations. The attractive centers on the plane
where the electrons are confined are given by the projec-
tion of the Na+ ions on that plane and determined by po-
sition vectors Rl. The one-electron Hamiltonian for a
given impurity configuration is then

„V + g V(r —Rt),2'

where

T 1=&m ~V ~~&

and

S I=&m ~l& .

The basis we have used to describe our Hamiltonian is
not orthogonal, i.e.,

S I ——f d'r P(r —R )P(r —R, )~5,~ .

where

2

V(r)= — (zo+r )
' + V, (r),

2 00

V, (r)= sexp(szo) f dz(z +r )
'~ exp( —sz) .

(2)

In the derivation of (6) we have neglected, as usual, terms
involving three-center integrals, i.e., terms like
& m

~
V„~ l& with l, m, n all different. We have also

neglected terms like & m
~

V; j
m & for i &m

Now, using a plane-wave expansion for the functions
P~, we can express the trace of G (E) as

In the above expression, x =(a,„+v„;,)/2, the average of
the dielectric constants of the oxide and the semiconduc-
tor, and V, (r) is the potential term due to screening, given
by (818) of SH; RI denotes the position of the projection
of a particular impurity on the plane where the electrons
are constrained to move.

To obtain the density of states, we attempt to calculate
the Green's function for the above Hamiltonian in a
tight-binding model, using as a basis the set of one-
electron functions P~(r)=P(r —R~), where P(r) is the
ground state of the single-site Schrodinger equation

V +V(r) P(r)=eP(r) .
2&i

«G (E)= y Ggj, (E)= y y G;, (E)& k
~

~'
& & k

~ j&*

k k i,j
= 2 XG-«)

I «Ii& I'
k i

+ X G;, &kI &«IJ&*

The impurity-band density of states is then given by

N(E)= — I lim Q Gg—g(E+i„) .1

77 ~~p+
(10)

%'e solve numerically this equation for its ground state,
for each value of zo and s, which are, respectively, the dis-
tance from the impurity to the inversion layer and the
screening parameter. In particular, the solution of this
equation for zp ——0 and no screening corresponds to the
2D hydrogen atom, with a binding energy of 4%*
(A" =42 MeV for the Si/SiOz interface).

The one-electron Green's function for the Hamiltonian
(1) is defined by

What interests us is the average of N(E) over all im-
purity configurations. We define the averaged trace of
G(E) as

d R;
Gkk E = Gii E i k i

d R. dRJ+yf 'f
i,J

(E H)G(E) =1 . — (4)

Here, H =Hx+ g& VI, where Hx. denotes the kinetic-

energy operator and Vl the Coulomb and screening term
corresponding to the impurity located at site Rl.

Expanding G(E) in terms of the functions PI(r)
= &r

~

I &, we have

( )

where 0 is the area of the 2D system. The symbols
&. . .

&; and & &,1 denote conditional averages and are
defined by

G(E)= y G; (E)
~

& &J d R
&G;;(E)&;= + f G;;(E),

(1~i)

(12)
where the G;J(E) are unknown coefficients of the expan-
sion. It is important to notice that this is essentially a
one-band formalism. The extension of the results thus ob-
tained to the multiband case is straightforward. " From
(3)—(5), one obtains, after some manipulations, a set of
coupled equations for the GiJ's:

d Rl
&G,, (E)&,, = g f

l
(13)

For further comments about this approach in 3D sys-
tems, we refer the reader to the article by Yonezawa, Ishi-
da, and Martino. ' From now on we refer to the quanti-
ties (12) and (13) as the diagonal and off-diagonal aver-

(E ~)G~J(E) =5—mz+ g [T~I —(E ~)S~~ jG~&(E), —
l

(1&m) (6)
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aged Green's functions, respectively. Because of the sta-
tistical homogeneity of the system, (6;;(E)); is indepen-
dent of i, and (6;J(E));J is a function of R;J ——R; —RJ
only:

is the unperturbed Green's function, and VkI is an effec-
tive perturbating hopping term. It can be shown that the
diagonal matrix elements 6;; can be written in terms of a
local self-energy as

(6;i(E));1=G(R;J,E) .

Also, noting that

(14) G;;(E)= [E—e—X;(E)]

where

X;(E)= g V(G (E)Vi;
I (+i)

(21)

we obtain, for the density of states per site,

( )
N(E)

I~G(E) +p f 2 6(k,E)S(k)
1 d k

7T (2m)

where p=X/0 is the impurity density and

S(k)=
i
P(k) i

is the Fourier transform of the overlap integral

(16)

(17)

+ g g V;IG'(E)V( 6'(E)V;+ . . (22)
I (&i) m (&i)

The summations that appear in each term are to be per-
formed over all the impurities I, except the "home" im-
purity i.

Now, if in (22) we substitute the unperturbed Green's
function associated with each intermediate site by the cor-
responding "dressed" one and restrict the summations in
each term in a way that each impurity is visited only once
in a given journey [this being denoted by the primes in Eq.
(23) below], we obtain the series (23):

&i~ «)= g' Viz Ga(E)VIi
I

g'g VIGg(E)V( G (E)V;+
l m

S(R)= f d rP"(r —R)P(r) . (19)

We obtain the diagonal and off-diagonal averaged
Green's functions following the method developed by
Matsubara and Toyozawa' (MT) for heavy doped semi-
conductors, which is briefly described in what follows.

Referring back to Eq. (6) and defining

V~I(E) = [t~( (E —e)Smi](—1 —5~( ),
we can rewrite the equation of motion for 6 as

(6(;(E))=([E—e —X; (E)] ')g . (24)

Now, replacing X; (E) by its configurational average,
X(E), and supposing that

(25)

for any value of v, we have

(23)

On the other side, taking the configurational average of
(21) and approximating X;(E) by X; (E), we obtain

G~l(E)=G~J. (E)+ g G(k(E)Vk(GJ(E)
k, h

where

G~~j(E) =o;~/(E —e) =5;JG (E)

(20)
6(E)=[E—e—X(E)] (26)

where the averaged X;(E) is obtained by assuming that
each site (impurity) position RJ runs over all of the plane
with equal probability. Changing summations into in-
tegrals, we obtain

X(E)= (X; (E) );= G(E) f d'R i
—V(R; —Ri) V(Ri —R;)

Q

XG (E)+, f d'R, d'Rz V(R; —Ry) V(R, —R2) V(R2 —R;)+.

d k V (k)
(2m) 1 —(X/Q)6(E) V(k)

(27)

where

V(k)= f d R exp(ik R) V(R),

and from (26) and (27) we have a self-consistent equation for 6(E):

G(E)=(E e) +p(E e) '6 (E) f-—d k V (k)
(2') 1 —pG(E) V(k)

(28)

(29)
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Furthermore, the off-diagonal Green s function can also be expressed in terms of G(E) following the same reasoning.
Iterating expression (20) and applying the same path-eliminating procedure to it as we did to get (23), the series for
GJ (E) is given by

Gpj (E)=G;; (E)VJ GJJ (E)+ g' G;; (E)V((Gg (E)VIJ GJ~ (E)+ (30)

Making use of (25), we can express the average of (30) as

G(RJ,E)=(,GJ (E))gJ ——G (E)V(RJ)+G (E)p f d R1 V(R; —R1)V(R)—RJ)

+G (E)p f d Ri d R2 V(R; —R2)V(R1 —R2)V(R2 —Ri)+ (31)

and its Fourier transform as

G(k, E) 6=(E)V(k)/[ I —pG(E) V(k)] . (32)

T~I =T(R~ —RI)= f d r P'(r)V(r)P(r R~~) . —(33)

Using the Schrodinger equation (3)
transforming, we obtain

T(k)= f d R exp( —ik R)

and Fourier

X f d r p*(r) e+, V' p(r —R)
2l?l

Equations (29) and (32) are self-consistent equations
that must be solved numerically to obtain G(E),G(k, E)
for each value of E. The density of states is then obtained
from (17).

Our only remaining task is to obtain V(k) for our par-
ticular system. The hopping integral T~I=(m V

~
i)

is given by

tegral equation (29) for G(E), thus obtaining G(k, E)
from Eq. (32); and (5) obtain the density of states for the
impurity band using Eq. (17).

The radial Schrodinger equation for the radially sym-
metric P(r) was solved using the method by Noumerov. '

The Fourier transform P(k) was obtained according to

P( k) = f exp(ikx)P (x)dx, (36)

with

P (x ) = f dy P(x,y), (37)

where we have used the fact that P(k) is radially sym-
metric. Equation (36) was solved numerically using a
fast-Fourier-transform (FFT) subroutine. The density of
states so obtained was always found to be correctly nor-
malized with an accuracy of at least 99%.

The total impurity potential V(r) and the screening
contribution V, (r) are shown in Fig. l. It can be seen that
for each value of zo the potential well gets simultaneously

Ak
e—,P(k),2' (34)

and therefore

V(k) =[T(k)—(E —e)S(k)]

Ak
2e —E—,P(k).

2&i
(35)

It is worth mentioning that the effect of screening by
free carriers has been considered throughout all the calcu-
lations and not only in the determination of the single-
impurity eigenstates. This can be seen directly from the
calculation of the hopping integral, Eqs. (33) and (34),
where screening is taken into account not only in the wave
function P(r), but also in the potential V(r) given by Eq.
(2).

V, (x}

(R ),

V (x)

I 2 3

I

10 Cm 64xlo Cm
I '2 2

4 5 6 7
a 1F a a 1I ~

3.I x IO Cm
I I -2

8 9 IO
I a1t I

—X(a",}

III. RESULTS

Following the procedure outlined in Sec. II, we per-
formed numerically the following steps for each pair zo, s
(the distance from the impurities to the inversion layer
and the inverse screening length, respectively): (1) Evalu-
ate the screened Coulomb potential of one impurity,
V(r) = V, (r)+ V, (r); (2) solve the Schrodinger equation (3)
to obtain e and P(r) for the ground state; (3) Fourier-
transform P(r) to obtain P(k), T(k), and S(k); (4) using
the effective hopping term V(k) in Eq. (35), solve the in-

FIG. 1. Impurity Coulomb potential V{x) for the interface
Si/Si02, for various values of zo and s. V, {x) is the screened
Coulomb potential. The arrows indicate the mean separation of
impurities for different p. The dashed lines correspond to the
ground-state energies and their corresponding classical radii for
zo and s, respectively.
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FIG. 2. Wave functions for the semiconductor-insulator in-

terface, when the impurity is located at a distance zo from the
inversion layer surface and has a screening constant s. The ar-
rows indicate the mean separation of impurities for different
concentrations p. The effective Bohr radius used was ao ——22
A.
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narrower and shallower as the screening length decreases
(i.e., s increases). The behavior of V(r) is reflected in the
behavior of the ground-state wave function P(r), shown in
Fig. 2. For each value of zo (s), the wave function gets
broader for increasing s (zo).

The behavior of the impurity density of states is
analyzed next. Figure 3 shows the calculated density of
states for an unscreened impurity potential (s =0) and
1.55& 10" impurities per cm for several values of zo. A
typical feature of these bands is their asymmetry, with
tails pointing to the higher-energy side. The asymmetry
increases with increasing zo, and at zo ——2 the impurity
band overlaps considerably with the conduction band
(first electron subband). However, we should call atten-
tion to the fact that we have neglected the so-called ionic

FIG. 4. Impurity density of states as a function of concentra-
tion for zo ——2 and s=0. Dotted lines refer to Eo ——0.5406.

terms in the diagonal matrix elements of the Hamiltonian,
terms like (m

~
V~

~

m), for i&m. Those terms, if not
cancelled out by the contribution of the negative-charge
interaction, should shift the peak of the impurity band.
In a first attempt SH have estimated the concentration at
which the impurity band would merge in the conduction
band, They found p=9&&10" cm for d=2 and s=Oin
Si, a value that is much bigger than what is expected if
our approximations are reasonable.

The effect of changing the impurity concentration is ex-
emplified in Figs. 4 and 5. In Fig. 4, which the screening
neglected, the expected behavior is observed, namely the
band gets broader with increasing impurity concentration.
This effect persists when screening is taken into account,
as seen in Fig. 5. However, the screening in the SH theory
is considered to be caused by electrons in the conduction
band. The screening length is then a constant proportion-
al to the density of states at the Fermi energy of. a 2D
electron gas. This model should apply only for the case in
which the Fermi level is deep inside the conduction band,
i.e., when X„ the electron concentration of the 2D sys-
tem, is far bigger than p, the impurity concentration.
This is certainly not the case for the experimental studies'
that obtain the impurity-band density of states from ac-
tivated mobility measurements and X, is of the order of p.

Because of the considerations above and due to the lack
of a good theory for screening by localized states, the in-
verse screening length has been treated as a free parame-
ter. Figure 6 shows impurity bands calculated for a fixed
concentration of impurities and zo for several values of s.
The values appropriate for the [100] surfaces of InAs, Si,
and Ge are s=2, 4, and 8, and zo ——0.25, 2, and 1, respec-

15-

lU
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Ol
g D
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10- Zp = 0.5
s =4

1.6—1.6 -0.8 0 0.8 2.4

E(R )

FIG. 3. Impurity density of states as a function of zo for an
unscreened impurity potential (s =0) and p=1.55 X 10" cm
The arrows indicate the bottom of the conduction band (first
electron subband) Eo.

-0.4 0 0.8

~ ~ If 51 iO

2.0
l.55 Q

FIG. 5. Same as Fig. 1 for zo ——0.5 and s=4. Eo ——0.0062.
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tively, assuming that the impurities lie on the interface. It
is seen from Fig. 6 that the density of states is very sensi-
tive to the value of s.

To summarize the behavior of the density of states with
zo, we have plotted in Fig. 7 the dispersion of the impuri-
ty band as a function of zo for several typical values of
the impurity concentration. The dispersion is a measure
of the bandwidth and is defined by the cumulant

j. /2r= f dE(E E)N(E) —J dEN(E)
I

For very low impurity concentration, in which case the
overlap can be neglected, the behavior of the density of
states can be inferred from the behavior of the hopping
term T(R). However, in the experimentally feasible range
of impurity concentrations, such is not the case. Equa-
tions (29) and (32) show how complicated the dependence
of the bandwidth on the parameters zo and s is. As a

consequence, the bandwidth does not show a monotonic
dependence on either zo or s, as can be seen from Figs. 6
and 7.

Despite the oversimplifications inherent in the model
we used, we can compare our results with some values ob-
tained experimentally. The peak value of the density of
states for the Si/Si02 MOSFET, with p=3.5)& 10" cm
is quoted by Ando et al. ' to be 3.4X10' cm eV ', as-
sociated with a bandwidth of 1.8 meV. We have found
these same parameters to be D (E),„=1.62 X 10'
cm 'eV ' and 1 =44 MeV for zo=2 and s=0, with

p =3. 1 X 10" cm . In a more recent work, Hartstein
and Fowler' found the density of states to be an order of
magnitude broader than inferr'ed from their earlier mea-
surements. This brings their results much closer to the
values we have obtained. They have obtained the value
for D (E),„by fitting the density of states to a Gaussian
distribution with half-width I . We have seen that the
curve we obtained is highly asymmetric with a long tail at
the higher-energy side. This makes a Gaussian a very bad
choice, resulting in a very small value for the peak.

We should comment on the asymmetry a bit more. It
can be seen from Figs. 4 and 5 that the band tail is very
big and the distribution very sharp for large zo and s.
This asymmetry is typical of the structural disorder and
the tail on the right-hand side is a consequence of the
bases we took to represent our impurity system. However,
since the impurity-band tail overlaps the conduction band,
the hybridization between them pushes the impurity band
down and creates resonant states inside the first electron
subband. ' This effect has been considered already in 3D
systems like heavily doped semiconductors. '

IV. CONCLUSIONS

We have calculated the impurity-band density of states
(DOS) for Na+ impurities located near the oxide-
semiconductor interface of an MOS structure. We have
assumed the one-impurity ground state as given by SH
theory. This work is the first attempt at exploring the
one-electron tight-binding formalism in the description of
impurity states associated with inversion layers. The
main shortcomings of this treatment are the Thomas-
Fermi approximation for the electron-ion potential and
the assumption of cancellation between the ionic terms
and the Coulomb term of the electron-electron interaction.
These result in a poor prediction for the position of the

0'
0

'5. l x IP llc

l.55x la"cm-~

center of gravity of the impurity band. Nevertheless, we
think that the main features of the results, namely the
bandwidth and the peak value of the DOS, are not very
sensitive to these approximations.

Finally, the system described here is an impurity band
in the presence of a partially occupied conduction band
(first electron subband). This is not the same as what is
usually investigated in experiments. There, the impurity
DOS is inferred from activated conductivity measure-

0

FIG. 7. Variation of the impurity-density-of-states dispersion
with the concentration and zo for s=0.

ments as the Fermi level is swept through the impurity
band. An experiment more closely related to this model
would be an optical-absorption experiment involving tran-
sitions from the occupied impurity states to unoccupied
states far above them, in the conduction band.
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