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The equilibrium lattice parameters, bulk moduli, cohesive energies, k=o TO-phonon frequencies
and elastic constant C~ of SnTe and PbTe are calculated completely from first principles with use

of the local-density-functional pseudopotential total-energy method including relativistic effects.
Good agreement with experiment is obtained. The approximation of neglecting spin-orbit coupling
is found to be adequate for most purposes. Band structures and valence charge densities are present-

ed. The latter are seen to differ significantly from previous empirical-pseudopotential-method cal-

culations. The form of co~&(P) in PbTe is found to be linear for small pressures I'. Some possibili-

ties for further applications of this method to these materials are discussed.

I. INTRODUCTION

Understanding of the physics of the IV-VI semicon-
ducting compounds 2 B (A =Ge, Sn, Pb; B =S,
Se, Te) has greatly improved over recent years. The initial
focus was on the band structures of compounds with
rocksalt structure: PbS, PbSe, PbTe, and at high tempera-
ture, SnTe and GeTe. These are semiconductors, with a
narrow gap of several tenths of an eV at the L point. The
band edges are highly nonparabolic, and the ordering of
the levels at I. is composition sensitive and determines the
temperature and pressure coefficients of the band gap.
These features, which are important for calculating trans-
port properties, have been studied extensively both experi-
mentally and with a variety of band-structure techniques
including augmented plane wave (APW), orthogonalized
plane wave (OPW), Korringa-Kohn-Rostoker (KKR),
and empirical pseudopotential method (EPM). ' The IV-VI
compounds and pseudobinary alloys are observed to crys-
tallize in orthorhombic, rhombohedral, and CsC1 struc-
tures, as well as rocksalt, as a function of composition,
pressure, and temperature. The tendency of the telluride
compounds towards a transition from the rocksalt struc-
ture to a rhombohedral structure (Fig. 1) with decreasing
temperature is of particular experimental and theoretical
interest. In addition to being the simplest possible
structural type of ferroelectric transition, with two atoms
per unit cell in both the high-temperature and low-
temperature structures, it is associated with an easily iden-
tifiable soft mode (the k=0 TO phonon) and is second or-
der. However, attempts at a fully quantitative under-
standing of this transition are hindered by experimental
and theoretical difficulties inherent in the materials.

A variety of experimental techniques have been
developed to study structural transitions and soft-mode
behavior in ferroelectrics. The application of these tech-
niques to PbTe, SnTe, and GeTe is complicated by the
free carriers arising from defects in the crystals. While
the nature of various defects, especially in PbTe, is itself
quite an active area of study, ' for the purpose of this dis-
cussion the important defects are group-IV or Te vacan-

cies. The electronic states associated with these vacancies
lie deep in the bands so the free carriers do not freeze out
at any temperature. The crystal properties are very sensi-
tive to the presence of the defects. In SnTe, variations in
T, from & 0 to 100 K are well correlated with free-carrier
concentration. '

The change in crystal structure with temperature has
been studied directly in SnTe and GeTe using x-ray dif-
fraction ' and elastic neutron scattering. ' The distorted
structures are described by a rhombohedral Bravais lattice
of angle ct (equal to 60' in the fcc structure) and a basis
with atoms at ao(0, 0,0) and ao(0. 5 —r, 0.5 —r, 0.5 —r).
Thus ~ parametrizes the sublattice displacement, i.e., the
amplitude of the frozen-in optic phonon as shown in Fig.
1. z and o. appear to be continuous at the transition tem-
perature, indicating a second-order (or at most very weak-
ly first-order) transition.

The temperature dependence of the soft-mode frequen-
cy has been measured using inelastic neutron scatter-
ing, " ' far-infrared spectroscopy in PbTe (Refs. 14 and
15) and, in the rhombohedral phase, Raman scatter-
ing. ' ' The temperature dependence is observed to
obey a Curie-Weiss law

T—Tc~ T~ Tc

Te T~ T( Tc

with values T, &0 for SnTe and GeTe and T, &0 for
PbTe. Thus in PbTe the tendency towards instability can
be studied even though no actual transition takes place.
Other relevant measurable quantities include an
anomalous resistivity near the transition due to large
thermal populations of the soft phonons, ' ' and specific
heat, which shows a mean-field-like jump near T, .

In the Cochran-Anderson soft-mode theory of ferroelec-
tricity, ' the stability of the lattice is studied by looking
at its normal modes. In a lattice which exhibits a
structural transition, some modes near the zone center are
imaginary in the harmonic approximation. The strongly
temperature-dependent renormalization of the phonon fre-
quency by anharmonic terms stabilizes the lattice for
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(a)

FIG. 1. Low-temperature rhombohedral structure of SnTe
and GeTe can be obtained as a small distortion of the rocksalt
structure by (a) displacing the two fcc sublattices relative to each
other by a0&(111),corresponding to a frozen-in k=0 optic pho-
non, followed by (b) a rhombohedral shear in the (111)direction
which changes the rhombohedral angle from its fcc value of 60'
to 0..

T& T, . Thus, within this theoretical framework the in-
vestigation naturally divides into two parts.

First, the mechanism which makes the symmetric
structure unstable at zero temperature must be analyzed
and a quantitative model developed which at least repro-
duces chemical trends. The large e0,Z and mixed ionic-
covalent nature of the bonding in the tellurides suggest
that resonant p-bonding results in a large electron-phonon
coupling which drives the instability . Several empirical
pseudopotential models based on this idea have been
developed. One interesting result which emerges
from the analysis of Littlewood and Porod and Vogl is
that the lattice instability is not a consequence of the nar-
row band gap, but results from a combination of crystal
geometry and the balance between ionicity and covalency.

Second, finite-temperature effects must be incorporated
into the theory. This is done by finding a model Harnil-
tonian to describe the anharmonic processes which stabi-
lize the structure at sufficiently high temperatures. In an
anharmonic lattice model, a Hamiltonian which includes
the coupling of the soft mode to the rest of the phonons is
solved in quasiharmonic or self-consistent-phonon approx-
imations. A local-mode model formulates the problem
in real space, using as degrees of freedom the amplitudes
of atomic displacements corresponding to the soft mode
within each unit cell and solving in mean-field theory.
These models reproduce qualitatively the temperature
dependence of the soft mode, but have difficulties quanti-
tatively. A nonlinear shell model which includes the
nonlinear quartic polarizability of the chalcogenide
ion ' ' succeeds, with relatively few empirical parameters,
in quantitatively reproducing the temperature dependence
of the soft mode as well as certain anomalies in the pho-

non dispersion relations.
All theoretical descriptions of the electronic and

structural properties of the IV-VI materials have relied on
empirical input. Experimentally it is known that the
properties of the materials depend strongly on defect con-
centrations and extrapolation to a pure system is not well
understood. Thus, empirically derived theoretical param-
eters implicitly contain defect effects, usually in some
complex way.

In this paper we undertake the first ab initio theoretical
investigation of the electronic and structural properties of
SnTe and PbTe. We present results of relativistic pseudo-
potential total-energy calculations in the local-density ap-
proximation (LDA) for rocksalt structures and rhom-
bohedral structures with various values of the parameters
v. and 0.. A nonrelativistic approach has previously been
applied to study bulk crystals, phonons, defects, and sur-
faces in metals, semiconductors, and insula-
tors with considerable quantitative success. With
the inclusion of relativistic effects to O((e /Ac) ) and the
very high accuracy calculation possible because of the
simplicity of the structure, we can expect similar success
in SnTe and PbTe.

In Sec. II we discuss the application of the relativistic
pseudopotential total-energy method to this system. In
Secs. III and IV we present and discuss the results in the
rocksalt structure for lattice constant, bulk modulus,
cohesive energy, pseudocharge density, and band struc-
tures. In Sec. V we look at results in distorted structures
for stability against distortion, pseudocharge density, and
band structures. In Sec. VI we discuss the k=0 TO pho-
non in PbTe. Finally, in Sec. VII we summarize our re-
sults and make some concluding remarks.

II. METHOD

The theory and practice of self-consistent pseudopoten-
tial total-energy calculations have been thoroughly dis-
cussed elsewhere. ' The total energy can be written in
the following form:

E~, =Ek;„+E,'; +EH +E„,+Eg'g,

where Ek;„ is the total kinetic energy of the electrons; E,';
is the electron-ion interaction energy; EH is the Hartree
energy; E„, is the exchange correlation energy; and E; is
the ion-ion interaction energy. This expression is evaluat-
ed in the momentum space formalism. The primes indi-
cate that the separately divergent q =0 contributions are
excluded. We use the relativistic nonlocal atomic pseudo-
potentials for Sn, Pb, and Te given by Bachelet, Hamann,
and Schluter (BHS) shown in Fig. 2. Exchange and
correlation are included through the I.DA using the
Ceperley-Alder-Perdew-Zunger (CAP Z) parametriza-
tion. Eigenfunctions are expanded in the plane-wave
basis j ~

k+Cx): (k+0) &E~ j. The effect of plane
waves with E& &(k+Cx) &Ez is included using Lowdin
perturbation theory. " Brillouin-zone averages are per-
formed using the special —k-point scheme of Monkhorst
and Pack. E; is obtained using the method described in
Ref. 35. Computations were done on an IBM 370/3033
computer in single precision for Secs. III and IV and in



2304 K. M. RABE AND J. D. JOANNOPOULOS 32

I6—

8

O

0

S FR
16—

l2

8
CL

O~ 0

l6—

8
CL

a
O~ 0

T FR

/2

/2

5/2 ~ d3/2

80

I6—

I I

I 2
r (a.u. )

Sn NR
l6—

I I

I 2
r (a.u. )

Pb NR

-8
2

r(a. u. )

Te NR

~ 8—
CL

4
O0 0

CC

O

O

~ 8—
CL

O
~ 0

-8 I I

I 2
r (a.u. )

-8 I I

I 2
r (a.u. )

I

3
-8

I 2
r (a.u. )

FIG. 2. Nonlocal ionic pseudopotentials for Sn, Pb, and Te. In the top row are shown the fully relativistic potentials constructed
by BHS (Ref. 47) which are nonlocal in j and l, requiring five different potentials s]/2 p]/2 p3/2 d3/2 d5/2 Scalar relativistic

s, p, d potentials are obtained from the weighted average Vi=[1/(21+1}][le &zz+(l+1)Vi+~qq] and are not shown here. In the
bottom row are shown the nonrelativistic pseudopotentials constructed according to Ref. 55, with detailed information given in Table
I. In all crystal calculations, the p potential is used as the local potential.

v= X II&vi&~
I ~g

I V &~»&V I
(2)

so that the number of nonlocal potentials increases and
the size of the plane-wave basis must be doubled
(

I
k &» I

kt &, I
k j & ). In practice, these changes require a

substantial increase in computational effort, both in the
setup of the Hamiltonian matrix and in diagonalization.
However, all relativistic effects except spin-orbit splitting

double precision for Secs. V and VI.
The method used by BHS to construct atomic pseudo-

potentials which contain all relativistic effects to
O((e /Pic) ) was first introduced by Kleinman. ' The
point is that although all-electron calculations in a heavy
atom must be done using the Dirac equation, the valence
electron wave functions outside the core region can be
well described by retaining only the major component of
the Dirac wave function. The radial wave function obeys
an effective Schrodinger equation outside the core. By
performing a normconserving pseudization on the all-
electron Dirac atom, pseudopotentials Vij are obtained,
where the nodeless solution of the Schrodinger equation
specified by a given VIj matches the corresponding major
component of the Dirac wave function outside the core re-
gion. Errors of O((e /Pic) ) occur in the decoupling of
the major and minor components and in the neglect of the
contribution of the minor component to the charge densi-
ty outside the core.

The use of these pseudopotentials in crystal calculations
involves only a straightforward modification of the nonre-
lativistic scheme

can be included by writing

V= g I

l & ( V,',„+V,', 1. S)&l
I

(3)
I

and neglecting V,', , which restores the problem to its
nonrelativistic size. For a semiconductor, inclusion of
V, , in first-order perturbation theory does not change
the charge density, and if higher-order corrections are
unimportant the total energy is approximately unaffected.
These scalar relativistic (SR) potentials are used for all
calculations unless otherwise specified. We examine the
effects of this approximation by comparing fully relativis-
tic (FR) and SR results for some test cases. We also com-
pare SR calculations to results in PbTe and SnTe obtained
using atomic pseudopotentials (Fig. 2) constructed using
nonrelativistic (NR) atomic calculations and the parame-
ters of Table I.

The accuracy of the computation of pseudocrystal total
energy is mainly limited by (i) the representation of the
wave functions in terms of a finite basis set and (ii) the
approximation of Brillouin-zone averages using a finite
sample of k points. The smallness of the unit cell makes
a high level of convergence possible using available com-
putation facilities (IBM 370/3033). Convergence is
evaluated by looking at changes in energy differences be-
tween different structures, rather than at the absolute
value of energy. For the calculations in the RS structure,
good convergence in lattice constant and bulk modulus
(typical errors in energy differences —10 4 Ry) was
achieved with E, =10.5, E2 ——16.5 Ry (-250 plane
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TABLE I. Construction of nonrelativistic pseudopotentials for Sn, Pb, and Te. s, p, and d potentials are calculated from a single
atomic configuration. r, is the core radius parameter described in Ref. 55, adjusted to optimize the smoothness and shallowness of
the potentials. The energy eigenvalues of the nonrelativistic pseudoatoms are compared with those of the BHS FR pseudoatoms given
in parentheses.

Pb

Te

Configuration

1 0.756'0.25

s p

1 2.7sd 0.25

—1.962 76
( —2.050 24)
—1.881 96

( —2. 168 14)
—2.403 57

( —2.521 52)

Eigenvalues (in Ry)

—1.409 28
( —1.460 54, —1.40408)

—1.351 42
( —1.521 06, —1.34200)

—1.725 58
( —1.797 68, —1.71331)

—0.710 13
( —0.70427, —0.699 30)

—0.686 16
( —0.67282, —0.65820)

—0.831 67
( —0.82143, —0.813 88)

1.41

1.25

1.28

r, (in a.u. )

P

1.57

1.40

1.35

1.80

1.50

waves in basis set), and 10 k points (single precision).
Calculations in distorted structures required better energy
resolution [-(2—3) && 10 Ry] and so larger k-point sets
(usually 32 k points but up to 60) were necessary. The re-
sults of total-energy calculations are generally insensitive
to the precise form of the local-density functional, but
we could not test this because only relativistic atomic po-
tentials calculated with CAPZ were available.

A calculation of the total energy of the free pseudo-
atoms is required to determine the cohesive energy. The
observed term values for the atomic ground state are I'0
for Sn and Pb and P2 for Te. The total energies of the
scalar relativistic pseudoatoms are calculated, a spin-
polarization correction is made and the spin-orbit energy
lowering is obtained in first-order perturbation theory in

V, , We neglect the mixing of terms by the spin-orbit
interaction, although in Pb the spin-orbit perturbation
(0.892 eV) is even larger than the energy lowering from
the spin polarization (0.669 eV), and in Sn and Te the
spin-orbit correction is only about a factor of 3 smaller
than the spin-polarization correction.

III. ROCKSALT STRUCTURF

SnTe above its transition temperature and PbTe are ob-
served to crystallize in the rocksalt structure, which can
be described as an fcc Bravais lattice of conventional side
ao with a basis of a Pb or Sn atom at ao(0, 0,0) and a Te
atom at ao(0. 5,0.5,0.5). A given rocksalt structure is
specified completely by a single parameter —the volume
per atom V=itc/8. To obtain the equilibrium lattice
constants, bulk moduli and cohesive energies of SnTe and
PbTe in the RS structure, total energies per atom are cal-
culated at several values of V near V,„~, and fitted to a
cubic polynomial. Calculated points deviate from the fit-
ted curve by &10 Ry/atom. The results for NR and
SR SnTe are shown graphically in Fig. 3. The minimum
of the NR curve occurs at a lower value of V than that of
the SR curve, and has noticeably higher curvature at the
minimum, corresponding to a larger bulk modulus. The
NR curve is shifted upwards in energy from the SR curve
by about 0.2 Ry/atom. In Fig. 4, the various terms con-
tributing to the total energy of SR SnTe are plotted as a
function of V. As the structure is expanded, Ek;„de-
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FIG. 3. Total energy (in Ry) in the rocksalt structure as a
function of volume per atom [in i Br)3] for SnTe. Each vertical
tick equals 10 Ry. The upper data points are calculated using
the NR potentials. The lower points are obtained using the SR
potentials. Cubic polynomial fits are shown as solid lines.
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FIG. 4. Contributions to the SR total energy of SnTe in the
rocksalt structure as described in the text. Each vertical tick
equals 0.1 Ry.
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FIG. 5. Total energy in the rocksalt structure as a function of
atomic volume for PbTe. Same convention as in Fig. 3.

creases slightly, while E„, and E~ show a small increase.
The dominant changes are the increase in-the Ewald ener-

gy E;, which depends only on the 1attice structure and
ionic charges and favors low atomic values and high coor-
dination number, and the electron-ion interaction energy
E,';, which decreases as charge moves from the interatom-
ic regions to become more localized around individua1
1ons.

The E„, (V) results for NR and SR PbTe are shown in
Fig. 5. Here, the minima and curvatures of the NR and

I I I I
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FIG. 6. Contributions to the SR total energy of PbTe in the
rocksalt structure. Same convention as in Fig. 4.

SR curves are very similar; however, the overall shift of
the NR energies up from the SR energies is about 0.4
Ry/atom, twice as large as the shift in SnTe. The contri-
butions to E«, ( V) of SR PbTe are plotted in Fig. 6. The
same trends are evident as in SR SnTe, though there are
quantitative differences responsible for the different Vo
and 8.

TABLE II. Structural properties of SnTe and PbTe calculated using nonrelativistic (NR), scalar relativistic (SR), and fully relatjv-
istic (FR) atomic pseudopotentials, compared to experimental values.

SnTc
NR
SR
FR
Expt.

Crystal energy in
Ry/atom

—11.60314
—11.80814
—11.81250

Cohesive energy
(eV}

7.5
7.2
6.9
5.7'

Lattice constant
(&)

6. 14
6.21
6.23

6.295 (O K)b
6.327 (3O0 K)"

Bulk modulus
(Mba r)

0.59
0.49
0.51

0.378,0.278 (300 K)'
0.46 (0 K)'

O. 42 (3O0 K )'
0.47 (4.2 K)~

PbTe
NR
SR
FR
Expt.

-11.45875
-11.88251
-11.89644

7.5
7.2
6.4
4.7'

6.31
6.31
6.29

6.443 (300 K)"
6.462 (300 K)'

0.48
0.48
0.45

0.456+0.004(0 K)'

' Cohesive energy is obtained from cohesive energies of the elements and heats of formation of the compounds.
Reference 8.' Reference 59.
Reference 58.

' Reference 60.
Reference 61.

~ Reference 62.
"Reference 63.
' Reference 54.
' Reference 64.
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The physical parameters extracted from the fits are
given in Table II for comparison with the corresponding
experimental values. PbTe is observed to remain rocksalt
down to the lowest temperatures at which measurements
have been made, with a value of T, = —100 K extrapolat-
ed from the Curie-Weiss temperature dependence of the
k=0 TO phonon. The calculated SR lattice constant
agrees with the observed room-temperature value to
within 2% and the calculated and observed bulk moduli
agree to 5%. For SnTe, the comparison with experiment
is less definitive than for PbTe, since pure samples do not
crystallize in the rocksalt structure at low temperature.
Thus we compare results calculated in the rocksalt struc-
ture with data taken at 300 K or at low temperature in
samples in which the transition temperature is suppressed
by the defect concentration. The calculated SR lattice
constant agrees with the experimental value to —1%.

The SR calculated bulk modulus is higher than any of the
available experimental values but the variation in these is
so large that the value of a more quantitative comparison
is doubtful. We also include in the table results of FR
calculations which help to support our claim in Sec. II
that a scalar relativistic description is adequate for the
calculation of total-energy differences between different
structures.

The calculated FR cohesive energy is off from experi-
ment by 36% for PbTe and 20% for SnTe. Neglecting
the spin-orbit interaction entirely gives nearly equal
cohesive energies for SnTe and PbTe, while the experi-
mental value for PbTe is 1 eV/pair lower than for SnTe.
Thus, part of the error can be attributed to the treatment
of the spin-orbit interaction in the atomic calculations.
Errors due to the use of the local-density functional are
also expected to be significant.
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IV. ROCKSALT BAND STRUCTURES
AND CHARGE DENSITIES

(a) SnTe

In Fig. 7 we present the band structures of SnTe and
PbTe calculated at Vo for NR, SR, and FR potentials.
The general features compare favorably with previous cal-
culations. Since we are primarily interested in calculating
total energies, which involves averaging valence-band
properties over the Brillouin zone, we have not studied in
detail features of the band structure such as level ordering
and gap structure in the immediate neighborhood of L. A
comparison of the SR and FR band structures shows that
while the spin-orbit interaction certainly has a significant
effect on the band structure, it mainly acts to lift the de-
generacies within groups of scalar relativistic levels. The
spin-orbit splitting of the upper valence band at point I
increases only 30%%uo, from 0.88 to 1.2 eV, in going from
SnTe to PbTe, suggesting these levels have mostly Te p
character, where Te has an atomic spin-orbit splitting of
1.2 eV. The direct gap at point L, is 0.4 eV in both FR
SnTe and FR PbTe.

A comparison of SR and NR band structures shows
some differences in the level orderings, especially near L.
In fact, NR SnTe is not even a semiconductor, but rather
a semimetal. Another important effect is the relativistic
enhancement of the s-p splitting due to the Darwin term,
which is clearly manifested in the atomic eigenvalues. In
the crystal, the splitting between the two lowest bands,
which are s-like, and the next three, which are p-like, is
significantly larger in the SR case than in NR. The
lowering in energy of the s levels is responsible for the
large shift in E„, for NR versus SR potentials observed
above. However, as we have seen, this increased splitting
does not have a significant effect on the calculated equili-
brium properties since only the p levels are significant in
bonding.

Total valence charge densities in the (100) plane for
PbTe and SnTe are shown in Fig. 8. The results for PbTe
can be directly compared with the EPM charge densities
of Ref. 53. In the EPM calculation, the charge density
smoothly increases from the interstitial region to reach its
maximum at the atomic origin, with roughly the same
peak value on the Pb atom as on the Te. In the current
calculation, because of the repulsive nature of the pseudo-
potential, the charge density is zero at the atomic origins,
increasing to a maximum on a shell around the atom, and
then decreasing into the interstitial regions. The shell
around the Pb atom is broad and is at nearly half the
nearest-neighbor distance, while the shell around the Te is
much more sharply peaked and more tightly bound. The
position of the peak in the charge density outside the core
is consistent with the expected behavior of Ss and 6S elec-
trons.

Next we examine the charge density of PbTe band by
band (Fig. 9). The band-by-band breakdown in SnTe is
very similar and will not be shown. Band 1 is almost pure
Te s, with the charge density reaching its maximum on a
shell at about one-quarter the nearest-neighbor distance.
Band 2 is mostly Pb s, with some Te p. This Pb charge
shell represents the more tightly bound portion of the to-
tal charge associated with the Pb, though it still has a

(b) PbTe

FIG. 8. Total valence pseudocharge densities plotted in the
(100) plane of the rocksalt structure for (a) SnTe and (b) PbTe,
in units of electrons per unit cell.

larger radius than the Te s shell. Band 3 and 4 are
predominantly Te p as indicated by the lack of spherical
symmetry in the charge distributions around the Te
atoms. The charge around the Te atom in band 5 appears
nearly spherically symmetric, but guided by the band
structures, the angular decomposition of the wave func-
tions in Ref. 53 and the occurrence of the peak at the ra-
dius of the other p bands rather than the s band, we con-
clude it to be also mainly Te p. Band 6, the lowest con-
duction band, is Pb p and Te s.
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(a) PbTe BAND) (b)PbTe BAND 2

(c) PbTe BAND 5 (d) PbTe BAND 4

(e) PbTe BAND 5 (f) PbTe BAND 6

FICr. 9. Band-by-band pseudocharge densities plotted in the (100) plane of the rocksalt structure of PbTe for (a)—{e) bands ]—6,
respectively, in units of electrons per unit cell.
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V. RHOMBOHEDRAL STRUCTURE

In this section we discuss results of total-energy calcu-
lations in the rhombohedral structure which can be ob-
tained by a small distortion of the rocksalt structure (see
Fig. 1). The rhombohedral Bravais lattice with symmetry
axis along (111) is characterized by V and a, the angle be-
tween the primitive vectors (equal to 60 in the fcc struc-
ture). The basis consists of a Pb or Sn atom at ao(0, 0,0)
and a Te atom at ao(0. 5 —~, 0.5 ~, 0.5 —w). —The three-
dimensional structural parameter space is too large to be
explored completely. A reasonable simplification is to fix

V at the equilibrium volume obtained in the rocksalt cal-
culations, which reduces the parameter space to B =2,
making calculations feasible.

In Fig. 10 we investigate the stability of the rocksalt
structure against the ~ distortion only, holding a fixed at
60'. It is important to note that while the energy lowering
driving the instability in SnTe appears small (1.1)&10
Ry), it is quite definite and moreover is expected to be
small, considering that T, —100 K. PbTe is stable against
this distortion, though the phonon is soft. The plots of
the contributions to E„,(r) in SnTe and PbTe are very
similar (Fig. 11). The Ewald energy E; and the electronic
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(a) ~ =O.OOO (b) ~ =o.o'er

FIG. 13. Total valence pseudocharge densities in (110) plane of SnTe for (a) ~=0.000 and (b) ~=0.015. This sect&on ss advanta-
l es through the bonds like the (100) section and the atoms stay in the plane for ~~0.000. Charge densities are given

in units of electrons per unit cell.

have not made a comparison of NR and SR potentials in
the rhombohedral structure, but it would probably show a
stabilization of the rocksalt structure through the relativ-
istic s-p splitting enhancement, which makes s-p hydridi-
zation unfavorable. Tests show that the inclusion of

spin-orbit splitting preserves the qualitative features of
this discussion.

VI. . TO PHONON IN PbTe

16
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0—
-2'
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happ I
-lp.p

9 p
--93

In PbTe, although the calculation shows the rocksalt
structure is stable, the k=O TO phonon is unusually soft.
Its frequency can be obtained from a frozen phonon cal-
culation, which is particularly simple in this case since the
atomic displacement vectors are already known and the
effective potential depends on the single parameter r. The
quadratic part of V,rr(r) yields a harmonic approximation
to the phonon frequency, but Vd~ is quite anharmonic,
and thus to compare to experiment we need the renormal-
ized phonon frequency. In the self-consistent phonon ap-
proximation, with a polynomial fit

ri LT I"

FIG. 14. Pseudopotential band structure of SnTe with
a=59.5 and ~=0.015 using fully relativistic potentials. The
levels near the gap at the L and T points are compared in the
detail.

I
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3b2~ ficop 45 b3~ 3
2 MB =b )+ coth + z +coth (RcoP/2)

Mco 2 2 (Mco) 2 4 sinh (fiBP/2)
(6)

where M is the reduced mass of the ions. We use this
equation with T=0 and include only a constant coupling
to a single optical branch. Very large k point sets (44 k
points) are required to obtain convergence of co~o. Our
SR values for the bare and renormalized phonon frequen-
cies are 31 and 35 cm ', respectively, to be compared
with the experimental value of 26 cm '. ' The theoreti-
cal values are in reasonable agreement with experiment
given that the frequencies are so low, i.e., that the relevant
energy differences are so small. Among the effects we
have left out are defects, which according to current
models should raise the phonon frequency from its value
in the perfect crystal. Also, FR calculations with 19 k
points indicate that the inclusion of spin-orbit splitting
tends to lower the frequency.

In a recent experiment, ' the Gruneisen parameters was
measured to be about twice as large (19.6) as predicted
values of dT, /dP would imply. We have determined a
value for the mode Gruneisen parameter

d coy~

coy~ dI

from calculations of the TO phonon frequency at four
different values of V(Fig. 15). The rocksalt E„,(V) cal-
culations are used to determine V(P) and B, the bulk
modulus. The result is a Gruneisen parameter of about 7.
Since the result is quite sensitive to the quantitative accu-
racy of the several quantities in the expression, this should
be regarded as a very rough estimate and should not be
used to determine definitely whether or not the observed
large Gruneisen parameter is an intrinsic property of the
material.

On the other hand, what these calculations definitely
show is that coro(P) is very close to linear. This is impor-

F 52

O

Bl

'50

tant because it would rule out explanations for the large
Gruneisen parameter which require a strong nonlinearity
of cozo(P) at small P.

VII. SUMMARY AND CONCLUDING REMARKS

We have presented relativistic self-consistent pseudopo-
tential calculations of the electronic structure and total
energies of PbTe and SnTe in the rocksalt and rhom-
bohedral structures. Specifically, we have calculated both
band structures and fully-self-consistent ab initio charge
densities. The latter were found to differ significantly
from previous calculations. The structural properties cal-
culated include equilibrium lattice parameters, bulk
moduli, cohesive energies, phonon frequencies, and the
shear elastic constant. Good agreement with experiment
was obtained. In addition, we found co~o(P) to be linear
at small P, which is of interest in interpreting a recent ex-
periment.

%'e discussed the sizes of numerical errors in Sec. II.
An estimate of the accuracy to which the properties of the
pseudocrystal reproduce those of the fully interacting
electron-ion system is more difficult to obtain. The valid-
ity of the frozen core approximation and the transferabili-
ty of the pseudopotentials can be estimated by comparing
pseudoatom results with all-electron calculations for dif-
ferent atomic configurations. The accuracy of the LDA
in approximating the true functional is also difficult to es-
timate. One hope is that, in calculating energy differences
between similar structures, the errors cancel out to some
degree. In the final analysis, the validity of the approxi-
mations and rough sizes of errors are judged by agreement
with appropriate experimental quantities.

Finally, we note that we have found that for these ma-
terials, it is a valid approximation to neglect spin-orbit
splitting in total-energy calculations resulting in a great
savings in computational effort. This is important for the
application of this technique to more complicated prob-
lems, e.g. , pseudobinary alloys, defects such as vacancies
and impurities, phonon calculations for k&0, and discus-
sion of finite-temperature effects. The possibility of doing
first-principles calculations on these materials should help
in sorting out the variety of physical effects which deter-
mine their properties and thus in realizing their potential
as simple systems for the study of structural transitions.

29 I I I I

2 IO 209 208 207 206
Volume per atom ( a.u. )

FIG. 15. co&o(V) in cm ' in PbTe. The range in V corre-
sponds to a range in P from 0 to 8 kbar. The solid line is a good
fit to the four calculated points. The calculation was done with
19 k points.
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