
PHYSICAL REVIEW 8 VOLUME 32, NUMBER 1. 1 JULY 1985

Information-theoretic approach to high-temperature spin dynamics
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The information-theoretic maximum-entropy approach is used to obtain high-temperature
dynamical spin-correlation functions from a finite number of rigorously known moments. The
method is applied to the dipolar-broadened magnetic-resonance line-shape function for a simple cu-
bic lattice and other spin-correlation functions. The results improve on the best previous theoretical
results and agree with experiment to within -2%%uo. Modeling of the self-energy with the maximum-

entropy method provides better results than direct modeling of the line-shape function. The results
display an oscillating pattern of convergence which is expected to occur in many physical applica-
tions.

I. INTRODUCTION

Information theory or the maximum-entropy (ME) ap-
proach has been used lately to obtain solutions to several
types of undetermined inverse problems. ' In particular, a
ME technique has recently been developed for obtaining
a spectral function given a finite number of its moments.
In this paper we use the ME approach to obtain the
dynamical correlation functions for high-temperature spin
systems from a finite number of known moments.

We consider two specific spin-correlation functions:
(1) The dipolar-broadened magnetic-resonance line-

shape function for a simple-cubic lattice of spin- —, nu-

cleons. This is the classic spin line-shape problem and at-
tempts have been made at fitting or calculating the func-
tion for almost thirty years. Other than its age and ven-

erability, this function is a good choice for a test case be-

cause the function is accurately known over a reasonable
large time domain from free-induction-decay experi-
ments. Further, the first eight moments have been calcu-
lated.

(2) The spectral function in the q-independent bubble
approximation for the Heisenberg paramagnet. This
function is not physically measurable, but it is the solu-
tion to a one-dimensional integral equation and can thus
be obtained to arbitrary accuracy. In addition, any finite
number of its moments can be calculated with little com-
putational effort.

This paper also discusses two points regarding the ap-
plication of ME to spin problems such as these. First,
dynamical spin-correlation functions do not possess a cut-
off in frequency space but die off exponentially instead.
Our results and arguments indicate that this affects the
convergence of the sequence of ME approximations.
Second, we find that a more accurate solution is generally
obtained by fitting the self-energy associated with a spin-
correlation function than by fitting the spin-correlation
function itself.

As mentioned earlier, there have been numerous at-
tempts at fitting dynamical spin-correlation functions by
matching parameters in an assumed functional form to a
finite number of moments. We shall not comment on

6(co)=f dt G(t)e' '. (2)

It is also convenient to define a self-energy X(co) by the
equation

[co—X(co)]6(co)=i .

As will be discussed in Sec. II, the analysis of the proper-
ties of 6 is simplified by a consideration of X. Both
6(co) and X(co) are complex quantities and are con-
veniently described by their spectral functions A(co) and
I (co), where

a(~) =ReG(~), r(~) = —1m'(~) . (4)

For example, the moments of G and X are usually de-
fined as

M„= "A o 0

11 —p ~ n )2

these except to note that given the answer one wants, one
can almost always invent an appropriate analytic func-
tional form. The ME method, on the other hand, pro-
vides a specific functional form based on an "unbiased"
guess for the values of the unknown moments, which can,
in principle, be carried to arbitrarily high orders. Thus
the method describes a sequence of approximations whose
convergence can be systematically analyzed.

In the rest of this section we shall introduce definitions
and notation that are used in the rest of the paper. Sec-
tion II contains a description of the calculations and their
results, while Sec. III contains a summary and a discus-
sion of these results.

We define a time-dependent spin-correlation function as

6( t) = (I (t)I (O) )e(t)/(I„'),
where I (t) is a nuclear-spin operator in the Heisenberg
representation, the angular brackets ( A ) denote the
thermal average of 3, and e(t) is the step function. The
correlation function in frequency space, G(co), is defined
as
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where Mo ——1, and M„and L„both have the units of co".
These moments are related to each other by the equation

n+1
Mn+1 = g LkMn+ I —k

k=1
(6)

II. CALCULATIONS AND RESULTS

In the problems considered in this paper, only the even
moments are nonzero.

Z
k2
A4

~6
As

[100]
Crystallographic direction

[110]

3.2826
—0.16022

0.18490
—0.70911X 10

0.71366)& 10

2.9766
0.10625
0.91238&( 10

—0.11952~10 '
0.39155&& 10—'

2.8990
0.17105
0.73681 X 10-'

—0.85184~ 10-'
0.24480 ~ 10-'

TABLE II. Values of the A,„ for As(co).

In this section we describe the ME calculations that
were mentioned in Sec. I. Both I (co) and A (co) will be ex-
panded as

Pz(co) =Z 'exp —g k„co"
n=l

(7)

Only the even A,„are nonzero and the iV values A,„are
determined by the first N moments. The numerical calcu-
lations were carried out as described in Ref. 2. By a "con-
verged calculation" we mean that the A,„are independent
of the size of the frequency interval used to calculate the
moments, as the interval becomes infinite. By a noncon-
verged calculation we mean that the X„depend on the size
of the frequency interval used even as the interval ap-
proaches infinity. The fit in the latter case, of course, has
no meaning. Finally, in both examples in this section, we
will use dimensionless units where all frequencies are ex-
pressed in terms of (Mq )

'i . We shall denote the mo-
ments in these reduced units as m„and l„, where

m„=M„ /(M2 )"i

l„=L„/(M2)"i

A. Dipolar linewidth

TABLE I. Reduced moments of the dipolar line-shape func-
tion (Ref. 4) for three crystal directions of the magnetic field.

[100]
Crystal direction

[110]

The reduced moments up to ms and l8 calculated from
Ref. 5 for magnetic fields along the three common crys-
tallographic directions are displayed in Table I. These are
then used in conjunction with Eq. (7) and the procedure
described in Ref. 2 to obtain the A,„and Z. In fact, the
ME procedure has already been applied to this function, '

but only including m2 and m4.
We have calculated Az(co), where

A~(co) =Z 'exp —g A, „co"
n=1

for N=2, 4, 6, 8 for all three crystallographic directions.
We find that the calculation converges for N =2, 4, and
8, but not for N =6. For reasons to be discussed latter,
we believe that values of X=4k +2, where k is a positive
integer, lead to nonconvergent calculations. The Z's and
A,„'s obtained for %=8 are given in Table II. We have
also calculated I ~(co), where

X
I ~(co)=Z 'exp —g A,„co"

n=1
(10)

for N =2, 4, and 6 for all crystallographic directions. We
note that I & requires the moments up to M&+2. In this
case the calculation converges for N =2 and 4, but not for
%=6. Again, we believe that values X=4k+2 will not
converge. The calculated values of the A,„are displayed in
Table III.

Figure 1 shows the experimental line-shape function
for a magnetic field along the [110]direction, along with
two theoretical curves: the eight-moment ME approxima-
tion as(co), and the line-shape function obtained from the
four-moment ME approximation I 4(co) to the self-energy
[which produces six correct moments of A(co)]. The two
theoretical curves agree roughly equally well with experi-
ment. For small co, both are within 2% of the experimen-
tal curve. For large co the tail of the experimental curve
lies below both of the theoretical curves, although the
overall agreement remains very good.

Figure 2 shows the experimental A(co) for a magnetic
field along the [100] direction, along with the line-shape
functions obtained from I z(co) and I 4(co). The line-shape
function obtained from I & is indistinguishable from the
experimental curve, on the scale of the figure. This agree-
ment is particularly satisfying since the experimental data
for the [100] magnetic field have the least uncertainty. In
contrast, the use of I 2 produces —10% discrepancies and
a spurious peak at co=1.2. This peak may be understood

m2
m4
m6
ms

l2

14

l6

~s

1

2.1244
6.2228

24.5798

1

1.1244
2.9740

12.994

1

2.3019
7.4791

33.5277

1

1.3019
3.8753

19.176

1

2.3690
8.0438

40.8099

1

1.3690
4.3059

25.217

z
A2

A4

3.082 35
0.15126
0.055 468

3.403 7
0.082 987
0.050 572

TABLE III. Values of the A,„ for I 4(m).

Crystallographic direction
[100] [110]

3.474 4
0.086 966
0.044 235
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TABLE IV. Values of 3 (co =0) obtained for the q-
independent bubble model: exact results and two theoretical ap-
proximations. I.O—

2
4
8

12

From Az

1.26
1.26
1.16
1.17

From I ~

1.13
1.13
1.14
1.14

Exact

1.14
1.14
1.14
1.14

3
a

as follows: I 2(cp) is a Gaussian approximation to the
self-energy. The inclusion of additional moments flattens
the peak of the Gaussian. I z(cp) is therefore too large at
co=0 and too small at larger co, leading to a line-shape
function which is too small at rp =0 and having a peak at
finite co.

Figure 3 shows the time-dependent spin-correlation
function G(t) for a magnetic field in the [100] direction.
Along with the experimental curve, we display the Fourier
transforms of Ss(cp) and the line-shape function obtained
from I 4(co). The best previous theoretical results for
A(cp) were obtained using A&, our calculations show that
As(t) is practically indistinguishable from A4(r) on the
scale of the figure. Both theoretical curves agree very well
with the experimental curve on the scale of the inset.
However, on the expanded scale it is clear that I 4 pro-
vides a much better description of A(t) than does As..
The height of the peak at t =5 obtained from I 4. is within
10%%uo of the experimental height, while that in As is off by
50%. The depth of the trough at t =7 obtained from I &

is roughly —', of the experimental depth, while that in A8
is less by a factor of —,'.

These results are at first surprising in view of the fact
that I 4 uses as input only M„with n (6, while 3 8 uses
M„with n (8. However, we feel that the ME approxi-

O.O

FIG. 2. Line-shape functions for magnetic field along the
[100] direction. Solid line: experiment (Ref. 4) and theoretical
values obtained from I &{co) [cf. Eq. (10)]. Dotted-dashed line:
obtained from I &(co). Frequency measured in units of (M2)'

mation is more appropriate for I than for A, for two
reasons:

(1) The number of moment diagrams ' contributing to
I is smaller than that contributing to A. The frequency
dependence of I is therefore expected to be smoother than
that of A.

(2) The large-t behavior of G(t) is expected to be dom-
inated by a term proportional to e 'cos(pt+pp), arising
from the singularity in G(cp) nearest to the real axis; a
and p are determined by the position of the singularity,
and Pp by the phase of its coefficient. The approximation

G(rp) =

has poles off the real axis and can thus obtain the correct
asymptotic behavior. By contrast, an approximate

I.O
0.05—

0
I

0 5

0.8
0

0.7 0.0
IO

s i i a

FIG. 1. Line-shape functions for magnetic field along the
[110] direction. Solid line: experiment (Ref. 4). Dotted line:
As{co) [cf. Eq. (9)]. Dashed line: obtained from I 4{co) [cf. Eq.
(10)]. Frequency given in units of {M2)'~ .

FIG. 3. Dynamical spin-correlation functions for magnetic
field along the [100] direction. Solid line: experiment (Ref. 4).
Dotted line: obtained from As [cf. Eq. (9)]. Dashed line: ob-
tained from I 4 [cf. Eq. (10)]. Time is given in units of
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We have also performed ME fits to the correlation
function in the q-independent bubble approximation
described in Ref. 5. This is not a physically measurable
function, but it is described exactly by the integral equa-
tion (in reduced units)

1 (co)= I A(co')A(co —co') . (12)

Further, high-order moments of this function can be easi-
ly calculated. Thus it is a useful model for testing the
method.

Our calculations support our beliefs about convergence
that were discussed earlier. That is, A&(co) and 1&(co)
both converge only for %=4k and not for %=4k+2.
This was tested up to X= 12. We believe that this alter-
nating convergence property is connected with the absence
of a sharp cutoff in 3 (co) and 1 (co). Both of these are be-
lieved to decay as e "for some a. The ME approxima-
tions 3& and I &, on the other hand, behave as
exp( —A,~co ) for large co. Thus for A~ and 1 ~ to repro-
duce the e "behavior over a large frequency interval, a
large cancellation between the the high-order terms in the
exponent is necessary. This requires the signs of the A.„ to
alternate, which we believe is connected with the alternat-
ing convergence property. The alternation in the signs of
the A,„ is seen explicitly in Table II. The necessity of the
alternation is also apparent if one observes that expansion
of the exponent o.co in powers of co is equivalent to expan-
sion of v x in powers of x —xo, where xo )0; this expan-
sion has alternating coefficients for any xo.

&s was seen earlier for the dipolar linewidth function,
the fit to the exact function is demonstrably better when
I & is used as an intermediate step, rather than direct use

Fourier transform of A~(co) using the method of sta-
tionary phase indicates an asymptotic behavior dominated

—ut N/N —1

by a term proportional to e ~', rather than e
I

B. q-independent bubble

of 2&. This is illustrated in Table IV, which displays the
exact A (co =0) along with the values obtained from 2&
and 1 ~ for X & 12. (The values for X =2 and 4 are iden-
tical because the ratios of the fourth moments to the
squared second moments are such that A,4 ——0 for both Aq
and 1 4.) For K &4, Az differs from the exact value by
over 10%, while the value obtained from 1"& is already
correct to within less than a percent. For %=12, the
value obtained from 1 ~ is essentially converged to the
correct value, while A~ is still high by 3%%uo.

III. CONCLUSION

The "unbiased" property of the extra information sup-
plied by the ME method has previously provided greatly
improved solutions for a number of missing information
problems, ranging from image reconstruction to finite-
temperature statistical mechanics. ' The preceding
analysis has demonstrated that the ME method provides
an excellent description of the properties of high-
temperature spin systems. We have also found same pre-
liminary guidelines regarding the specific mode of appli-
cation: much better results are obtained through the use
of the self-energy operator as an intermediate step, instead
of direct ME modeling of the line-shape function.

Future work in this field should extend the present
analysis to obtain systematic criteria for the applicability
of the method to problems of condensed-matter physics,
and firm guidelines for the mode of application.
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