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Band-gap renormalization in semiconductor quantum wells containing carriers

D. A. Kleinman and R. C. Miller
AT&T Bell Laboratories, Murray Hill, iVew Jersey 07974
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A theoretical calculation is presented of the so-called "gap renormalization" due to free carriers
for the quasi-two-dimensional (2D) electrons or holes confined in a semiconductor quantum well. A
general theory of the effect is developed assuming parabolic subbands, the Hubbard approximation
(random-phase approximation) for the correlation energy, and a model potential containing the well
thickness for.the effective 2D Coulomb interaction. Results are presented for gap renormalization
versus carrier density for GaAs wells of 81 and 217 A thickness. An experimental measurement of
gap renormalization is presented which is based on an analysis of the excitation and luminescence
spectra of a p-type modulation-doped Ga(Ga~ Al„)As multilayer sample of well width 107 A and
hole density 5.3&(10' cm . The calculated value is in excellent agreement with the experimental
value (6.3 meV) in this case.

I. INTRODUCTION

Despite several studies' of the quasi-two-dimensional
(2D) optical spectra of semiconductor quantum wells con-
taining carriers, particularly the 6aAs wells in the
Ga(Ga~ „Al„)Assystem of heterostructures, little is
known experimentally about the so-called "band-gap re-
normalization (BGR)" that presumably occurs in quasi-
2D electron or hole systems due to an energy-lowering
correlation of the free carriers. This term was originally
applied to the case of a 3D electron-hole plasma, the gap
referring in this case to the band edges having the carriers.
However, it applies also to the much more common case
of a sizable equilibrium population of one type of carrier.
In the case of quasi-2D spectra usually a number of gaps
between the different electron and hole subbands are ob-
served, and the question arises as to what gaps are affect-
ed by one type of carrier and by how much. By "quasi-
2D" we mean that the finite thickness of the layer in
which the carriers are confined must be taken into ac-
count.

In the 3D plasma case it is known that the correlation
effect can to a good approximation be regarded as a rigid
shift of the electron and hole b'ands (in the region of the
band edges) toward each other (hence the term "gap re-
normalization" ). Calculations for the 2D case, in the
limit of zero thickness, for n-type Si inversion layers with
only the lowest subband occupied, have also shown a near-
ly rigid band shift. The apparent rigid shift of the bands
can be explained by the short range of the screened
Coulomb interaction which samples a considerably larger
region of k space than that occupied by the Fermi sea,
making it a matter of indifference whether a recombining
electron-hole pair is near the bottom or the top of the Fer-
mi distribution. The rigid-shift picture makes possible a
very simple calculation of the gap change for the plasma
in terms of the derivative of the average energy per pair
with respect to the carrier density.

For the quasi-2D case it is reasonable, in view of the
paucity of detailed experimental information, to take over

without proof the rigid-band-shift picture. Also without
proof it is reasonable to assume that all gags are reduced
by roughly the same amount by a carrier population of ei-
ther kind. Thus a population of heavy holes in the lowest
hole subband is polarized by its screened interaction with
any carrier, either hole or electron, causing reduction of
energy. In any recombination process which removes a
hole and an electron the apparent reduction of gap is the
sum of the polarization energies of the electron and hole,
or approximately twice the BGR computed from a con-
sideration of the hole population alone. On the other
hand, according to this view, a heavy-hole population
does not cause any significant relative shift of the various
heavy- and light-hole subbands, or the various electron
subbands, for processes that do not involve removing an
electron-hole pair.

According to our viewpoint the BGR can be detected
and measured spectroscopically in quantum wells contain-
ing equilibrium carriers by looking for a single downward
energy shift of all the definitely assignable features in the
spectrum compared with what one expects for the same
carrier density and the same well width neglecting the
BGR. Ordinarily the well width L is known approxi-
mately from the growth process, but not accurately
enough for evaluating the effects of carriers, so one de-
pends on the spectrum itself to finally fix L. According
to our viewpoint the BGR cancels out of the differences of
transition energies, so if a number of transitions are ob-
served the differences can be used to fix L.

One possible difficulty is that even if a single down-
ward energy shift can be identified in the spectrum, it in-
cludes both the contribution of the BGR and of the exci-
ton binding energy, since most or all the features in the
spectrum are due to excitons. In a separate paper the
theory of quasi-2D excitons in the presence of a Fermi sea
of either type will be discussed, and it will be shown that
even for quite small carrier densities the exciton binding
energy can be very small while the optical strength still
remains observable. This suggests neglecting all exciton
binding energies in carrying out the BGR analysis
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described above.
An experimental BGR analysis is presented here for a

modulation p-doped quantum well having width
I.—100 A and hole density X~ -5.3&10' cm . From
a comparison of the measured excitation spectrum
with the calculated spectrum neglecting exciton binding
energies the sharper value I.=107 A and the single shift
2EBGR ——12.3 meV were determined. An analysis of an
undoped sample is also presented as a control to show the
soundness of the method. The success of the BGR
analysis in this case tends to confirm the validity of the
rigid-band-shift picture and our viewpoint of BGR. The
calculated ENGR ——6.0 meV in this case agrees well with
the measured value.

The quantum well has in general a number of subbands
(2D energy bands for motion along the well) for electrons
and holes. The theory and calculations given here neglect
all but the lowest electron and hole subbands, which are
assumed parabolic. Thus the carrier densities must be low
enough that higher subbands are not populated. The par-
abolic assumption is even more restrictive in the case of
holes. The upper limit on hole density depends on L„but
typically for I.—100 A the parabolic assumption is not
too bad up to densities X~-3&&10" cm . The results
are not necessarily limited to quantum wells, but may also
apply to certain cases of carrier confinement at a single
interface, providing a suitable estimate for the effective I.
is used.

The calculations of BGR were actually performed using
a program developed to compute the quasi-2D electron-
hole —liquid (EHL) binding energy and equilibrium densi-
ty. The results on the EHL will be reported in another pa-
per. The theory underlying this program is a straightfor-
ward adaptation to 2D of the method of Brinkman and
Rice, which in turn is based on the random-phase-
approximation (RPA) method of Hubbard' for a single-
component electron gas. Some of the necessary formulas
for the quasi-2D case have been given by Kuramoto and
Kamimura, "who considered the EHL in the limiting 2D
case 1.~0. This limit, however, is rather unphysical. To
treat the more interesting quasi-2D case we have used the
model potential used previously' to discuss the biexciton
in quantum wells. This potential contains a parameter
which has been calibrated against I, and describes ap-
proximately the effect of finite I. in reducing the 2D
Coulomb interaction between particles.

where y
' is a measure of the quantum-well width I.

which has been previously calibrated. ' The important
part of the energy per particle can be written

EF =(mA /2m)N =pF /2, (3)

where m is the mass and pF the chemical potential in the
absence of interaction (Fermi level). The exchange ener-
gy' Ez is the additional contribution to the interaction
energy of free particles due to antisymmetrizing the total
wave function

E = —N-'(2~)-' f f dkdk'(
~

k —k
~
),

where k, k' are restricted to the interior of the Fermi cir-
cle,

k &kp fi kF/2m=pF .

By inserting u(k) from Eq. (1) and integrating first over
k, k', E~ can be written

Ex (4/3')——(e—leo)kF[1 I(p)]—
where

I(p)=(3~/4) f dxx J&( )xe ~" when p=y/kF .

(7)

For numerical evaluation it is convenient to transform
I(p) to the form

I(p)= —,
' f dp(1+ cosp)[(p +2—2cosp)'~z —p] .

I(p) approaches one as p goes to zero. It is clear that
I(p ) contains the effects of finite width.

The correlation energy Ec is given in the RPA of Hub-
bard' by

p dk
4~N " (2~/

F +Ex+Ec
The Fermi energy Ez is the average kinetic (or band) en-
ergy for free particles

II. THEORY OF SINGLE-CARRIER BGR
AT ZERO TEMPERATURE

&& f den sgn(XO) tan —Xp

We consider a degenerate distribution of holes or elec-
trons of density N in a quantum well occupying a para-
bolic subband. These particles interact through a poten-
tial'

u(r) =(1—e r")/r,

where tan '(X ) is defined to lie in the range
0& tan '(X) &m, and Ao(k, co) and Xo(k, co) are defined
by the RPA dielectric function

e(k, co)Rp~ /ep ——1 Ap(k, co) —imp(k, co)— (10)

u(k)= f dr u(r)e'"'

=(2m.e /eo)[k ' —(k +y )
'~ ],

Cxeneral expressions for Ap, Xp, valid in 2D as well as 3D,
are given by Hubbard. ' The evaluation of these for the
2D case at zero temperature leads to the expressions"
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Xp(k, co) = rnu (k) 1—
~2X

2 1/2
y+X

2X

2
2 1/2 '

y —X .&0
2X

mu (k)o,co
y+X

2X2

2X

y+X

2 1/2
y —X2

2X2

2X

y —X2

2 1/2

—1, X=k/kF, y = 2m to/hkF,

where [X]'~ is defined to vanish for x &0. Hubbard'
proposed an exchange correction to the RPA in which the
quantity in large parentheses in Eq. (9) is replaced by

T

sgn(X) tan —Xo
X 1 —A

(12)

with

The function f(k) must satisfy f(k)~ —,
' as kazoo to

take into account the fact that large k corresponds to
close encounters that are forbidden by the exclusion prin-
ciple when the particles have the same spin. The expres-
sion actually suggested by Hubbard is not appropriate for
the 2D case as it stands, but if it is -written in the more
general form

A(k, to) = [1—f(k)]Ap(k, co),

X(k, to) =[1—f(k)]So(k, co) .
(13)

f(k) =U[(k ~k~)'i ]/2U(k),

it can be applied to the 2D case.
It is convenient to write Eq. (9) in the form

A kF &of dt+ f, dt (t+ t } . sgn—(X) tan

t+ ——(y+X') /2X,

p =d(NE)/dN,

and the change in gap is defined" to be

b G=@, pp B[N(EX+E—c)]/——dN &0 .

(17)

(18)

This was evaluated to typically three figures from the
computed values of (Ex+Ec) at five points N (spacing
h ) using the derivative formula

fo =(f—z
—8f—i+8fgi f~z)/12" . —. (19)

The band-gap renormalization, defined to be positive, is

EBoR = —AG(N) (20)

As discussed in the Introduction, we interpret the BGR as
an energy lowering due to the polarization of the Fermi

noting that when t+ &1 the limits on t become +1.
The I;+ integral can be written as finite integrals

f dt+ f(t+)= f dt+ f(t+)~ f du f(u-')/u'. (16)

All the finite integrals over t, t+, and u can be evaluat-
ed accurately be the Gauss-Legendre numerical quadra-
ture method. ' From tests on exactly integrable functions
qualitatively similar to Xo, the accuracy of these integra-
tions can be monitored. Using a quadrature of order 12
we obtained in most cases an accuracy in Ec of four sig-
nificant figures, giving an accuracy typically of three fig-
ures in E.

The chemical potential is

sea by each particle. Any charged particle, whether be-
longing to the Fermi sea or not, polarizes the Fermi sea
with approximately the same lowering of energy. There.
fore the gap for the creation or annihilation of an
electron-hole pair will appear to be reduced by approxi-
mately 2EBGz. On the other hand we expect essentially
no relative shift of bands for processes in which a hole or
electron makes a transition between subbands.

III. CALCULATIONS OF BGR
FOR GaAs QUANTUM WELLS

We use the same material constants for GaAs as were
used previously' in discussing the exciton and biexciton.
The mass m in the case of holes is the transverse heavy-
hole mass called m+ in Ref. 12. The values of m~, m~
are relevant here only in that they determine the value of
m+. The only constants we actually use in calculating
the BGR are

eo ——12.2, m+ ——0.099, m, =0.067 . (21)

The well-width parameter y in Eq. (1) is shown in Fig. 1

of Ref. 12.
Calculations have been carried out giving b,G(N) as

follows: (a) holes with L = 81 A, (b) electrons with
1.=217 A, and (c) electrons with 1.=81 A. Figure 1

shows cases (a) and (b); case (c) is not shown because it lies
almost exactly 6%%uo below curve (a) over the whole range.
At the high-density end the curves approximately follow a
power law
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20 IV. DETERMINATION OF BGR
FROM AN EXPERIMENTAL SPECTRUM

IQ—

—AG ~X, a-0.32 . (22)

A breakdown of the separate energy terms for case (a) is
given in Table I. We believe that the results presented
here are sufficient for estimating the BGR for most cases
of interest that lie in the range of validity of the theory.
Roughly, the criterion for N in the case of holes is that
EF should not exceed ~ of the energy separation of the
lowest heavy- and light-hole subbands (to avoid excessive
nonparabolicity); in the case of electrons EF should not
exceed —,

' the separation of the lowest subbands at k =0
(to avoid populating the higher subband). Note that the
theory should be valid for considerably higher electron
densities than hole densities.

~' "(cm-"i

FIG. 1. The band-gap renormalization at low temperature
for GaAs quantum wells containing a carrier density N (holes
Nl„electrons N, ) and having well width L. (a) N~ ——N,
L =81 A, (b) N, =N, L =217 A. Another case, (c) N, =N,
L =81 A, is not shown but lies 6% below curve (a).

The modulation-d. oped sample to be discussed in detail
was grown by molecular-beam epitaxy (MBE) with 20
periods of alternating layers (001) of 115 A of GaAs and
153 A Gai „AlxAs (x =0.44). The center 51 A of each
barrier was doped p-type with [Be]-2&&10' cm, leav-
ing 51-A-wide undoped alloy layers next to each interface.
The hole density in the GaAs quantum wells was mea-
sured by Hall effect' to be 5.3&&10' cm +20—30%.
The mobility (2350 cm /Vsec at 4 K) was too low to
permit more accurate density measurements by
Shubnikov —de Haas effect.

The excitation and luminescence spectra at 5 K are
shown in Fig. 2.- These data were obtained using tech-
niques described in Ref. 2 and references cited therein.
The excitation spectrum was obtained with the detection
set at 1.54 eV and exhibits the four exciton transitions la-
beled in the figure. The main exciton peaks are due to
n =1 heavy- and light-hole excitons E&~ (1.5470 eV) and
EU (1.5555 eV), respectively, and the n =2 heavy-hole ex-
citon Ezl, (1.6500 eV). The assignment of E&i was veri-
fied by the circular polarization of this peak. ', The weak
"peak" labeled Ei31, (1.606 eV) is a forbidden transition
(An =2) that results from exciton transitions involving
the n = 1 electron and the n =3 heavy hole. The lumines-
cence peak El occurs at 1.5430 eV on the low-energy side
of EIp.

For comparison as a control we show in Fig. 3 the exci-
tation spectrum on the same energy scale of an undoped
sample having nearly the same well width ( —105 A).
Note in particular that compared with Fig. 2 (a) E|1, is
stronger than E&i, (b) Eih, Eii, and E2~ are all much
stronger relative to the continuum level, (c) there is essen-
tially no Stokes shift between E&~ and the luminescence
peak, (d) there is a minimum between Eu, and E,I that
drops well below the level of the continuum beyond E&i,
and (e) the continua following E&i and E2I, are approxi-
mately level like the 20 density of states. The compar-
isons we cite here are not limited to these two samples,
but seem to be representative of p-modulation doped and
undoped samples with well widths in the neighborhood of
—100 A and hole densities N & 3 & 10" cm

The transition energy Ez. for creating an electron-hole
pair of zero total momentum along the quantum well can
be written

TABLE I. The energies of Eq. (2) and gap change AG of Eq. (18) versus density N for case (a) of
Fig. 1 (holes, L =81 A).

N (cm }

3.3 )& 10"
1.9
1.2
0.61
0.37
0.13
4.8 X 10'
2.5
1.2

EF (meV)

4.16
2.34
1.50
0.764
0.462
0.166
0.060
0.031
0.015

—6.59
—5.09
—4.15
—3.02
—2.38
—1.45
—0.877
—0.629
—0.441

—1.74
—1.79
—1.77
—1.69
—1.65
—1.45
—1.25
—1.17
—0.944

—4.17
—4.54
—4.42
—3.95
—3.56
—2.73
—2.07
—1.71
—1.37

—11.1
—9.18
—7.96
—6.23
—5.27
—3.86
—2.73
—2.28
—1.82
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CO
QJ
KR

CL

(23)ET=6+ P e + 8 p +Fz +Fg —B—Ue Ug

where 6 is the gap of the bulk material, W, and W& are
the confinement energies of the electron and hole, respec-
tively, in the quantum well, F, and F~ are the kinetic en-

ergies (zero if neither carrier belongs to the Fermi sea) at
the Fermi momentum kF (regardless of which carrier
forms the Fermi sea), 8&0 is the binding energy of the
exciton (or 8&0 is the energy of an ionized "free"
electron-hole state), and U&0 is the polarization energy
of a charged particle with the Fermi sea. No contribution
due to space charge in the well is explicitly shown because

Ei»

O I I I I I I I I I I I I I I I j I

1.51 1.53 1.55 1.57 1.59 1.61 1.63 1.65 1.67 1.69 1.71 1.73

PHOTGN ENERGY (eVj

FIG. 2. Photoluminescence and excitation spectrum at 5 K
for a p-type modulation-doped multi-quantum-well sample of
Ga(Ga~ „Al )As with x=0.44, L —115 A, and N~ ——5.3&(10'
cm . Excitation intensity was -0.1 W/cm .

6=1.5192 eV (GaAs)
and the effective masses, as represented by a linear inter-
polation between GaAs (Ref. 17) and A1As (Ref. 18) are
given by

m, (x ) =0.0665+0.0835x,
m), 1, (x)=0.34+0.175x,

m~~(x) =0.094+0.069x,

(26)

in units of the free-electron mass. The apportionment of
the gap discontinuity Eq. (25) between conduction (Q, )

and valence (1—Q, ) bands is taken to be' Q, =0.57. This
value together with the GaAs (x =0) masses in Eq. (26)
are consistent with both square-well and parabolic-well
spectra. ' The space-charge ("band-bending") potential
for %=5.3 && 10' cm and L = 107 A is calculated to be
1.3 meV at the center of the well; since this is rather small
we shall not go into details here on the calculation of this
potential. The density %=5.3 & 10' cm corresponds
to the sum of Fermi levels

it cancels out of 8', + 8'A, ,
' however, the space-charge po-

tential must be taken into account in the calculation of
8' and 8'~. As discussed in the Introduction we shall
assume that

U, + Ug ———266, (24)

where —56 is the BGR Eq. (20) calculated for the Fermi
sea alone. A recent theoretical study of excitons in the
presence of a Fermi sea (to be published elsewhere) indi-
cates that B should be negligible in the present case, but
the optical strength should still be sufficient to produce
peaks in the spectrum (as observed). At several times
higher density the E~~ is predicted to disappear due to the
Pauli exclusion principle (as observed). '

We assume that the relevant gap in the Ga~ Al„As
barrier is the direct (I ) gap even when the lowest gap is
indirect. The gap change at the well interfaces is then
given by'

6(x ) —6= 1.425x —0.90x + 1.lx ( eV),

F, +Fh ——3.0 meV . (27)

The quantum-well eigenvalues 8'„W~were computed for
a single well with the boundary conditions %(z)~0 as
z~+ oo, and %'(z) and m '4'(z) continuous at
z =+I./2.

The calculated confinement energies are given in Table
II for I.=107 A. The calculated and observed transition

TABLE II. The confinement energies 8; (electrons), 8'qq

(heavy holes), and 8'g, (light holes) appearing in Eq. (23) calcu-
lated for L =107 A relevant to the analysis of the spectrum
Fig. 2.

1.52 1.54 1.56
I i I I I a I s I I I s I

1.58 1.60 1.62 1.S4 1.66 1.6$ 1.70

PHOTON ENERIY (eV)

FIG. 3. Photoluminescence and excitation spectrum at 5 K
for an undoped multi-quantum-well sample of Ga(Ga~ Al„)As

0
with L =105 A. The barriers were actually superlattices with
average composition x =0.24.

27.5 (meV)
113.1
247.8

8.4
30.2
60.7

117.0
179.2

22.2
84.4

182.2
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TABLE III. The analysis of the spectrum Fig. 2 for L =107 A showing transition energies observed
{obs), calculated (calc), the difference (calc —obs), and the deviation of (calc —obs) from its mean value
0.0.123 eV.

E

obs

1.5430 {eV)
1.5470
1.5555
1.6500

calc

1.5551
1.5581
1.5689
1.6625

Avg. =

calc —obs

0.0121
0.0111
0.0134
0.0125
0.0123

Deviation

—0.0002
—0.0012

0.0011
0.0002

Ei(—E~(
E2( —Ei(
Ei(—EJ
E2( —Ei(
E1h EL

0.0085
0.1030
0.0125
0.0945
0.0040

0.0108
0.1044
0.0138
0.0936
0.0030

0.0023
0.0014
0.0013

—0.0009
—0.0010

E~GR ——6.22 meV (measured) .

We regard the fit as satisfactory. The largest deviation
of (calc —obs) from the average (calc —obs) is 1.2 meV;
the largest (calc —obs) for a difference of transitions is 2.3
meV. It should be noted that if the density is increased to
X=6.8 )& 10' cm, corresponding to the observed
Stokes shift E~~ Ez ——4.0 meV—, the above-mentioned de-
viation becomes —0.2 meV and the above-mentioned
(calc —obs) becomes 1.3 meV. The calculated BGR es-
timated from Fig. 1 is 6.0 meV, in excellent agreement
with Eq. (28).

The forbidden E~3h transition is not used in the analysis
just given because of its breadth. The calculated value is
1.607 eV, which reduced by th'e average of (calc —obs) in
Table III becomes 1.595 eV. This does not agree well
with the E~3~ "peak" at 1.606 but closely corresponds to
the beginning at 1.597 eV of the broad E»q structure.
We note that the observed and calculated E~3~ agree well
without including BGR. We can not explain this
anomalous behavior at the present time.

TABLE IV. Analysis of the spectrum Fig. 3 for L =105 A
showing the accuracy of calculated transition energies.

El(
E2(
E13h

obs

1.5442 {eV)
1.5541
1.6389
1.5981

calc

1.5433
1.5546
1.6370
1.598

calc —obs

—0.0009
—0.0007

0.0019
0

energies (omitting U, + Uh ) are compared in Table III for
L, = 107 A. The calculated E

& j, is taken to be
E~p, =Er. +F, ++~. Actually a number of calculations
were done for various values of L —100 A; the value
L =107 A was selected to make the quantity (calc —obs)
for E2~ equal to the average (calc —obs) for Er, E~~, and
E&~. This is in keeping with our viewpoint that all ob-
served transitions should be shifted by the same amount.
The differences of transitions are also given in Table III;
according to our viewpoint these should not be shifted rel-
ative to the calculated values. From the average shift of
0.0123 eV we obtain the measured BGR

The spectrum Fig. 3 for the control sample is included
here to show that in the absence of carriers the observed
and calculated transition energies agree closely. This sam-
ple grown by MBE had GaAs wells with L, =-106 A and
barriers of Ga~ „Al„As(x=0.24) with L =150 A with
no doping. The calculated and observed transition ener-
gies are compared in Table IV. The calculated values in-
clude the exciton energies' for L = 106 A

BHH ——8.8 meV, BJ.~ ——10.2 meV, (29)

which are based on experimental observation of the exci-
ton 2S excited state. Alternative values of B have been
calculated taking into account the penetration into the
barrier, and other alternative values have been calculated '

using a variational wave function that interpolates for all
values of L between the 2D L —&0 and 3D L~ao limits.
The good agreement between calculated and observed Ez-
in Table IV would hold regardless of which of these exci-
ton energies 8 was used.

V. SUMMARY AND CONCLUSIONS

Band-gap renormalization (BGR) at low temperature in
a quantum well has been studied theoretically for either
electrons or holes and experimentally for the case of holes.
The theory is based on the RPA method of Hubbard'
and the model potential Eq. (1), which has previously'
been calibrated against the well thickness I.. The quantity
calculated is the chemical potential Eq. (17); this can be
interpreted as a change in gap EG given by Eq. (18) if the
picture of a rigid shift of the subband is valid. It is ar-
gued that EG can be ascribed to the lowering of energy
due to polarization of the Fermi sea by a charge carrier.
According to this viewpoint any process which involves
the creation or annihilation of an electron-hole pair has an
apparent gap change of approximately 266, regardless of
what subbands the pair occupies. On the other hand there
is essentially no relative shift of the various electron or
hole subbands for transitions that do not change the num-
ber of carriers. Our calculated results for BGN as a func-
tion of density N given by Eq. (20) are shown in Fig. 1.
The various energy terms in Eq. (2) for GaAs wells are
listed for a series of N values in Table I.
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The excitation-luminescence spectrum for a p-type
modulation-doped multi-quantum-well sample with
L —100 A shown in Fig. 2 was analyzed according to our
viewpoint of BGR. The analysis is shown in Table III for
L = 107 A, a value that we found gives the approximately
uniform downward shift of energy of the four transitions
listed. From the shift of —0.0123 eV we deduce
EBGR ——6.2 meV. The forbidden transition E&3I, was
found to be anomalous for reasons not yet understood.
Also analyzed as a control to check on the accuracy of
transition energy calculations was the spectrum Fig. 3 for
an undoped sample with L= 105 A. The results are
shown in Table IV.

The procedure of "fine tuning" L from the relatively
rough value estimated from growth conditions is standard
practice in fitting quantum-well spectra, and is justified
by the fact that a number of transitions are included in
the fit. According to our viewpoint of BGR one should
try to find an L for samples containing carriers that fits
the spectral peaks (with exciton binding neglected) except
for a common shift of energy. This proved successful in
the sample discussed here, and tends to confirm the
correctness of our viewpoint. Also confirmed is the excel-
lent agreement between the calculated (6.0 meV) and mea-
sured BGR (6.2 meV).

—EG(meV) =CiV(cm )

C=2. 1)& 10, a=0.36 (Vinter),

C=2.2&&10, a=0.32 (present work) .

(30)

The agreement is gratifying, but it should be mentioned
that Vinter found that taking the finite thickness into ac-
count (L -30 A) roughly reduced C by one-half.
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It is interesting to compare our result for GaAs(001)
quantums wells with L =81 A [curve (a) of Fig. I] to the
result of Vinter for Si(001) n-type inversion layers with
an assumed L =0. He calculated the quasiparticle self-
energy using instead of the RPA dielectric function the
so-called "single-plasmon-pole approximation, "which is a
considerable simplification that allowed the calculation to
be reduced analytically to single integrals. The straight
portion of our curve (a) of Fig. 1 and Vinter's Fig l.curve
( —M ) can be represented by
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