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A general symmetry criterion is derived for establishing the existence of surface states in solids.
Two kinds of surfaces in solids are distinguished: those coinciding with symmetry planes (or sym-
metry centers in one dimension) and those in general positions. The symmetry criterion applies to
surface states in solids terminating at symmetry planes (or symmetry centers in one dimension). A
detailed discussion is given for one-dimensional crystals. The application of the symmetry criterion
is demonstrated on the Kronig-Penney, nearly-free-electron, tight-binding, and Mathieu potentials.
In particular, it is shown that the Maue and Shockley existence conditions for surface states follow

from the general symmetry criterion.

I. INTRODUCTION

Surface states in solids were first introduced by Tamm!

who pointed out that the disruption of the translational
symmetry by the surface of the solid will, in general, lead
to new states in the gaps of the energy spectrum. He
called these states surface states and demonstrated their
appearance on a one-dimensional Kronig-Penney model.
This pioneering work was soon followed up in a number
of publications. Fowler? and Rijanow® considered the ap-
pearance of Tamm surface states in model crystals limited
by two surfaces. Maue* discussed, in detail, the formation
of surface states in the free-electron approximation, and
was the first one to connect the question of their existence
with the sign of the Fourier components of the periodic
potential. Goodwin® has extended Maue’s results to more
general potentials and considered also the appearance of
surface states in the tight-binding approximation. A fur-
ther contribution to surface states was made by Shockley®
who considered the formation of surface states as a func-
tion of the interatomic distance in a finite periodic chain
of atoms. He was the first one to emphasize the sensitivi-
ty of the existence condition of surface states to symmetry
breaking of the potential on the boundaries of the crystal.
Unlike the Tamm model' and the Goodwin tight-binding
calculation,” which lead to no restrictions on the appear-
ance of surface states in the energy gaps, the Maue* and
the Shockley® models have an existence condition: in
Maue’s model surface states appear only in those energy
gaps for which the Fourier component V of the periodic
potential is negative, ¥V <O; in Shockley’s model band
crossing is required for the appearance of surface states.
From here it followed that one can distinguish between
two kinds of surface states and the first one to draw atten-
tion to their difference was Shockley.® He pointed out
that the Maue-Shockley states are obtained for ““a periodic
potential without edge effects in the end cells” [Fig. 1(a)
shows perfect terminations x,; and x,3;] with the condi-
tion of “crossed bands,” while the Tamm-Goodwin sur-
face states appear when the end cell is distorted [Fig.
1(b)]. The distortion of the end cell can have two dif-
ferent origins. The crystal can either terminate at a gen-
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eral point x,, (up to this point the potential is the same as
in the bulk) or the potential in the end cell is different
from the bulk potential and then it is not important where
the termination point x,, is. The points x,, and x,, are
shown in Fig. 1(b).

Shockley’s paper® caused much interest in surface states
and a number of publications appeared elaborating on the
two different kinds .of states, and on the significance of
the band crossing in the formation of surface states.”!!
However, as time passed, the difference between the
Tamm-Goodwin and the Maue-Shockley surface states,
‘on one hand, and their existence conditions, on the other
hand, have become more involved. In a review article by
Davison and Levine'? it was pointed out that the existing
definitions of the Tamm and Shockley states are “hazy
and sometimes misleading.” It appears that this situation
prevails also in recent literature and that there is no clear
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FIG. 1. Graphical description of two kinds of crystal ter-
minations. The surface is at x =x,. (a) Periodic potential with
no edge effects. The surface is at symmetry centers Xy1 OF X5,
Surface states in this case are of the Maue-Shockley type. (b)
Periodic potential with edge effects. The latter are caused by ei-
ther a nonsymmetric termination x,, or by a change of the po-
tential, and then x,, is arbitrary. In this case we have Tamm-
Goodwin surface states.
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distinction between the Tamm and Shockley surface
states.!>~ 16 In particular, there seems to be no general
formulation for the ex1stence conditions of the Maue—
Shockley surface states.!

In this paper, we derive a symmetry criterion for the
existence of surface states.!” This criterion has the mean-
ing of a selection rule and it explains in a general frame-
work both the Maue condition on the Fourier components
in the free-electron model* and the band crossing in
Shockley’s tight-binding model.® It gives for the first
time, a group-theoretic approach to the existence condi-
tions of surface states. In addition, it leads also to a sym-
metry distinction between the Tamm and Shockley states.
The idea of this symmetry distinction is very simple and
can be explained by using Fig. 1. The termination points
Xx,1 and Xx,3 in Fig. 1(a) are inversion centers of the crystal
while the points x,, or x,, [Fig. 1(b)] have no symmetry.
The lack of symmetry in the end cell can be a conse-
quence of either terminating the crystal at nonsymmetric
points x,,, or of changing the potential in this cell. From
the point of view of symmetry, what is important is to
distinguish between a surface that is on a symmetry center
X,1 Or X,3 (or symmetry plane in a three-dimensional
crystal) and one that is on a general point x,, or X,
without any symmetry. When the surface is on a symme-
try center (x,;, x,3) one should expect that some symme-
try criterion will be applicable to the corresponding sur-
face states. These states are of the Maue-Shockley type.
On the other hand, surface states which originate from a
crystal with a termination at a general point, say, x,, or
x,, [Fig. 1(b)] should be called according to Shockley® the
Tamm-Goodwin surface states. Naturally, no symmetry
criterion applies to the latter.

In Sec. II we consider the symmetry properties of a
one-dimensional crystal in the presence of a surface. It is
shown that a crystal terminating at symmetry centers,
e.g., X1, X,3 [Fig. 1(a)] preserves some symmetry of the
ideal crystal. In Sec. III a symmetry criterion for the ex-
istence of surface states is derived. Section IV deals with
model calculations of surface states. It is shown how the
symmetry criterion applies to known models, e. g
Kronig-Penney, nearly-free-electron, tight-binding, and
Mathieu potentials. Conclusions are given in Sec. V.

II. SYMMETRY PROPERTIES IN A CRYSTAL
WITH A SURFACE

It is usually assumed that the crystal surface disrupts
the symmetry perpendicular to the surface. Thus, in a
one-dimensional crystal this assumption should mean that
the introduction of a surface will disrupt the symmetry
completely. However, we are going to show that the crys-
tal with a surface preserves some symmetry of the ideal
crystal. This preservation of crystal symmetry should, ac-
tually, come as no surprise if one has in mind that surface
states are obtained by a matching procedure between
states in the ideal crystal and states in the vacuum. Thus,
in the Maue* and Shockley® models the potential is as-
sumed to be the same as in the bulk right up to the
boundary [Fig. 1(a)]. Surface states are then constructed
by matching at the surface a Bloch solution in the energy

gap which decays in the crystal, away from the surface,
with a decaying state in the vacuum. This means that a
part of the surface state is a Bloch state in the energy gap
of the unperturbed crystal. Because of the matching pro-
cedure, surface states carry information of the band struc-
ture and one should expect some of the symmetry of the
ideal crystal to be reflected in the surface states. This, as
is shown below, is actually the case when the crystal ter-
minates at a symmetry center, say, X, Or X,3 in Fig. 1(a).

We show in detail how the symmetry of the ideal crys-
tal is reflected at the surface. We shall assume that the
potential is the same as in the bulk right up to the
boundary and that the surface is located at a symmetry
center [Fig. 1(a)]. Let x, be the matching point between
the crystal and the vacuum and let ¥;(x) and ¢(x) be
solutions for the surface state inside and outside the crys-
tal correspondingly. At the matching point x,, one
demands the equality of the logarithmic derivatives of
Y (x) and ¢(x). For ¢(x) this derivative at x, is negative
because for a surface state one requires that ¢(x) fall off
exponentially for positive x. Therefore,

plle,x,) = (d/dx ) (x,) _ Pr(x,) 1)

ll’k (xv ) 1/’1: (xv )

has to be negative for ¥ (x,) in the energy gap. The nega-
tivity of p(k,x,) is the necessary condition for the ex-
istence of surface states.*®%!3 Thus, there are no surface
states in an energy gap where p(k,x,) is positive. In what
follows it is shown that the sign of p(k,x,) at the symme-
try centers x,3=0 and x,,=a /2 [Fig. 1(a)] can be defined
from symmetry considerations. For this we analyze the
symmetry properties of p(k,x,) (see Ref. 9).

One distinguishes four symmetry types of bands in a
one-dimensional crystal. They are shown in Fig. 2. The
Bloch function of a given band, ¥{"(x), can be denoted
by the symmetry of the localized orbital (Wannier func-
tion) a‘??(x) of the same band according to the relation'®

FIG. 2. Four symmetry types of energy bands. Signs on the
energy bands label the parity of the Bloch functions at k =0
and k =/a; the label (g,]) on the right-hand side of the bands
denotes the symmetry of the band as a whole entity. Thus, .
(0, +) means that the band center is at ¢ =0 [x,; in Fig. 1(a)]
and the localized orbital of the band is even with respect to
g =0.
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i exp(ikan)a‘'?"(x —na) , (2)

n=—o0

a

(g, —
P (x) =

where ¢ =0 or a/2 is a symmetry center [denoted by x,3
and x,; correspondingly in Fig. 1(a)] and 7 can be plus or
minus depending on whether a(x) is even or odd for the
inversion I with respect to the correspondmg symmetry
center. Thus, if the localized orbital is even with respect
to the symmetry center ¢ =0 [x,3 in Fig. 1(a)] it is denot-
ed by a'%*t(x) (Fig. 2). It is easy to check that
correspondingly, Iy () =9 (x) and It/J,TO/;H
OF(x). It can also be checked that ¥ ~(x),
¢(“/2 +)(x), and ¥{¥/> ~(x) have the symmetries as shown
in Fig. 2. With the notatlon (2) in mind, we have

)= +9 % (x) (3a)
+exp( —ika W {2 (x) . (3b)

1/};{0,1‘)( —x

lzjgca/z,i)( —x)=

Correspondingly, for the derivatives of the Bloch func-
tions

[y (—x

[¢§(a/2,i)( _

N =F[% 01, (4a)
x)]'=Fexp(—ika) [ (%)) . (4b)

From the definition (1) of the logarlthmlc derrvatlve

plk x) and Eq. (2) for the Bloch functions #§&"(x) [with
(‘1' (x) real] it follows [for any (g,1)]
p*(k,x)Ep (kR +ik1,x):p(—kR+ik1,x) ’ (5)

where kg and k; are the real and imaginary parts of the
complex Bloch momentum k. Since by definition,
plk +2m/a,x)=p(k,x) we have [for any (q,/)]

p*iky,x)=plik;,x) ,

« | T . T, .
- k> = —_ k7
P a—i—z,x pa+11x

This means that p(ik;,x) and p(w/a+ik;,x) are both real
for any x. By using Egs. (3) and (4) one obtains [again for
any (q,1)]

pl—kg —ikp,x)=—plkg +ik;,—x) . (7)

Combining Egs. (5) and (7) we find for real k, k =kg, and
any (g,1)

p*(kg,0)=—p(kg,0),

a

a
* kR:? =—p kR,'2—

This means that p(kg,0) and p(kg,a/2) are both purely
imaginary. While Egs. (3)—(7) hold for any point x in the
unit cell of the crystal, Eq. (8) is written for the symmetry
centers x,=0 and x,=a/2 only. For the latter, Egs.
(3)—(8) lead to information about p(k,x,) which is of
much importance in establishing the existence conditions
for surface states. First of all, from Egs. (3a) and (3b) we
obtain the zeros of the Bloch functions ¥ (x) and of their
derivatives ¥ (x). They are listed in the upper half of
Table I, and these are all possible zeros of ¥;(x) and

TABLE 1. In the upper half it is indicated at which values of
(k,x,), the ¥(x,), and ¥y(x,) vanish. In the lower half the
values of p(k,x,) are listed at different symmetry centers and
edges of the energy bands:

(k,x,)
(g,1) (0,0) (0,a/2) (r/a,0) (m/a,a/2)
©,+) $'=0 =0 ¥'=0 =0
(0,—) $=0 =0 =0 ¥'=0
(a/2,4) Y=0  ¢'=0 $=0 ¥ =0
(a/2,—) $=0 =0 ¥'=0 $=0
0, +) p=0 p=0 p=0 p=o
0,-) p=o0 p=c p=c p=0
(a/2,+) p=0 p=0 p=c0 p=0
(a/2,—) p=c0 p=oc0 p=0 p=oco

Y (x) that follow from the symmetry of the crystal. By
using these zeros and the definition (1) we find the lower
part of Table I which lists the zeros and infinities of
plk,x,) at different band edges k and symmetry centers
x, in the Brillouin zone and the Wigner-Seitz cell corre-
spondingly. We would like to point out that these are all
zeros and infinities of p(k,x,) that follow from the sym-
metry of the Bloch functions. In particular, p(k,x,) has
no zeros or infinities at complex values of k, a result
which is of much importance in the derivation of the ex-
istence conditions for surface states. Thus, assume that at
some symmetry center x, and at some k' in the energy
gap (k'=ik; or k'=w/a+ik; with k;5£0) p(k',x,)>0
[according to Eq. (6), at these values of k’, p is real and
we can therefore assume that it is positive]. As long as k'
stays complex, the sign of p(k’,x,) cannot change because
it does not assume zero or infinity at complex k’ [at the
edges of the energy band, p(k’,x,) can change sign by go-
ing through O or «]. This sign constancy of p in the en-
ergy gap will be used in the next section in establishing
the symmetry criterion for surface states.

III. SYMMETRY CRITERION FOR SURFACE STATES

In the preceding section we have shown that p for
values of k in the energy gap preserves its sign. Now we
will show that p(k,x,) can change sign when x, is kept
constant at a given symmetry center and when k changes
from one energy gap to another one by traversing an ener-
gy band. Moreover, it will be shown that the change of
sign of p(k,x,) is fully controlled by the symmetry of the
energy band that is being traversed Thus, if an energy
band with a glven symmetry q,1) [see Fig. 3(b)] separates
two gaps E and E ), then, as will be shown below, if
the 51gn of p(k Xx,) 1s known in one of these gaps, say,

), the symmetry (q, ) of the band fully determines the
s1gn ofp in the gap E 2,

Consider, for example, the band (0, + ) of Flg 2 and as-
sume that p at energies below thls band is positive
p(—if3,0)>0. We choose the imaginary part to be —if3
so that the Bloch function inside the crystal falls off for
negative x [see Fig. 1(a)]. The choice of p to be positive at
all energies below the band (0, + ) is consistent with the
proof in the preceding section of the sign constancy of p
at imaginary k. The question we ask is what is the sign of
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I TABLE II. Sign changes of p(k,x,) when traversing a band
! with a given symmetry (g,/).
]
 Uo (g,])
(a) ’ li a "\ Vo |
H p(—iB,x,)
—_ 0, 0,— 2,+) 2, —
X=0 X=% plar/a—if3,0) ©+) ©0-) {a/2+ a’ )
E E _p(=iB,0) _ _
. : plm/a—iB,0) * *
h \ - (%,+) p(—iB,a/2) _ _
E\M /\(%'H plw/a—iB,a/2) + +
e 12 e =
(b) :\/n/g\ (%,—) (c) \/I(%r—)
E | = . e ge . .
y\"j/t‘ . ; = of the one-dimensional Schrodinger equation. g(x) is
! o '+ zh \ ) even, while u (x) is odd. Since W (x) does not depend on
| € | o eg = x we have W(0)=W/(a/2) and from (9) and (10) it fol-
_r T ok \ + (0,) lows
a o __7_|r Py T '%r .
a 9 2
k (a/2)
_ - p(k,0)=i~2—~—p k, 2 |exp(—ika) . (11)
FIG. 3. Kronig-Penney model. (a) Periodic potential of Y(0) 2

height ¥V, with a surface potential U,. x,=0 and x,=a /2 are
symmetry centers (a is the lattice constant). (b) Symmetry of
the energy bands for ¥V, >0. (g,l) on the right-hand side is as in
Fig. 2. E;,") number the energy gaps. (c) As in (b), but for
V() < 0.

p in the gap after going through the band (0, + ), or what
is the sign of p(7w/a —iB,0)? From Table I we know that
p(0,0)=p(7/a,0)=0. From Eq. (8) it is also known that
for real k, p(k,0) is purely imaginary while p(—if3,0) and
p(mr/a—if3,0) are real [see Eq. (6)]. For small k& both
p(k,0) and p(7/a —k,0) are analytic in k.!° From the as-
sumption p(—if3,0)>0 it follows that for real Kk,
p(k,0)~ik (because for k= —if3, p has to be positive).
Since p(k,0) has no zeros on the real axis (with the excep-
tion of k=0 and k=w/a) this means that p(k,0) cannot
change sign. We therefore have p(7/a —k,0)~ik. From
here it follows that p(7/a —if3,0)~ —B <0. This means
that p(k,0) changes sign when traversing the band with
the symmetry (0, + ).

The situation is different for p(k,a /2) when traversing
the same band (0, + ). Here, since p(7m/a,a/2)= o (see
Table I) we have that p(ﬂ-/a —k,a/2)~i/k, and therefore
plm/a—iB)~1/B>0. The conclusion is that there is no
change of sign for p(k,a/2) when traversing the band
(0, +). In a similar manner, by using the information of
Table I, one finds the sign changes of p(k,0) and p(k,a /2)
when traversing an energy band that belongs to one of the
remaining' three symmetry types. These sign changes are
summarized in Table II. As will soon be shown they can
be used for establishing a symmetry criterion for the ex-
istence of surface states.

Before discussing Table II we first prove a relation con-
necting p(k,0) with p(k,a /2). For this we use the Wron-
skian %

W(x)=g(x)u'(x)—g'(x)u(x) 9)
for the solutions

g(X) = ()P (—x), ulX)=tp(x)—(—x) (10

For k=—if3 and k=w/a—if3, Yr(x) is real, and the
squares of the wave functions in (11) are positive. The
factor exp(—ika) is positive at k= —if3 and negative at
k=m/a—if3, and from (11) it follows

sgn[p(—ipB,0)]=sgn |p —i[)’,% , (12)
sgn (p %—iﬁ’,o = —sgn |p %—iﬁ,% (13)

These relations contain important information for deter-
mining the existence of surface states. As was already
pointed out [see Eq. (1)], only if p(k,x,) is negative can
surface states exist. From Eq. (12) it therefore follows
that if the band edge is k =0 and there are no surface

“states at one symmetry center of the crystal, say, x,=0,

there are no surface states at the other center, x, =a /2.
The situation is different for a band edge at k=w/a. In
this case, as it follows from Eq. (13), if surface states are
forbidden at one of the symmetry centers, say, x, =0, they
are allowed at the other center, x,=a /2, and vice versa.
Equations (12) and (13) can therefore be useful in estab-
lishing existence conditions for surface states.

We now discuss the results of Table II. This table con-
tains the ratios of the values of p in two adjacent gaps that
are separated by a band of given symmetry. Thus, by as-
suming that p(—ip3,0) below the band (0, + ) (see Fig. 2)
is positive, we find from Table II that, in the gap above
the band (0, + ), p(7m/a —if3,0) <0. Since the gap below
the band (0, + ) has its edge at k =0, it follows from (12)
that also p(—if3,a/2)>0. From Table II we find that
plm/a—iB,a/2)>0 in the gap above the band (0, +).
The edge of the gap above (0, + ) is at k=m/a and the
signs of p in this gap, p(7/a—iB,0)<0 and
plm/a—iB,a/2)>0 are in agreement with Eq. (13). Hav-
ing the signs of p above the band (0, + ) we can continue
using Table II and find the signs of p(—iB,0) and
p(—iB,a/2) above the band (0,—). Thus, p(—iB3,0)>0
and p(—iB,a/2)>0. Since the edge of this gap is at
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k =0, it is in agreement with Eq. (12) to have the same
sign for p at x,=0 and at x,=a /2. Similarly, by using
the information about the sign switching of Table II one
can derive the sign of p in any gap of the energy spec-
trum, provided the sign of p is known in one gap, e.g., in
the gap below the band (0, + ). In general, this latter in-
formation depends on the explicit form of the potential.
However, as is shown in the next section, p(—if,0) and
p(—iB,a/2) are positive in the lowest gap for the surface
states of Tamm,! the nearly-free-electron model of Maue,*
the Shockley model,® and the Mathieu potential.'> As-
suming this to be a general feature of one-dimensional
crystals one can then find from Table II the absolute signs
of p(k,0) and p(k,a /2) in any gap of the energy spectrum.
The information contained in Table II can be summa-
rized in the following symmetry criterion: When travers-
ing a band of symmetry (g,/) (¢=0,a/2), p(k,x,)
(x,=0,a /2) preserves its sign for x,5q and changes sign
for x,=g. In the next section we show how this symme-
try criterion applies to different models of surface states.

IV. MODEL CALCULATIONS OF SURFACE STATES

The existence of surface states for a semi-infinite crys-
tal is determined by the sign of the quantity p(k,x,) in
Eq. (1). Thus, only if p(k,x,) <0 for k in the energy gap
can there be surface states in this gap. In the preceding
section it was shown that the change of sign of p(k,x,),
for x, fixed, when traversing an energy band is fully
determined by the symmetry of this band. If in addition
one knows the sign of p in one gap, say, below the lowest
energy band, then the symmetry structure of the energy
bands fixes completely the absolute sign of p.

In this section we find the signs of p(k,x,) in direct
model calculations of surface states and compare them
with the corresponding signs of p(k,x,) that follow from
our symmetry criterion. In particular, we will show how
the existence conditions for surface states of Maue* and
Shockley® follow from the symmetry criterion. The fol-
lowing models will be analyzed: (1) Tamm’s Kronig-
Penney model, (2) Maue’s nearly-free-electron calculation,
(3) Shockley’s tight-binding approximation, and (4) the
Mathieu potential.

A. Kronig-Penney model

Tamm' was the first one to predict a surface state in
solids. His calculations were carried out on the Kronig-
Penney potential with ¥, >0 [see Fig. 3(a)]. A very good
discussion of the Bloch problem for this model is given in
Ref. 20. Tamm considered the surface at x,=0 (Fig. 3)
where the actual potential is discontinuous and in order to
avoid the discontinuity he removed the & function at
x,=0. Shockley® discussed Tamm’s choice of surface in
detail and we shall return to this point later. In our dis-
cussion we shall choose the surface at x,=a/2 where
there is no discontinuity and we therefore expect our sym-
metry criterion to apply to it. As can be shown, the wave
function ¥, (x) in the crystal for 0<x < a /2 is'?
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i (x) = A[explika)sinax —sina(x —a)] , (14)

where A is a constant and a’>=2mE /h?, with E being the
energy. From the expression for ¥ (x) and definition (1),
we have ’

=ia cot%tanka— . (15)

kL
2

P %5

We analyze the sign of this expression in the energy gaps
of the spectrum. We shall denote the lowest energy gap
(below the lowest band) by Eém. Correspondingly,
E;”,E:,D,. .. are the gaps above the first energy band, the
second, and so on [see Fig. 3(b)]. For energies in the gap
the quasimomentum k is complex and it can assume the
value k= —if3 and k=w/a—if3 depending on whether
the edge of the energy band is at k=0 or k=m/a (the
choice of the imaginary part —if3 with the negative sign
is dictated by the fact that the crystal extends to the left
[see Fig. 3(a)] and this leads to the falloff of the Bloch
function in the crystal away from the surface). tan(ka /2)
in the expression (15) for these values of k becomes

tan

—-% :—itanh% s

' (16)
7w _ifa

tan | —
2

, Ba
= —jicoth™— .
ico >

The sign of cot(aa /2) in the expression (15) varies from
gap to gap and is as follows:?°

sgn cotZL | =(—1)" for nT<aa <(n+1)r, 17

where the integer n labels the number of the energy gap
Eg(") in the spectrum. By using Egs. (16) and (17) we find
the sign of the left-hand side in the expression (15) for
VO > 0:

sgn =sgn[(—1)"], n=0,1,2,....

. k
ia cota tanTG

(18)

This means that no surface states can exist in the
Kronig-Penney model with the surface at x,=a /2 in the
even-numbered energy gaps Eéz").

Having found the existence of surface states via the
direct calculation of the sign of p(k,x,), it is instructive to
compare these results with the signs of p(k,x,) that fol-
low from applying the symmetry criterion. For its appli-
cation we need the symmetry of the energy bands. We
denote the bands by E,,; and correspondingly, the Bloch
functions by ¥,,x. The following results are known for
the bottoms and tops of the energy bands in the Kronig-
Penney model® (for ¥, > 0): Bottoms of E,; 41k are at
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'

k=0 for2lm<aa<2l+1)mT,

tops of E, 4 are at

k:—z— for aa =21+ 1),

bottoms of E,;; are at (19)
u
= for (2 —1)mr <aa <2l ,

and tops of E,; . are at

k=0 for aa=2r.

From these results and the expression (14) for the wave
function we can find the parity of the latter at the symme-
try points k =0 and k=w/a in the Brillouin zone. We
use the fact that an odd Bloch function vanishes at x =0
while an even Bloch function does not. The parity of the
Bloch functions for the Kronig-Penney model with V>0
is summarized in Fig. 3(b) showing that it alternates from
edge to edge all the way to infinity. In the notation of
band symmetry [Eq. (2)], the lowest band is (a /2, +) the
next band is (a /2, —), the following band is (a /2, + ), and
so on. In applying the symmetry criterion, the additional
information we need is the sign of p(k,x,) in one energy
gap, say, in Eém. From (15) and (18) for n =0 we have
p(O)(—i[J’,a /2)>0 in EéO). According to the symmetry
criterion of the preceding section (Table II),
p'mr/a—iB,a/2)<0, pP(—iB,a/2)>0, and so on. The
sign alteration of p when going from one energy gap to
the next is a consequence of the fact that all the bands
have their symmetry centers at g =a /2 while the surface
is at the same center, x,=a /2. From the symmetry cri-
terion it follows that when traversing such a band (g =x,)
p will change sign and since in Egm, p(—ifB,a/2)>0, the
symmetry criterion leads to the same results as from
direct calculations [see Egs. (15) and (18)].

As was already pointed out, in his original paper,
Tamm! placed the surface at x, =0 and matched the wave
function and its derivative assuming a finite step potential
U, and no 8(x) function of this point [see Fig. 3(a)].
Such an assumption is equivalent to changing the periodic
potential at the boundary, as was pointed out by Shock-
ley.> The removal of 8(x) at x,=0 makes the potential
nonsingular and enables the matching of both the func-
tion and its derivative at this point (for a & function there
is a discontinuity in the derivative'>2%). However, this re-
moval changes the periodic potential at x,=0 and the
surface is no longer at a symmetry center of the crystal.
According to Shockley, surface states for a surface not at
a symmetry center of the crystal should be called Tamm-
Goodwin states. As was shown by Tamm,' these kind of
surface states can appear in any energy gap and there is
no, existence criterion for them.

Unlike x, =0, the point x,=a /2 is a symmetry center
in the Kronig-Penney model and Eq. (18) shows that sur-
face states cannot appear in even-numbered gaps, e.g.,

n=0,2,4,.... As was shown above, Eq. (18) is a conse-
quence of the symmetry structure of the energy bands in
the Kronig-Penney model.

A similar discussion can be carried out for ¥, <O.
Without going into details we shall just summarize the re-
sults. The symmetry of the bands is given in Fig. 3(c). It
differs from the band symmetry for ¥, > 0 [Fig. 3(b)] that
in the case of V<0, the energy spectrum extends to neg-
ative energies and the lowest band has the symmetry
(0, +). The symmetry of the other bands for ¥V, <0 [Fig.
3(c)] coincides with the case of ¥V;>0. By applying the
symmetry criterion to the band structure in Fig. 3(c) we
find that no surface state can appear in the following en-
ergy gaps for Vy <0 (x,=a/2):

E® and EJ"*', n=0,1,2,.... (18)

Unlike the case V>0 where surface states are forbidden
in even-numbered gaps [Eq. (18)], in the case ¥V, <O there
are no surface states in the Kronig-Penney model in the
lowest gap E' and in all odd-numbered gaps [Eq. (18")].

B. Nearly-free-electron model

When the periodic potential ¥ (x) is weak, one can take
it into account in the framework of perturbation theory.
Such a model for surface states was considered in detail
by Maue,* who also was the first one to establish for
them an existence condition. We show in this section how
the latter can be obtained from the symmetry criterion for
surface states. The summary of Maue’s results is as fol-
lows. For a periodic potential of the form

Vix)=V; |exp i%;lxl +exp ——iz—Trxl +Vy, (20)

one looks for a Bloch function,

Pr(x)=exp(ikx) |a,;exp i%lx + Biexp —i%lx R
(21)

where V; denotes the I/th Fourier component of the
periodic potential, ¥, relates the potential of the solid to
the vacuum level, and «;,3; are unknown coefficients.
Perturbation theory gives for the energy E and for the
coefficients a; and f3; the results (we shall restrict our-
selves to [ =1)*

» _ 2 - 2 2 12
E _— k2 4 —2 214 o2
2= l -+ 2 F2 |k 2 + 7 Vi
+V0 ’ (22)
172
B # T | m?
- —_ —k—TF k2 . M 12 ,
a |, mV P a + # Vi
(23)

where the indices 1 and 2 are for the lower and upper
bands correspondingly. By assuming, as in Figs. 1(a) and
3(a), that the crystal extends for negative values of x and
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that the vacuum is for x >0, k is set at k=—if3 (8> 0),
and the Bloch function (21) can be written [a;=exp(i8),
ﬁl :exp( —-18)]

¥_;5(x)=A exp(Bx )cos %x+a , (24)
where A is a constant and
# 27
i =— — (25)
sin26 IV, a

By matching (24) (and its derivative) to the wave function
in the vacuum (the potential of the vacuum is zero),

~exp{ —[2m /#)|E|]"*x} ,

one obtains Maue’s relation for surface states:*
1/2

T tan Ex,,—HS = ggl—lEl +B, (26)
a a #

where x, is the position of the surface. In the original
work only x,=0 was considered. In this case (26) be-
comes
172

+B. (26)

T tans= | 2 | E |
a P

Since the right-hand side of (26’) is positive it is clear that
this relation can be satisfied only when V; <0, because
from (25) it follows

—-g—<5<o for V,>0,
Q7

0<5<§ for ¥, <0 .

Thus, ¥V, <0 is Maue’s existence condition for surface

states at x, =0 in the nearly-free-electron approximation.
When x, =a /2, Eq. (26) becomes

172

T 2m ’"
—;—cotS: [? |El +B. (26")

With Eq. (27) in mind it is clear that Eq. (26”) can be
satisfied only when ¥;>0. This means that for x,
=a /2 Maue’s existence condition is V| > 0.

It is easy to show how Maue’s existence condition for
surface states follows directly from our symmetry cri-
terion. From Egs. (21) and (23) we find the Bloch func-
tion at the top of the first band:

Yirsa(x)=A4 sin-g—x for V,>0,
(28)
Virsa(X)=A4 cos%x for V, <0,

where A4 is a constant. At the bottom of the first band,
the Bloch function is a constant and therefore of even par-
ity. This means that the first band in the nearly-free-
electron approximation is

1, + | for ¥;>0
2
[the first band in Fig.3(b)], (29)

(0,+) for V; <0

(the first band in Fig. 2). In the gap E;O) (below the first
band) both p©(—iB,0) and p'”(—iB,a/2) are positive
(the superscript O denotes the gap E;O)). This follows
from the expression of the Bloch function exp(gx) in Eém.
We can now apply the symmetry criterion: when travers-
ing the band (a/2,+), p(k,0) keeps its sign while
plk,a /2) changes sign; for the band (0, + ) it is the other
way around and p(k,0) changes sign, while p(k,a/2)
remains positive. The application of the symmetry cri-
terion leads to Maue’s existence condition for surface
states in the nearly-free-electron approximation in the
first gap Eg(” of the energy spectrum: at x,=0, no sur-
face states for

Vl > O >
and at x, =a /2, no surface states for (30)

V1<0.

C. Tight-binding approximation

Shockley® used a tight-binding model for calculating
surface states. In this model, the Bloch function v (x)
can be expressed in the form (2) where a‘¢”(x) is an
atomic orbital. Shockley considered in detail an s orbital,
a“*)x), and a p orbital, a'>~)(x), with respect to the
symmetry center at the origin, g =0. The energy bands
corresponding to these two orbitals are plotted in Fig. 2
(the first two bands). By a direct calculation, Shockley
showed that as long as the lattice parameter is sufficiently
large so that the s and p bands do not cross, there can be
no surface states in the gap between these two bands. In
Shockley’s model x,=a /2 and his result can be easily
reproduced from our symmetry criterion. The only addi-
tional information we need to know is what is the sign of
p(—iB,a/2) below the s band. For well-separated orbitals
we have from Eq. (2) in the interval a /2<x <a /2
172

= [a®)(x)+explika)al® ) (x —a)

0,4y | a
YT (X)) = .

+exp(—ika)al®x +a)].  (31)

By assuming an exponential falloff for a!**+’(x) and by
using definition (1), we have
p(—iB,0)>0 and p —iﬂ,% >0. 32)

With this information at hand we can now apply the sym-
metry criterion for finding the sign of p above the s band.
By traversing the s band, (0,+), p'>*)(—if,a/2) does
not change sign because g¢wx,, and therefore
plm/a—if,a/2)>0. This means that no surface states
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can appear in the gap above the s band which agrees with
Shockley’s existence criterion. When the atoms are
brought together, the s and p bands [(0, +) and (0,—) in
Fig. 2] might cross and the lowest band will assume the
symmetry (a/2,+) (Fig. 2) corresponding to an even
Bloch function at the bottom and an odd Bloch function
at the top of the band. When such a band is traversed by
plk,a/2) it changes sign according to the symmetry cri-
terion (because now x,=gq) and surface states are no
longer forbidden. It is clear that if one chooses the sur-
face at x,=0 in the Shockley model then surface states
are forbidden above the s band [(0, + ) in Fig. 2] because
for this configuration, x, =g and p changes sign when go-
ing through the (0, +) band. Therefore, we see that what
actually counts in the symmetry criterion is not whether
or not bands have crossed, but rather what the explicit
symmetry of the band is, and where the surface is placed.
In fact, for x,=0, in the Shockley model, surface states
would disappear after the s and p bands have crossed.
Band crossing in the Shockley model is a means of chang-
ing the symmetry of the band: Thus, if the s band, before
crossing with the p band, had the symmetry (0, +), it
changes its symmetry to (a /2, +) after the crossing takes
place. This symmetry change leads to a change of sign in
p and, correspondingly, removes the selection rule for the
surface states.

D. Mathieu potential

One of the analytically solvable examples of the
Schrodinger equation with periodic potentials is the
Mathieu potential. For surface states, this problem was
analyzed in detail by Levine.?! Unlike the Kronig-Penney
model, which is also analytically solvable, the Mathieu
potential is everywhere continuous and the existence of
surface states can be considered for surfaces at both sym-
metry centers x, =0 and x,=a /2 [in the Kronig-Penney
model, the potential is singular at x, =0, the derivative of
the Bloch function at this point is discontinuous, and
plk,x,) is not defined at x,=0)]. In applying the symme-
try criterion to the existence of surface states we heed the
symmetry of the energy bands and the sign of p in one en-
ergy gap, say, E;,O). The potential in the Mathieu model is
given by Eq. (20) with / =1. This case was discussed in
Sec. IVB in the perturbation approximation. Here, this
problem is discussed without any approximation. The
band symmetry is well known for the Mathieu potential
and for V| >0 it is given in Ref. 21 [see Fig. 4(a)]. From
the point of view of symmetry it coincides for V| >0 with
the symmetry structure of the energy spectrum for the
Kronig-Penney model [see Figs. 3(b) and 4(a)]. For
V1 <0 it can be shown to coincide with the sequence
(0, +), (0,—), (0, + ), and so on [see Fig. 4(b)]. As to the
sign of p(—iB,0) in E.”, the lowest energy gap, it is
found explicitly in Ref. 21 and it is positive:
p(—iB,0)>0. The same also holds at x,=a/2:
pl—iB,a/2)>0 [from Eq. (12)]. We first apply the sym-

metry criterion to the case V| >0. Since the energy bands

are centered at g =a /2 [Fig. 4(a)], p(k,0) conserves sign
according to the symmetry criterion (g7x,) when
traversing an energy band, while p(k,a /2) changes sign
(g=x,). The signs of p for different energy gaps in the
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FIG. 4. Symmetry of the energy bands in the Mathieu poten-
tial. For notations see Fig. 2. (a) For V> 0; (b) for ¥, <O.

Mathieu potential are summarized in Table III (for
¥V, >0). Thus, no surface states can appear for a surface
at x, =0, while for x,=a /2 surface states are forbidden
in the even-numbered gaps. These results are well known
from Ref. 21 where they were obtained by a direct calcu-
lation of the matching conditions. Here, we obtain them
from the general symmetry criterion when applied to the
Mathieu potential with ¥, >0. It should be pointed out
that the possible appearance of surface states in the odd-
numbered gaps has nothing to do with band crossing. In
fact, no band crossing is at all possible in the Mathieu po-
tential.?!

For' V; <0 the band symmetry is given in Fig. 4(b).
The same arguments as above show that in this case, no
surface states are allowed for x,=a /2 and that they are
also forbidden in the even-numbered gaps for x,=0. In
other words, for ¥V; <0, x,=0 and x,=a /2 exchange
places in comparison with the case of ¥; > 0. See the re-
sults for the signs of p in Table III for ¥ <O0.

The analysis has shown that there is no difference, from
the point of view of symmetry, between the two symmetry
centers x,=0 and x,=a/2. At x,=0 there are no sur-
face states for V>0, while for x,=a/2, no surface
states can exist for ¥ <0. Surface states can appear in
the odd-numbered gaps for V>0 at x,=a/2 and for
V1 <0 at x,=0 (see Table III). In Ref. 21 the points
x,=0 and x, =a /2 are considered as distinct, and Shock-
ley states are assigned to x,=O0 while at x,=a/2 it is
claimed that “the potential is terminated in a highly
asymmetric manner” and that one would expect to see
Tamm states at x,=a /2. There does not seem to be any
justification for such a distinction between x,=0 and
x,=a /2. Both points, x, =0 and x, =a /2, are symmetry

TABLE III. Summary of the signs of p for the Mathieu po-
tential. The superscript in p denotes the number of the gap. x,
is a symmetry center. .

Vi>0 Vi<0
Xy
P x, =0 x,=a/2 x,=0 xXy=a/2
(2n) + + + -+
p(2n+1) + _ _ +
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centers of the one-dimensional crystal, and from the point
of view of symmetry they are indistinguishable. At both
points, symmetry arguments apply and surface states are
equally forbidden by the symmetry criterion. Following
Shockley® and the discussion in the Introduction for dif-
ferent crystal terminations, the surface states for both
symmetry centers x,=0 or x,=a/2 are of the Maue-
Shockley type. We do not see any justification for assign-
ing Tamm states to the point x,=a/2 and Shockley
states to the point x,=0 as was done in Ref. 21. In fact,
the Maue model that was discussed in Sec. IV B is nothing
else but a perturbation approach to the Mathieu potential.
Thus, Maue’s existence conditions are identical with the
ones summarized in Table III for p'', in the gap Eé”.

V. CONCLUSIONS

~ We have shown that despite the fact that a surface dis-
rupts the translational symmetry of the crystal, a symme-
try criterion can be derived for the existence of surface
states. The concepts of symmetry centers and of sym-
metries of energy bands as whole entities are used in
deriving this criterion. A distinction is made between sur-
faces at symmetry centers'®?2 and those which appear at
general points in the crystal.  Maue-Shockley states are as-
sociated with the former types of surfaces while Tamm-
Goodwin states belong to the latter type. The symmetry
criterion applies to Maue-Shockley states. Maue’s* ex-
istence criterion is explained in the framework of the sym-
metry criterion. Band crossing in the Shockley model® is
interpreted as a means of changing the symmetry of an
energy band. The symmetry criterion shows that what ac-
tually counts is the symmetry of bands as whole entities
and not whether or not bands cross. The symmetry cri-
terion is applied to four one-dimensional models:
Kronig-Penney, nearly-free-electron and tight-binding
models, and the Mathieu potential.

We would like to point out that the results of Tables I
and II can directly be carried over to a wide class of real
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three-dimensional crystals. The relevant information
needed for deriving the symmetry criterion is the zeros of
the Bloch functions at different symmetry planes in the
crystal and at different symmetry points in the Brillouin
zone (see upper half of Table I). For an energy band with
a given symmetry'® it is very easy to find the zeros of the
Bloch functions. Thus, for an s band (q,+) or a p band
(q,—) with q=0 or q=(a/2,0,0) in a cubic crystal we
obtain the same results as in Table I with the difference
that now 3 and p are functions of k and r,: k =0 and
k=m/a should be replaced by k=0 and k=(#/a,0,0),
while instead of x,=0 and x,=a/2 the vectors
r,=(0,y,z) and r,=(a /2,y,z) will appear with arbitrary y
and z. The sign changes of Table II will then hold for the
corresponding  functions p(k,r,). The information of
Tables I and II is therefore applicable to three-
dimensional crystals. However, care must be taken when
dealing with three dimensions. The reason for this is that
in three dimensions we have many more symmetry points
in the Brillouin zone that in one dimension and it might
happen that some of them are not invariant under the re-
flection in a particular symmetry plane of the crystal.
This, for example, is the case for the X =(27/a,0,0) point
in the Brillouin zone for a zinc-blende crystal which has
only (110) symmetry planes. A very interesting conse-
quence of this is that in unreconstructed zinc-blende-type
crystals the appearance of surface states in the energy gap
next to the X point is not forbidden by symmetry. This is
a consequence of the fact that the plane (110) is not a
symmetry element of X and no symmetry argument can
be applied to surface states in the energy gap next to the
point X. Surface states for a zinc-blende crystal with a
termination at a (110) plane for an energy gap next to the
point X are therefore of the Tamm-Goodwin type.
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