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Inverse dielectric function of a bounded solid-state plasma
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%'e examine here the inverse dielectric function of a slab of nonlocal, dynamic solid-state plasma
having planar bounding surfaces, and determine explicit analytic results for the thick semi-infinite
limit. This constitutes a closed form solution of the random-phase-approximation integral equation
for the thick-slab limit. In this we employ potential solutions obtained earlier by D. M. Newns, and
present the solution in terms of quadratures involving the free-electron (noninteracting) density-
perturbation response function of the bounded plasma in the infinite-barrier model.

The longitudinal electrostatic response properties of a
bounded solid-state plasma (with or without a magnetic
field) are subsumed in the concept of an inverse dielectric
function tc(1,2) (Ref. 1) which describes dynamic and non-
local screening phenomena, including image potentials in
the vicinity of a surface. Thus the inverse dielectric func-
tion is of central importance in all electrostatic interaction
problems at surfaces (as well as in bulk), including van der
Waals attraction of an adatom to a solid surface and self-
interaction energy of plasma electrons near a surface, as
well as surface normal modes such as surface plasmons
and/or polaritons marked by resonances of the response
function v(1,2). With this in view, it is most desirable to
obtain an explicit evaluation of the inverse dielectric func-
tion, which is defined by the relations

V(1)= fd(2)lc(1, 2) U(2) or a(1,2) =5V(1)/5U(2),

=5(1—2) +4m ao(1,2), (3)

where 4nao(1, 2) is the fr. ee-electron (noninteracting) polar-
izability. In these equations,

f d(3)n(1, 3)e(3,2) =5(1—2), (4)

and R(1,2) is the RPA density-perturbation response func-
tion

R(1,2) = iG)(1,2)G)(2, 1+),—

where U(2) is the impressed potential at space-time point
2 and V(1) is the effective potential it generates at space-
time point 1. If u(1 —3) is the Coulomb interaction poten-
tial and p(1) is the density, it is well known that the
random-phase-approximation (RPA) integral equation for
the inverse dielectric function ~(1,2) has the form

Ic(1,2) =5(1—2)+fd(3) fd(4)u(1 —3)R(3,4)z(4, 2),
(2)

and for the direct dielectric function, one has, explicitly,

e(1,2) =5(1—2) —fd(3)u(1 —3)R (3,2)

where G&(1,2) is the one-electron thermodynamic Green's
function. ' Although the direct dielectric function is given
explicitly by Eq. (3) and is thus straightforward to evalu-
ate, even for a planar boundary with a normal magnetic
field, the more important inverse dielectric response func-
tion n(1,2) is harder to obtain because of the nontrivial
problem of inverting the matrix e(1,2) for a bounded plas-
ma [which lacks translational invariance, so that the posi-
tional dependence of e(1,2) is not just on r& —r2, but it also
involves r, +rq], which is to say, equivalently, that the
RPA integral equation (2) for a(1,2) is not to be solved by
translationally invariant Fourier-transform techniques in
the presence of a boundary (although it is thus solved in
the bulk case).

Our object here is to develop an explicit solution for
tc(1,2) for a plane-bounded solid-state plasma using the po-
tential solutions for a slab plasma developed by Newns in
the infinite barrier model. In his very useful paper,
Newns determines the effective potential V(l) for an ar-
bitrary impressed potential U(2), and our point is that
these results yield ~(1,2) directly upon choosing
U(2)=5(2—1') as a mathematical model potential, for
then we have

V) (1)=fd(2)a(1, 2) U(2)

=fd(2)tc(1, 2)5(2—1')=a(1, 1')

as an explicit solution of the RPA integral equation for
Ic(1,1'). lt should be pointed out that an alternative pro-
cedure for determining v(1,2) explicitly was attempted by
Bechstedt, Enderlein, and Reichardt by calculating the
dynamic nonlocal screening of the Coulomb interaction
potential v,

W(r, r';co) = fdr" a(r, r";co)u(r" —r') .

and evaluating the Laplacian

V, P (r, r', to) = fdr" lc(r, r",co)V, u(r" —r')

= —4n.e ~(r, r', co),

which yields Ic(r, r', co) since
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V, U(r" —r') = —4qre 5(r"—r') .

Unfortunately, Bechstedt's interesting calculation for
)((r,r', co) has a printing error (at the very end), as one can
see from his local result

K(Q~O, z,z', co) ~5(z —z')[71+( —z)+q)+(z)/e(co)]

[e(co) is the local bulk dielectric function of the thick-slab
plasma, and Q is wave-vector transform variable conju-
gate to r r'=(x ——x', y —y'); also q+(z) is the Heaviside
step function and z=O is the boundary plane], which is
incapable of describing an image field as part of the
dynamically screened Coulomb potential. Our considera-

tions below will address this problem.
In considering )((1,1') for a thick slab of plasma with

planar boundaries, we wish to employ Newns's calculation
of effective potential V(l) generated by the mathematical
model potential U(2) =5(2—1') with the associated source
V~ U(2) =4mS(2) [observe that Newns's convention
V2U(2) —+4~S(2) employed here differs from the usual
one in the sign of S(2}]. In this we note that Newns's cal-
culation of potentials V' ' ', which are antisymmetric or
symmetric, across the midplane of the slab defined by
z=d/2 (d denotes slab thickness), yields results in a
mixed (z, Q) and co representation given as follows for the
regions z (0 and 0 (z (d:

V(A, S)( ) ( ) I
Qz[ V(A, S)(0 ) UI(A, S)(0 )]+ UI(A, S)(

where

+rj+(z)q+(d —z) —— g g cosqzEgqq [2vrSgq' '(co)+QVg ' '(O, co) 2QUg—' ' '(O, co)]
q(A, S) q'(A, S)

Ug' ' '(z, z', co)= — f dz'e Q{' ' {Sg ' '(z', co) for z &0, (10)

and

V(A, s)(() ) (1+ (A, s))—( 2UI(A, s)(() )
)r (A, s) ~ ~ E —) S(A,s)( )

q(A, S) q'(A, S)

(A S) (A S)( )
Q ~ ~ ~ —1

q(A, S) q'(A, S)
(12)

In the equations above we have

Egqq =Egqq (~)=(Q—'+q'}5qq /Vq+4~Rgqq

=4~(~gq5q'/&q /I Qqq»—
with

(14)

f'"' '(R,z) =—g gq f z
e'Q' cos(qz) fgq' ' (16a)d q(A, S)

and

fgq' '= f dz f d R e 'Q' cos(qz)f'"' '(R,z} . (16b)

It is to be noted that in region III, z & d, these solutions

Qqq' Qq qq' qq Qqq'

as the density-perturbation response function R(1,2)
=5p(1)/5V(2) having a "diagonal" part D and an "off-
diagonal" part —A. [In this, Agq ——(4~) '(Q +q )

+Dgq. ] The notations (A,S) refer to antisymmetric or
symmetric potentials and sources, and for the antisym-
metric case, q'"', q'"'=(2n +1)m/d, n=0, 1,2, . . . , oo

and gq
——I, whereas for the symmetric case,

q' ',q' '=2nn/d, n=0, 1,2, . . . , Oo and qq= 1 for q &0,
but nq

———,
' for q=O. The transforms employed here are

defined following Newns in accordance with [r=(R,z)
and q=(Q, q)]

I

are continued antisymmetrically and/or symmetrically,
having associated nonvanishing charge distributions in re-
gion III that are pushed away infinitely far as the slab be-
comes thick, d ~~. It is clear that an appropriate model
of a thick semi-infinite slab must be devoid of such charge
distributions in region III, albeit far away. (It should be
borne in mind that even faraway charge distributions can
influence fields at finite points, particularly in planar
geometries, such as the case of a uniform plane sheet of
charge producing a uniform field at all points by Gauss's
law. ) Such a model may be constructed by considering
two continuations of the actual potential Vg(z, co), one an-
tisymmetric continuation and one symmetric continua-
tion, and averaging them with equal weight to get a con-
tinuation having no charge distributed in region III, while
having its proper form at all finite points in the thick-slab
semi-infinite limit as d —& oo (see Fig. 1). Indeed, the an-
tisymmetric and symmetric continuations are closely re-
lated in the thick-slab limit, except for the q =0 term of
the symmetric ease, which yields a term having no an-
tisymmetric counterpart. In order to examine the thick-
slab semi-infinite limit, we note that for d~ao, and
q'") =(2n + 1)qrld and q( ) =2nqr/d, and qlq

——1
——,5q05((A, S)—S), where

1 for (A,S)~S,
0 f (A S)
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so that

——, (q=O term)5((A, S)—S)
q(A, S) q(A, S)

f dq ——,
'

(q =0 term)5((A, S)—S),
2m

(17)

and 5qq ~(2n/d)5(q —q'). Moreover, by the construc-
tion of the antisymmetric, symmetric, and average con-
tinuations discussed above, when d ~ oo for the thick-slab
limit, we have, at all finite points,

U'"'(z, co) = U' '(z, co) = U'"'"s'(z, co) = U(z, co)

qlS)

l l

I II II l III
I

I

I I

I l

ll~
I II II

i
III

I

lO

I

(a)

with a corresponding statement for sources. Thus we
have the actual potential Vg(z, co) of the semi-infinite
thick-slab limit given by

Vg(z, co) = —,
'
[ Vg"'(z, co)+ Vg (z, co)]

= —,
' y Vg""(z,~) ford

A+S
(18)

Il II
I

l0

II III
++do

l d +cd P2

(c)

Employing the notation Egqq rjqEgqq, we h——ave [hence-
forth the semi-infinite thick-slab d ~ oo continuum limit
will be understood, g i~ si~(d/2') f dq]

FIG. 1. (a) V' ' symmetrically continued potential. (b) V' '

antisymmetrically continued potential. (c) V average of the
symmetric potential V($) and antisymmetric potential V(A) with

equal weight as d ~ oo (d /2~ ce ).

Vg(z, co) = —,r)+( —z) eg' g Vg
' '(O, co) —2Ug(O, co) +2Ug(z, co)

A+S
r

——,rI+(z) g — g g cosqzE gq'q [2~Sgq" (co) +Q Vg"' '(O, co) —2QUg(O, co)]
A +S q(A, S) q'(A, S)

+ 4 ri+(z) — g E goq [2~Sgq (co)+Q Vg '(O, co) —2QUg (O, co) ]
q'(S)

(19)

where

Vg"' '(O, co)=[1+kg' '] ' 2Ug(O, co) — eg"' ' g g Egq'qSgq' '(co)+ e'g' g Eg OqSgqco)5((A, S)—S)
q(A, S) q'(A, S} q'(S}

(20)

(&g' ) = g g Egqq ——, g Egoq5((A S)—S)
q(A, S) q'(A, S) q'(S)

(21)

It should be noted that

1E goq' g E gqq'

since g (d/2') dq, and Eqs. (19)—(21) therefore provide thickness corrections in all orders of 1/d for the thick. o
semi-infinite limit. %'e shall ignore such corrections, but it should be pointed out that some of them are important, even
for the semi-infinite limit d ~ po, for example, in the calculation of the surface self-energy which involves knowledge of
the terms of order O(1/d ). Neglecting all such terms leads to revisions of Eqs. (19)—(21) as follows:
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V~(z, co) = —,g+( —z) e~' g VI)"' '(O, co) —2'(O, co) +2'(z, co)
A+S

—
2 'g+(z) g — g g cos(qz)E gqq [2mSgq'' (co)+QVg ' (O, co) 2—QUg(0, ~)]

~
A +S q(A, S) q'(A, S)

(19')

where

Vg
' '(O, a))=(1+e'g ' ') ' 2Ug(O, co) — eI)

' ' g g Egqq Sgq' '(a))
d q(A, S) q(A, S)

( (AS)) —) Q y y E —)

q(A, S) q'(A, S)

(21')

oo d'
2Sg —— dz cosqz —Q 5(z —z')

4~ dz2

2
I Icos(qz') rI+(z') + dz cos(qz)5"(z —z')

4m
+ 4~

2 2

cos(qz')q+(z')+ 5'(z')
4m. 4m.

(22)

(where we have integrated by parts twice). However, one

Our choice of the mathematical model potential as a
four-dimensional Dirac 5 function U(1)—+5(1—1') would
correspond to the impressed source in the thick-slab re-
gion II as follows:

I

must note that our formulas above are predicated on using
potentials and corresponding sources which are an-
tisymmetrically or symmetrically continued across the
slab. Therefore the mathematical model potential and its
sources must be likewise continued, and it is readily
shown that the source in the thick-slab region II for an
antisymmetrically or symmetrically continued 5(1—1')
~5(1—1')+5(1—1') Potential is given by SI)q' ——,2St2q (1
refers to the point 1 reflected across the midplane of
the slab). Next, considering Ug(zz'co) as the potential due
to that part of the impressed source of U(1)~5(l —1'),
which is located to the left of the slab in region I (note
that the reflected point 1 in region III cannot contribute
here) and defining 6(z)=g+(z) —g+( —z) and 5'(z)
=d5(z)/dz, we have

U~(z, z', co) =— f d ii —Q~z —z"
~

1 d Q2 5(
Q — 4m' dz 2

2Q
5'(z')e ~~' ' ~+5(z')6(z)e ~~'~+q ( —z')5(z —z')

—Ql~l
2

5'(z')e ~ '~+ —,'5(z')e(z)e ~ ' +/+( —z')5(z —z') (23a)

and

Ug(O, z', co) = 5'(z')+ —,
' 5(z') .

2

In Eq. (23a) we employed the easily verified identity

5'(z')g (z') =5'(z')g (0)—g '(0)5(z')

for any reasonable function g(z'). To this, we may add Eq. (20') in the form

(23b)

&t2 2
V~"' '(0, )=(I+eI2' ') '

Q '5'( ')+5( ') — eI)"' ' g g Eg' 5'(z') — cos(q' ')g ( ')
d q(A. S) q (A S)

" 2~ 2~

(24)

and our solution for a(1, 1')= V) (1) employing the impressed 5-function —model potential [neglecting terms of order
O(1/d ) j may be written in a mixed representation as follows:
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ic(Q,z,z', co) = Vi g(z;co):—Vg(z, z', co),

Ic(Q,z,z';co) = —,g~( —z) eg' g Vg"' '(O, co) —Q '5'(z') —5(z')
A+S

(25)

/Q '5'(z')e g~'~ j5(z')B(z)e g~'~ ~2g+( —z')5(z —z')

——,g+(z) g — g g cos(qz)E gqq [QVg"' '(O, co) —(q' +Q )cos(q'z')g+(z') —Q5(z')] .
A +S q{A, S) q'{A, S)

Egqq ~4~bgq5qq ~(Q +q +4~Dgq)5qq

~(Q ~q )e„(q,co)5qq, (26)

where e (q, co) (3D denotes three dimensional) is the bulk
dielectric function of the thick-slab material, and

E gq'q [(Q +q )e ——(q, co)] '5qq,

whence

(27)

This result [Eqs. (25), (24), and (21')] still permits, in prin-
ciple, the inclusion of nondiagonal density-response ma-
trix elements —A~qq, along with the diagonal ones,
Dgq5qq /nq [Eq. (1»1.

If we introduce the diagonal approximation and neglect
—A~qq, it is well known that in the semi-infinite limit
[recall that we are previously committed to neglecting
terms of order 0(1/d)]

for the semi-infinite thick-slab limit, and thus +~++~2.
In the diagonal approximation, we thus obtain

(A, s)) 1 —1 Q I d [{Q2+ 2) 3D( )]
—1

(28)

Vg
' '(O, co)= Vg(O, co)

= (1~ eg ) '[5(z') 2egK—'„(Q,z';co)ri (z')],
(29)

where we have defined

K (Q,z';co) =~ '
dq cos(qz')/e (q, co)

0

and will also introduce

g Eg,'q™[(Q'+q')e' (q, ~)l '

q'{A, S)
(27')

v„(Q,z';co)=2~ ' J dq cos(qz')/[(q -+Q )e„(q,co)] .

[same for (A) and (S)]. Moreover, the same results for
(A) and (S) are derived from

" J' "dq
q(A, S)

The "diagonal" result for ~(Q,z,z', co) is finally given for
the thick-slab semi-infinite limit [neglecting terms of or-
der O(1/d)] as follows:

~(Q,z,z', co) =g+( —z) 5(z —z') — eg'5(z')+ K (Q,z';co)eg'g+(z')
1+kg 1+kg

~g~(z) v {Q,z;co) 5(z') — K (Q,z', co)q~(z')3D — . Qeg 2Qeg 3D

1+Eg 1+kg

+[K (Q,z+z';co)+K„(Q,z —z';co)]q+(z')

For the local limit we have

eg e(ci))~——e(cu), g ~{0)~—,, K „(Q,z', co)= (5z) /(ego), v„(Q,z';co) =e g I' I /Qe(co),

Ic(Q,z,z';co) =g+( —z) 5(z —z')+5(z')eg' 1 —e(co) 5(z —z'), , 1 e(co) —1
~q+(z) ~5(z')e1+e(~) + e(~) e(~) &(~)+1

(31)

It should be noted that these results are consistent with
Bechstedt's dynamically screened Coulomb potential in
that we have verified that our Eq. (31) follows from ap-
plying the Laplacian to Bechstedt's Eq. (26) in the local

I

limit, but these results disagree with Bechstedt's Eq. (28).
It should be further noted that the correct dynamically
screened image potential generated by a Coulombic im-
purity follows from our Eqs. (3) and (30) by using Eq. (7)
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above, as one can readily verify.
Our results for the infinite-barrier model, Eqs. (25),

(30), and (31), are explicitly revealing in regard to the
manner in which image fields are embodied in the struc-
ture of the inverse dielectric function x(g, z,z', co) through
boundary terms localized in the vicinity of the surface by
5(z') factors. This stands in contrast to the elegant but
rather formal results for ~(g,z,z';co) presented by Hertel,
which are not illustrative in this manner. However, on
the other hand, Hertel's results have a broader generality

and can be applied to boundary conditions other than the
specular reflection infinite-barrier model to which we are
committed. It should be noted that such problems have
also been addressed by Eguiluz and others from rather
different points of view. Moreover, our results should
provide useful insight into problems of interaction and
correlation at surfaces (as well as of screening and normal
modes) as even greater complexity is introduced into
infinite-barrier problems, such as the inclusion of a mag-
netic field.
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