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Effective two-body interaction in Coulomb Fermi liquids
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A simple expression for the effective two-body interaction in a Fermi liquid whose constituents in-

teract via a Coulomb force is derived on the basis of a diagrammatic analysis. The interaction,
which is spin dependent, is expressed in terms of the local-field factors and the Lindhard polariza-
bility. It includes the contribution of density fluctuations and spin fluctuations, both longitudinal
and transverse. . A comparison with other interactions known in the literature is made. A generali-
zation to the two-component Coulomb Fermi liquid is also given. An interesting application con-
cerning the possibility of superconductivity in an electron-hole liquid is pointed out.

I. INTRODUCTION

In this paper we shall address ourselves to the following
question: what is the effective interaction between two
quasiparticles in a degenerate Fermi liquid'? We shall be
particularly interested in the interaction between two elec-
trons in electron and electron-hole liquids. In the simplest
approximation this is given by the expression

Ud;,1(q, co) = 4'
(1)

q e(q, co)

where e(q, co) is the frequency- and wave-number-
dependent dielectric function. Equation (1), although
correct for "external" test particles, is not correct for elec-
trons belonging to the system, since the electrons in ques-
tion can exchange themselves or have multiple scattering
with any other electron of the system. In the case of
spin- —, particles, new mechanisms of interaction appear
which follow from the possibility of exciting spin-density
flUctuations. As a consequence the effective interaction
becomes spin dependent even if the bare interaction is not.
None of these effects are contained in Eq. (1).

Any attempt to improve upon Eq. (1) by the methods of
formal many-body theory must face at the outset the for-
midable task of evaluating an infinite series of Feynman
diagrams contributing to the scattering amplitude. Even
if such a calculation were possible, the resulting interac-
tion would still be a complicated function of not only the
energy and momentum transfers but also of the total
momentum and energy of the interacting electrons. Such
an expression is not of much practical use. Our aim in
this paper is to derive a very simple approximate formula
for the effective interaction which, as we shall see, can be
expressed in terms of the same "local-field factors" that
are widely used in microscopic theories, of the polarizabili-
ty and spin susceptibility of an interacting Fermi liquid.

— Essentially, we arrive at our result by examining the for-
mal structure of the effective interaction diagrams and as-
suming that the irreducible particle-hole interactions de-
pend only on the momentum transfer along the particle-
hole channel. In this way the evaluation of an infinite
series of Feynman diagrams is reduced to the summation

of a geometric series. The final expression for the effec-
tive interaction is easy to use and to understand on physi-
cal grounds. In the limit of small momentum and energy
transfer its singular part (i.e., the one that depends on the
value of the ratio r =q/co) reduces to the singular part of
the Landau scattering amplitude with /=0. At large q
and co it reduces to the bare Coulomb interaction. We
shall discuss the relationship of this effective interaction
with other forms existing in the literature. We shall also
give its generalization to a two-component Fermi liquid,
such as an electron-hole liquid (EHL).

In another paper we make use of our expression for the
effective interaction between two electrons in an EHL to
discuss the interesting question of the possibility of super-
conductivity in an EHL.

II. DEFINITION OF THE TWO-BODY EFFECTIVE
INTERACTION

In this section we shall explain the meaning of the
"two-body effective interaction" and define the terminolo-

gy to be used in the rest of the paper. Let us introduce
,the irreducible particle-particle interaction J (p1,p2, q)

defined as the sum of all the interaction diagrams which
are irreducible in the particle-particle channel. These dia-
grams have two incoming lines with four-momenta' and
spins pl, o~ and p2, o.2, respectively, two outgoing lines
with four-momenta and spins p& —q, o.

&
and p2+q, o.2,

respectively, and cannot be decomposed into two parts
connected to each other by two particle lines. In a system
consisting of only two particles interacting Via a potential
u (q), the irreducible particle-particle interaction would
coincide with the antisymmetrized potential:

(pl p2 q) =u (q) —u(p1 p2 q+——

It is, therefore, natural to assume that in the many-body
system J gives the antisymmetrized effective interac-

tion that we are seeking. Here, however, one must also
account for the many-body renormalization of the exter-
nal lines. Assuming a quasiparticle form of the Careen's

function
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G(p)=
Po —6p +l 6PO

where z& is the renormalization constant and

e&
——p /2m' —p the quasiparticle energy relative to the

chemical potential, we are led to define the quantity

J, ,(pi pz q) =«, z, zp q~, +q) ~~ ~ (p),p2, q)
1/2 (4)

as the antisymmetric two-body effective interaction.
We shall consider a paramagnetic state, in which J has

only two independent components, J„and J». We s'hall

show by means of a diagrammatic analysis how these two
components can be approximately expressed as

~It(pl p2 q) = Utt(q) Ut't(p—i p2— (5a)

and

(pl p2 q) = U (q) U (pl p2
T

(5b)

where U», U», and U» can be calculated from the
knowledge of the microscopic polarizability and spin sus-
ceptibility of the system. The name of effective interac-
tion is usually reserved in the literature to the local parts
of Eqs. (5a) and (Sb), namely, U„(q) and U»(q). The
complete effective interaction is then constructed by an-
tisymmetrizing U» (q) and leaving U„,(q) unchanged.
Our treatment shows that a nonlocal term
U„(p~ —p2 —q) must also enter the pl interaction on the
same footing as the nonlocal term in the gg interaction.
This new term will be identified as the interaction Via

transverse spin fluctuations.
The diagrammatic expansion of J is very similar to that

of J with the difference that to any internal line we must
associate the free-particle Green's function Go (with effec-
tive mass I*), and any symbolic block entering the ex-
pansion must be consistently renormalized: an interaction
block by incorporating a factor (z&zzz3z4)' and a vertex
block by incorporating a factor (z,z2)'~ .

Generally speaking, the diagrammatic expansion of J
consists of three classes of diagrams: (i) diagrams that are
reducible in the direct particle-hole channel (i.e., the one
with particle-hole momentum q), (ii) diagrams that are
reducible in the exchange particle-hole channel (i.e., the
one with particle-hole momentum p~ —p2 —q), and (iii) di-
agrams that are totally irreducible. Reducibility in a
particle-hole channel means that the diagram can be
decomposed into two parts connected to each other by a
particle-hole pair of lines. It is easy to see that such a dia-
gram must be necessarily irreducible in the particle-
particle channel. "Totally irreducible" means irreducible
in both particle-hole channels as well as in the particle-
particle channel. There is one more definition that we
should introduce before proceeding with the diagrammat-
ic analysis of the next section. Following Nozieres, we
shall call "proper" any diagram that cannot be decom-
posed into two parts connected by a single interaction line
carrying momentum q.

III. DIAGRAMMATIC ANALYSIS
OF THE IRREDUCIBLE

PARTICLE-PARTICLE INTERACTION

Let us consider the class of diagrams which are reduci-
ble in the direct particle-hole channel. These are some-
times referred to as the "dangerous" diagrams because in
the small-q limit they give rise to the singular part of the
Landau scattering amplitude. The "dangerous" diagrams
can be either proper or improper. The improper ones are
shown in Fig. 1(a). Here A represents the proper,
renormalized vertex part and the ~rv is the screened
interaction u(q)/e(q, co). The diagram containing the bare
interaction line has been subtracted out because it does not
belong to the class of diagrams under consideration. The
expansion of A in terms of I, the proper particle-hole in-
teraction irreducible in the particle-hole channel, is shown
in Fig. 1(b) (see, for example, Ref. 2). The expansion of
u/e in terms of A is shown in Fig. 1(c). From these ex-
pansions it immediately appears that Fig. 1(a) contains
only and all improper "dangerous" diagrams. The "prop-
er" dangerous diagrams are shown in Fig. 2(a). Notice
that, due to spin conservation, the intermediate particle-
hole pairs can have either g T or l g spins in all diagrams of
Figs. 1(a) and 2(a). These are the kinds of excitations that
contribute to the polarizability and to the longitudinal
spin susceptibility.

Let us now consider the diagrams reducible in the other
particle-hole channel. In the case of the g&'interaction
they can be obtained from the previous ones simply by in-
terchanging the momenta of the final states and are
shown in Figs. 2(b) and 2(c). In the case of the t g interac-
tion, on the other hand, the only diagrams of this class are
those shown in Fig. 2(c), and they correspond to an essen-
tially new physical process. The clue is that the inter-
mediate particle-hole pairs now have opposite spins (they
are in a triplet state with S,= 1). These are the kinds of
excitations that contribute to the transverse spin suscepti-
bility.

In Fig. 3 we show some of the diagrams that are totally
irreducible. Obviously they include the direct and ex-
change scattering with bare interaction u (q). Besides
these elementary processes there are also some higher-
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FIG. 1. (a) Improper diagrams reducible in the direct
particle-hole channel. A is the proper renormalized vertex and
u/e is the screened interaction. (b) Diagrammatic expansion of
A in terms of the renormalized irreducible particle-hole interac-
tion I. (c) Diagrammatic equation for the screened interaction.
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FIG. 2. (a) Proper diagrams reducible in the direct particle-
hole channel. (b) and (c) Diagrams reducible in the exchange
particle-hole channel.
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FIG. 4. Replacement of the particle-hole interaction block by
local functions of the particle-hole momentum. (a) The incom-
ing particle-hole pair has S,=0 and the spins are not changed in
the scattering. (b) The' incoming particle-hole pair has S, =O
and the spins are reversed in the scattering. (c) The incoming
particle-hole pair has S,=1.

order processes that can be viewed as a consequence of
nonlinear coupling between density fluctuations. At
present we have no grasp whatsoever on such processes
and we shall disregard them in the following work.

lowing. In the Coulomb case they vanish as q when

q ~0 so that I has the character of a short-range interac-
tion. It is useful to introduce their spin-symmetric and
spin-antisymmetric combinations:

IV. EVALUATION OF DIAGRAMS 6»(q)+ 6«(q)
G'(q) =

2
(6a)

In order to evaluate the diagrams introduced in the pre-
vious section, we resort to a drastic approximation in that
we assume that the particle-hole interaction I depends
only on the momentum transfer along the particle-hole
channel ("local" approximation). There are three cases of
interest:

(i) The incoming particle-hole pair has S, =O and the
spins are not changed by the scattering event. In this case.
we set I= —u(q)G»(q), where q is the momentum of the
pair [see Fig. 4(a)].

(ii) The incoming particle-hole pair has S,=0 and the
spins are reversed by the scattering event. In this case we
set I= —u(q)6«(q), where q is the momentum of the
pair [see Fig. 4(b)].

(iii) The incoming particle-hole pair has S,=1. In this
case isotropy in spin space demands that the scattering
amplitude be equal to that of the triplet state with S,=0.
This state is (

~
1 t ) —

~

t t ) )/V 2 where the first spin is for
the electron and the second one for the hole. Thus, we
must set I= —u(q)6»(q)+u(q)6«(q), where q is the
momentum of the pair.

The functions 6„(q) and G„(q) are called "local-field
factors" for reasons that will become evident in the fol-

6'(q) =
2

(6b)

Let us begin by evaluating the proper renormalized ver-
tex A according to the expansion of Fig. 1(b). Integration
over the internal momenta can be immediately carried out
and gives a factor go(q)/2 for each pair of particle-hole
lines. Po is the Lindhard polarizability corresponding to
the effective mass m*. We have already seen that the
spins of the intermediate particle-hole pairs can be either
t& or ij. Thus, the diagrams of Fig. 1(b) correspond to
the series

A(q) =1+ g [Xo(q)/2]"[ —u(q)6»(q) —u (q)6«(q)]"
n=1

1

1+u (q) 6'(q)Xo(q)

which is our local approximation to the proper vertex. In
terms of A we can now evaluate the screened interaction
u/e, given by the diagrammatic equation of Fig. 1(c), and
hence the density-density response function

+q, f

p, -q, t{~)

p, ,t p,f(l)

p, -q, t p +q,t())

Plt p, ,t(t)

p-q, t p f

FIG. 3. Some totally irreducible diagrams, e.g., irreducible in
the particle-particle and particle-hole channels. Only the first
two are included in our expression for the effective interaction.

X, =(1/E —1)/u(q) .

The latter turns out to be

Xo(q)
X,(q)=

1 —u (q) [1—6'(q) ]Xo(q)

Let us now evaluate the ladder diagrams of Fig. 2(a),
whose sums we denote by Jt",dd'„" for the 1't (Tt) case.
Each interaction block can be regarded as the sum of two
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blocks, one flipping the spins as in Fig. 4(b) and one leav-
ing them unchanged as in Fig. 4(a). The fact that the in-
coming and outgoing spins are fixed puts constraints on
the number of spin flips that can take place in the inter-

I

mediate steps. Specifically, we must have an even number
of spin-flipping factors in the 1'1' case and an odd number
of them in the t l case. The two restricted sums are easily
evaluated and we find

)) (») " Xp«)
~ladder

7l =2

'n —1

[—uG "(q)—uG "(q)]"+ [—uG "(q)+ uG "(q)]"
2

Xp(q) Xp(q)
+( —uG')'

1+uG'(q)Xp(q) 1+uG'(q)Xp(q)

Xp(q)
X,(q) =

1+u (q) G'(q)Xp(q)
(10)

Equations (8) and (10) are very important because they
show how the local-field factors are related to the polari-
zability and spin susceptibility of the system. Many
schemes have been proposed in the past to calculate these
two quantities in an interacting Fermi liquid. Most. of
them assume that they can be written in the form of Eqs.
(8) and (10), respectively, where the local-field factors
describe the modification of the average Hartree field due
to exchange and correlation effects. In the small-q limit
the two response functions must satisfy the compressibili-
ty and susceptibility sum rules which, applied to Eqs. (8)
and (10), give

Pal Pf
1—,lim [u (q)G'(q)]m* ~A q

'
(1 la)

and

where the upper sign is the for &l case and the lower sign '

for the tt case. Having thus evaluated the diagrams of
Fig. 2(a) we are in a position to calculate the longitudinal
spin susceptibility, whose diagrammatic expansion is
shown in Fig. 5(a). This is easily done noting that the
terms of the series, beginning with the third one, sum up
to (Xp/2) J),dd„and that the Pauli matrices o, at the ver-
tices introduce a relative minus sign between terms with
o.=o' and terms with o = —o.' [see Fig. 5{a)]. Thus, we
find

Here, K,Kf and P,Pf are the compressibility and spin sus-
ceptibility in the interacting and noninteracting systems,
respectively. It is thus seen that in the small-q limit the
local™field factors are related to the Landau interaction
parameters, namely,

—lim u(q)G'(q) =fp,
q~o

—lim u(q)G'(q) =fp .
q~o

(12a)

(12b)

In He and, recently, in the electron liquid, Pines has
used Eq. (12) as the starting point for a phenomenological
theory of the local-field factor. In electron and electron-
hole liquids a fully microscopic scheme proposed by
Singwi et al. allows a first-principle calculation of the
local-field factors and has proven successful in predicting
many equilibrium properties. Once the local fields are
known the effective interaction can be calculated very
easily.

Let us finally evaluate the diagrams of Figs. 2(b) and
(c). In the case of the & & interaction there is really noth-
ing new and the two classes of diagrams sum up to
(u —uA /e)q, q q

and —J)',"gd„(tu) —p2 —q), respective-

ly, the minus sign arising from the interchange of the fi-
nal states. In the case of the t l interaction. only the dia-
grams of Fig. 2(c) are present and, using the expression
for the particle-hole interaction in the triplet state [Fig.
4(c)], they are found to sum up to

Xo
U «(p ) p2 —q) =2 —(uG')

1+UG &o
rn ~ Pf

1—,lim [u (q)G'(q)]m' ~A
(1 lb) These diagrams are related to the transverse spin suscepti-

bility whose expansion is shown in Fig. 5(b). For the
latter a simple calculation gives

Xp(q)

2 1+u (q)G'(q)Xp(q)
(14)

(b)

1 — 1 t 1

+ 0'- 0'y + 0'- + +
l l I

FIG. 5. (a) Diagrammatic expansion of the longitudinal spin
susceptibility. (b) Diagrammatic expansion of the transverse
spin susceptibility.

This completes the evaluation of the diagrams needed to
construct the effective interaction.

V. TWO-BODY EFFECTIVE INTERACTION

The results obtained in the preceding section can be
combined to give an expression for the two-body effective
interaction. The "direct" interactions U» and U» in
Eqs. (5) are simply the sums of the improper diagrams
shown in Fig. 1(a) plus the ladder diagrams shown in Fig.
2(a) plus the bare Coulomb interaction. Thus,
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2

U„~»~(q)= (q)+J~,dd„(q) .uA » (ts)

=u+[u(l —G')]
1 —u (1—G')XD

and introducing the polarization fields

g, (q) =v (q) [1—G'(q) ],
1i, (q) = —v (q)G'(q),

(16a)

(16b)

the three functions U«, U», and U» in Eqs. (5) can be
finally written as

U&& (q) = u (q)+ [P,(q)]'X, (q)+ [g.(q)]'X."(q),

U&&(q) = v (q)+ [g, (q)]'X, (q) —[P,(q)]'X.(q),

U»(p i
—p2 —q) = [24'(p i

—p2 —q) ]'&'(p i —p2 —q»

(17a)

(17b)

(17c)

where P, (q), X (q), and P~(q) are given in Eqs. (8), (10),
and (14).

The structure of these expressions is quite transparent.
Besides the bare interaction u(q), there is an interaction

.via density fluctuations (1ij,X, ), an interaction uia longitu-
dinal spin fluctuations (g,X, ), and, in the 1l case, an in-
teraction uia transverse spin-density fluctuations (4$,X, ).
In each case we can think of a particle as the source of a
pseudopotential g, (or P, ) which linearly polarizes the
medium inducing a density (or spin density) X"g~'.
The induced perturbation acts back on the other particle
with the same pseudopotential 1(j'". This is the origin of
the squares in Eqs. (17). It should be noted that this
linear structure, with no interference between the various
mechanisms of interaction, arises diagrammatically from
neglecting the higher-order totally irreducible diagrams of
Fig. 3.

Let us now consider the momentum dependence of the
interaction. In the case of t t spins a nonlocal term (i.e.,
one dependent on p~ —p2 —q) is trivially introduced by
the antisymmetrization prescribed in Eq. (5a) but, in the
case of t 1 spins the nonlocal term is associated with a spe-
cial physical process, namely, the exchange of transverse
spin fluctuations. These transverse spin fluctuations can
flip the spin of the electrons and thus allow an exchange
even in the gl case.

A few comments on the earlier theories by Kukkonen
and Overhauser (KO) and Kukkonen and Wilkins (KW)
are now in order. The KO approach was based on a self-
consistent perturbation theory that reduced the problem
of finding the effective interaction to the solution of cou-
pled algebraic equations. This approach gives the same

The exchangelike term in the g ~ interaction arises from
the diagrams of Fig. 2(c) whose sum has already been cal-
culated and is given, for an isotropic system, by Eq. (13).
The vertex function, the dielectric function, and the sums
of the ladder diagrams are given in Eqs. (7), (8), and (9),
respectively. Using the algebraic identity,

A X0
( Gs)2

+~G$+

results as ours for the local parts of the interactions U»
and U» but is incapable of predicting the new nonlocal
term in the & g interaction. In any case, the local-field fac-
tors appearing in their theory should be regarded as
phenomenological parameters, whereas in the present pa-
per, they are clearly shown to be connected to the micro-
scopic susceptibilities of the system. The KW theory,
which was developed to calculate the contribution of
electron-electron scattering to the thermal resistivity of a
simple metal, assumes the following effective interaction:

A
UFw(q) =

P) P2 —0
(18)

The vertex function is determined by extrapolating to fin-
ite values of q a relation that follows from the Ward iden-
tities and holds in the small-q limit:

lim A(q)—: = lim X(q)
q +0 Kf q~0 ~0(q)

where 7 is the proper density-density response function.
The resulting expression for A coincides with that of Eq.
(7). From the analysis of Sec. II'I we see that Eq. (18) in-
cludes only the "improper" diagrams and their exchange
counterparts. Although KW recognized the existence of
ladder-diagram contributions to the interaction they did
not realize that they could be summed at essentially the
same level of approximation already involved in their
evaluation of A. The constraint in the small-q limit is
provided in the general case by the requirement that the
singular part of the interaction (the one depending on the
ratio q/cu) reduce to the singular part of the Landau
scattering amplitude with i=O (higher-order components
not being too important in a simple Coulomb system). It
is necessary to include all the dangerous diagrams (and
not only the improper ones) to satisfy this constraint.
Furthermore, it is necessary to introduce two independent
local fields 6' and 6', which is another way of saying
that the effective interaction must be determined using the
information contained in the dielectric function and in the
spin susceptibility on equal footing. Our scheme satisfies
these requirements as detailed in Appendix A. The local
approximation provides a definite way of extending the
Landau scattering amplitude to finite wave vectors.

VI. COMPARISON AND DISCUSSION

In this section we shall consider the effective interac-
tion between two electrons in an electron liquid in the
presence of a rigid charge-neutralizing background. In
this case, the mass renormalization is negligible and we
can put m =m. We shall compare various forms of the
effective interaction and discuss the physical origin of the
differences between them. The effect of lattice polariza-
bility will be examined in the following section.

In Fig. 6 we plot the static effective interactions
U«(q, O), U„,(q, O) [Eqs. (17)] together with the Thomas-
Fermi (TF) interaction

UTF(q) =4~e'~(q'+qTF )

the dielectric interaction Ud;, ~(q, O) of Eq. (1), and the KW
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interaction of Eq. (18). All the interactions are in units of
4me /qz. For the local-field factors we have taken, for
simplicity, the parametrized form recently proposed by
Iwamoto and Pines:"

6"(q)=
q +qg(

q +qgg

(19a)

Ud;d(0, 0)= 1/2y —g', (22)
6 74(q) (19b)

where

plies that the density of low-energy pair excitations is in-
creased by the local-field factor and the strength of the
plasmon peak is correspondingly decreased. Thus, the
static screening becomes more effective in reducing the
bare interaction as is clearly seen in Fig. 6. The small-q
llmlt of Ud;ei(q, O) 1s

where q» and q» are r, -dependent parameters given in
Ref. 3 and are such that the compressibility and suscepti-
bility sum rules are satisfied. At large q all the above-
mentioned interactions reduce to the bare interaction u (q)
but in the small-q region, which is important for practical
applications, large differences exist, as is evident in Fig. 6.

Let us take the Thomas-Fermi interaction for reference,
since it describes the simplest situation, namely, that of
two test particles in an electron liquid with no exchange
and correlation between the electrons. In the small-q lim-
it this tends to

UTF (0)= 1/2y, (20)

l.6

where y=2ar, /~ and a=(4/9~)' Note . that this limit
is always positive.

Let us now include exchange and correlation within the
medium. This leads immediately to the interaction
Ud;, ~(q, O) of Eq. (1) which can also be written as

Xp(q, O)
Ud;, ~(q, O)=u(q)+p'(q) . (21)

1 —u (q) [1—6'(q) ]Xp(q, O)

The effect of exchange and correlation as incorporated in
the local-field factor 6'(q) is to decrease the value of the
denominator in Eq. (21) [recall that Xp(q, O) & 0]. In terms
of the spectrum of density fluctuation excitations this im-

g'"'= hm 6"'(q)/q'
q~O

It becomes negative when 2yg'&1. The compressibility
sum rule [Eq. (lla)] gives af/~=1 —2yg'. Thus, the in-
teraction becomes negative at small wave vectors for r,
greater than the critical value r„-5.2 at which the
compressibility of an electron gas in the deformable jelli-
um model would diverge. In spite of this, the interaction
remains regular in q space. This is because the back-
ground is rigid in our case; therefore, no singularity is ex-
pected at r, -r„.

Let us now come to our form of the effective interac-
tion equations (17). Here, as explained in the Introduc-
tion, we include exchange and. correlation not only within
the medium but also between the two interacting particles
and the medium. Comparing Eq. (17) with Eq. (21) we
note that (i) the coupling to density fluctuations is not
given by the bare potential u (q) but by the weaker pseudo-
potential P(q), and (ii) a new term associated with
exchange-induced spin-density fluctuations appears. Be-
cause of the first fact, density fluctuations are now less ef-
fective in reducing the bare potential u(q) so that both
U"(q, O) and U"(q, O) turn out to be considerably larger
than Ud;, ~(q, O) and Ur~(q). And because of the second
fact a difference arises between U» and U«, the former
being weaker than the latter. One can say that longitudi-
nal spin-density fluctuations mediate an attraction be-
tween electrons with parallel spins and a repulsion be-
tween electrons with antiparallel spj.ns, as is evident from
Eqs. (17). The small-q limits of these interactions are

I.O

Q.

0 04
eD p

0.0 l.0 2.0 30 40 50 6.0 7Q 80 90

F
Fio. 6. Static effective interactions U» and U„ from Eqs.

(17), Ud;, ~ from Eq. (1), UK.~ from Eq. (18), and UTz for
Thomas-Fermi versus q at r, =4. q is in units of Fermi
momentum and U(q) in units of 4me'/q~. Local-field factors
are taken from Eqs. (19).

Utt (ts)(q ()) +gs — y gs —2 (')'
2y 1 —2yg

(23)

where the lower sign is for g g and the upper sign for & &

spins. The quantity 1 —2yg' is related to the magnetic
susceptibility and vanishes at very large r, (-70—80)
where one expects an instability towards the ferromagnet-
ic state. This instability exists both in the rigid and in the
deformable jellium model. Correspondingly, the effective
interactions would have singularities in q space at such
large values of r, .

Finally, let us consider the KW interaction, Eq. (18). In
the previous section, we have seen that it differs from ours
because it does not include the class of proper
"dangerous" diagrams. It is interesting to carry this com-
parison further in a more quantitative way. The quanti-
ties to be compared are UKw and U„and the difference
between them is large, as shown in Fig. 6. The reason for
this large difference is easy to understand if we rewrite the
direct term of Eq. (18) as
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UKW(q, ~)=U(q) + U
Xo(q, co ) —[ q '(q)]',1+U (q) G'(q)X0(q, ~

32

(24)

UKW(0, 0) =
2 1 —2yg'

and diverges at thea t e critical r . Th'is is, in fact, the
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Utit (tti(q ) 0 tt (tt)(q ~)+ U (q ~) (29a)

where U," '"'(q, co) are given by Eqs. (17) with g" re-
placed by f'i i' and X"' by X'i'i' and

Uh(q, a~) =
411(q»oi(q, ~ )

Xo2(q, ai)

1 —f,(q, ~)Xoz(q ~) '

(29b)

useful in some applications. Suppose we are interested-in
the behavior of one component and ask the following
question: %'hat is the effect of the other components on
the effective interaction between two particles of this
species? It is then natural to try and separate from U
and U of Eqs. (28) the terms that would describe the ef-
fective interaction if the other species were not present.
As an example of this procedure let us consider a two-
component system with one species much lighter than the
other ( m i && m2). Such a situation can occur with s and
d electrons in transition metals, electrons arid holes in
semiconductors and semimetals, and liquid-metallic hy-
drogen. From Eqs. (28), after a certain amount of alge-
bra, we find that the effective interaction between two
light particles is given by

In an electron-hole liquid, with moderate value of the
mass ratio, the second term of Eq. (29) gives an attractive
interaction. Thus, superconductivity can occur. This
question will be examined in detail elsewhere.

We conclude this section by showing how the result of
Eqs. (29) can be used to include the contribution of lattice
polarization to the effective interaction in a simple metal.
In the limit of large-ion-to-electron-mass ratio we can re-
place the response function Xoz(q, ai) by its large-co limit:

Xo2(q, co)~n;q /m;co (3O)

Uia«ice(q ~)= u, ;(q) n;q

1 —$t t(q)Xot(q, O) 2m'co (q)

where n; is the ionic density. This is just the classical
response function of a continuous deformable background
of charge. Next we can eliminate the interaction function
f, (q) in favor of the phonon dispersion at, (q), which is
given by

co, (q)=n;q f, (q)/m; .

And finally we replace the function fi2(q) by the
electron-ion pseudopotential u, ;(q). This correspondence
is strongly suggested by the form of the phonon-mediated
interaction which we obtain as follows:

where

Xoi(q, at)f (q ~ ) 122(q) + f 412(q
1 — ii q Xoi q, co Now recall that29c

2at, (q)x
co —co+(q)

(32)

Due to the large mass difference we can take the static
limit for the Lindhard function of the light component,
Xoi. In that case Eqs. (29) reduce to the well-known result
of the. theory of the electron-ion system. The first term is
the purely electronic part of the interaction and the
second term corresponds to the phonon-mediated interac-
tion, namely, the product of a squared electron-phonon
matrix element (screened and vertex renormalized) times
the full phonon propagator. Indeed, the poles of the last
term determine the dispersion of the acoustic branch of
the density-fluctuation spectrum. In addition to this, in-
coherent particle-hole excitations, characteristic of a de-

generate Fermi system, also contribute to the interaction.
They do not have an exact analog in the electron-ion sys-
tem.

A very interesting feature of the effective interaction in
a two-component system is the appearance of a large
difference between the 1-1 and the 2-2 interaction. Thus,
for example, in a system with two kinds of electrons the
effective interaction between two heavy electrons will be
very different from that between two light electrons. This
difference woold exist even if spin fluctuations were not
included, but then the interaction between heavy electrons
would be more repulsive than the one between light elec-
trons. The most interesting effect, however, arises from
the presence of spin fluctuations. The latter are very sen-
sitive to the mass ratio and can lead to a strong attraction
between heavy electrons in the triplet states. The
relevance of this fact to the problem of superconductivity
in heavy-fermion materials has not yet been investigated.

u, ;(q)
1 —0'»(q»ot(q o)

u, ;(q)A(q, O)

e(q, O)
(33)

VIII. CONCLUSION

In this paper we have developed a simple theory of the
two-body effective interaction in a degenerate Fermi
liquid of one or more components interacting uia a
Coulomb force.

The main weakness of this theory is that it assumes the
irreducible particle-hole interaction to depend only on the
momentum transfer in the particle-hole channel. This as-
sumption is needed to reduce the evaluation of the Feyn-
man diagrams to the simple summation of geometric
series. We also have assumed the validity of a quasiparti-
cle picture by associating a free-particle propagator with
effective mass m* to each internal line and by neglecting
finite lifetime effects. Thus, the interaction that we have
derived is expected to be valid in the vicinity of the Fermi

Thus, Eq. (32) coincides with the standard form of the
phonon-mediated interaction with a "dressed" pseudopo-
tential which includes screening and vertex corrections.
It is expressed in terms of the local-field factor G»(q) of
the electron gas, of the phonon dispersion ot, (q), and of
the electron-ion pseudopotential u, ;(q). All these quanti-
ties can be calculated in principle. The polarizability of
the ion core can be included by rescaling r, to' r, /e~
where ez is the dielectric constant of the ion core (e~ —1).
Notice that the static limit of Eq. (32) diverges when the
sound velocity tends to zero.
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surface. Furthermore, we have excluded from our
analysis certain diagrams corresponding to nonlinear po-
larization processes, whose importance is, at present, diffi-
cult to estimate. On the other hand, the main virtue qf
this theory is that it follows in a logical way from first
principles and, in the end, makes contact with some of the
most successful theories of interacting Fermi liquids: the
kinetic equation approach and the (phenomenological)
polarization-field approach, " both of which are built upon
the concept of "local-field factor. " The final form of the
effective interaction is simple, calculable, and easy to
understand on physical grounds. In the small-q limit its
singular part reduces to the singular part of the l =0 Lan-
dau scattering amplitude. A new, nonlocal term, due to
the excitation of transverse spin waves appears quite
naturally in the &l interaction. This term was missing in
previous theories of the effective interaction and its effect
should be investigated.

We wish to comment on the possible applications of the
effective interaction. One possibility is to calculate the ef-
fect of electron-electron interactions on the transport
properties of simple metals. The contribution of
electron-electron scattering to the thermal resistivity has
been measured' in various metals and can thus provide a
test of the theory. Kukkonen and Wilkins and Mac-
Donald and Geldart" have done such a calculation, the
first using the form of Eq. (18) and the second using the
s-p approximation of Dy and Pethick. Their results are in
reasonable agreement with the experimental data which
still, have, however, rather large error bars. A more
stringent test is definitely needed.

Recently, Penn' has used several forms of the effective
interaction to calculate the mean free path of low-energy
electrons in a simple metal. The various forms give very
similar results with the exception of the KO form, which
gives a much shorter mean free path. Remarkably
enough, the KO form seems to be in reasonable agreement
with the still uncertain experimental data.

The effective electron-electron interaction that we have
derived here enables one to calculate the Coulomb param-
eter p occurring in the expression for the superconducting
transition temperature and particularly the effect of spin
fluctuations on the latter. This may be helpful in under-
standing the superconducting properties of heavy-fermion
materials. An exciting possibility concerns the question
of superconductivity in an electron-hole liquid in which
the mass of the holes is greater than the mass of the elec-
trons. We have investigated this problem with interesting
results.

pp 2'7TlZPZp I p p (A 1)

where the superscript r indicates that the small-q and -co

APPENDIX A: CONNECTION WITH THE LANDAU
THEORY OF FERMI LIQUIDS

In this appendix we discuss the relation between the
small-q limit of the effective interaction and the scatter-
ing amplitude of the Landau theory of Fermi liquids, gen-
eralized to include Coulomb forces. The Landau scatter-
ing amplitude is defined as

limit of the full scattering function I (p,p', q), with argu-
ments p and p' on the Fermi surface, is taken for
q/co=r=const. The Landau interaction function in a
Coulomb system is defined as

fpp' =2mizpzp (I'sc )pp' ~ (A2)

where I „is the proper part of I . The above formulas ap-
ply both to the spin-symmetric and spin-antisymmetric
components of the j's and A' s. The connection between
the Landau scattering amplitude and the Landau interac-
tion function is given by

~pp =f"+ Xfpp ~0p-~'-p (A3)

where the symmetric part off' is

f"' =f'p +'(q»
and the antisymmetric one is

(A4)

and

r.v&
XOP—

1 —I"v p + l T/

(A5)

where vz is the quasip article velocity. The density-
density response function can be expressed in terms of the
spin-symmetric scattering amplitude, either by using the
formal definition of X of the Ward identities or by solv-
ing the transport equation for quasiparticles, using Eqs.
(A3) to connect the 3's to the f's. The result is

X"= QX0p 1+g & pp Yap
p p

(A6)

Expanding Az&' in Legendre polynomials of the angle be-
tween p and p' and retaining only the component with
1=0, we find

X"=X0(1+20'XD) . (A7)

XD(q, co)
A.D' ——lim P'(q)+ [g'(q)]

q —+0 1 —Q'( q)Xp(q, co )
(A9)

The singular part of the Landau scattering amplitude [i.e.,
the part proportional to X0(q,co)] has precisely the same
form and value as the singular part of the effective in-
teraction [see Eq. (17)]. This result is rigorous in the
small-q limit as long as the local fields satisfy the sum
rules and the l&0 components are negligible. The local

Comparing this with the small-q and -co limit of the
density-density response function in Eq. (8), we find

XD(q, co)30' —— lim g(q) + [i/i'(q) ]q~0 1 —P(q)X0(q, ~)
q/co= r

This gives the spin-symmetric component of the l=0
scattering amplitude. Similarly, expressing the spin sus-
ceptibility in terms of the spin-antisymmetric amplitudes
and retaining only the I=O component, we find
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approximation introduced in this paper is equivalent to
extrapolating the validity of this relationship to finite
wave vectors and frequencies.

The nonsingular parts of the scattering amplitudes,
namely, tit' and g' do not coincide with the nonsingular
parts of the effective interaction. This is expected, since
the full Landau scattering amplitude must also include di-
agrams reducible in the particle-particle channel, whereas
our interaction must not. This difference between the
nonsingular parts accounts precisely for the particle-
particle ladders.

Any matrix entering Eq. (84) can be regarded as a set of
four 2&&2 matrices in spin space: (P; J) .

From isotropy in spin space it follows that any of the
f,z's has the form

Pij „t,ft .t, t t (86)
9 lJ FLJ

with only two independent components g,z" and g,"I'. Such
a matrix can be diagonalized with eigenvalues

'(ii,~j =g,"J'+g,'J' = 2tti';J

APPENDIX 8: EFFECTIVE INTERACTION
IN A TWO-COMPONENT

COULOMB LIQUID

and (87)

Ii,o j,a (I t~I'i2~q) 0' (q)+Ii, a;;j,cr (It trIi2~q) ~. (81)

In this appendix we derive the two-component generali-
zation of the effective interaction, i.e., Eqs. (27) of the
main text. Rather than separating the proper and im-
proper parts of the interaction we shall treat them on
equal footing using, in the ladder diagrams of Fig. 2(a),
the full particle-hole irreducible interaction I instead of
its proper part I. In this way the diagrams of Fig. 1(a) be-
come formally part of the ladder-diagram contribution.
The relation between I and I is 2

J fj(q) = g tti t (q)& kt (q)tti tj (q) . (89)

In a similar way we can diagonalize X,J and, comparing
Eqs. (85) with Eqs. (27a) and (27b), we find the eigen-
values

+
XI'J —XI'J +X' —

2 XjI

(88)
tt tl & qXIJ LIJ XgJ 2 XIJ ~

Returning to Eq. (83) we see that it can be rewritten as

where i, o; and j,o J denote the species and spins of the in-
coming particles. Using the local approximation and the
expression of I in terms of the local fields this can be
written as

Diagonalizing both sides of this equation, we find
2

J",' (q)= g. At(q»kt(qW~i*, (q»
k, E=1

(810)

I; J(q) =. i',q(q) Ptj(q)G; a 1
—(q)

from which, using Eqs. (87) and (88), we find at once

.(q) . (82)

Now we evaluate the sum of the diagrams reducible in the
direct particle-hole channel and denote it by J; .J ~ (q).
The quantities I, J, and P are 4X4 matrices in a two-
component system and we denote them by I, Jd, and tt~.

We also introduce g o such that

Jd, tt(tl)(q) [J +(q)+J (q)]
2

= g [tt'k(q»kt(q)0'(, (q)
k, l =1

tt;k(q)~t"t (q—W~ij (q) l (811)

Jd(q) =tti(q)g o(q)g(q)+g(q)g o(q)Jd(q),

whose solution is

Jd(q) =tti(q)L(q)g(q),

where g(q) is defined via the relation

(83)

(84)

'(q) =g o '(q) —P(q) . (85)

(L o)t, o, ;J', ~, =(&ot i. '2)&. t,j4, ~

The summation of the series shown in Fig. 2(a) is then
equivalent to the matrix equation

where the plus sign is for the t t case and the minus sign
is for the ti case. Adding the direct term gati(q) and
specializing to the case i =j we immediately find U" and
U"' in the form of Eqs. (28a) and (28b). Finally, we must
evaluate the term of interaction via transverse spin fluc-
tuations. The corresponding diagrams are shown in Fig.
2(c). The intermediate particle-hole pairs must necessarily
be of the same kind as the incoming and outgoing ones
(say, of species 1). The identification of the transverse I
block with 2tti';;(q) still follows from isotropy. Thus, the
summation performed in the one-component case is still
valid in the two-component case and UiT(q) is given by
Eq. (13) with 6' replaced by 6;. This is Eq. (28c).
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