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The force field in an atomic cluster, given as the direct gradient of the total energy in the density-
functional formalism, is expressed in terms of components corresponding to the solutions of the
one-particle Schrodinger equation. The resulting relationship between eigenfunctions and orbital
forces provides a useful framework for analysis of the bonding in the system. The expression for the
orbital force is given as the sum of a traditional Hellmann-Feynman term and an orbital derivative
term which cancels the first-order error due to basis-set incompleteness. The sum of orbital forces
gives the total gradient force on the nuclei in the system to essentially the same accuracy as the
total-energy surface itself. Results are reported for an all-electron calculation of the orbital forces in
the copper dimer. This first local-spin-density calculation of the gradient force for a transition-
metal dimer represents a challenging test because of the heavy core. By the introduction of a simple
screening force, an orbital cohesive force is defined which provides an interesting and useful frame-
work for quantifying the relative contribution of the molecular orbitals to the chemical bond. The
effects of core polarization and valence hybridization and their compensating influence are demon-
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strated in the results.

I. INTRODUCTION

The Hellmann-Feynman theorem!? states that the ex-
act force experienced by a particular nucleus in a cluster
of atoms is simply the classical electrostatic interaction of
the nuclear charge with the field set up by the other nuclei
and the electronic charge density, p(r), which is itself
determined quantum mechanically. It has long been
recognized that the practical utility of this theorem is very
limited by the requirement of exact wave functions for its
validity. At the same time, the theorem does afford an in-
teresting conceptual basis for analysis of the bonding in
systems. A force can be calculated according to the
theorem, with an accuracy which will depend on the
(first-order) basis-set error. The x component of this
Hellmann-Feynman force (on the pth nucleus) is ex-
pressed in atomic units as

F2(HF)= [ p(r) dr
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This force, though formally the same as that which would
be obtained as the negative gradient of the total-energy
hypersurface, is never numerically the same except for an
extremely accurate self-consistent density. Calculations of
the Hellmann-Feynman force have been of limited value
for the basis sets typically used in most calculations. This
limitation has been addressed by workers carrying out ab
initio and Hartree-Fock molecular calculations for some
time, and ways have been developed to include corrections
to the Hellmann-Feynman force field through energy-
gradient techniques.® Theoretical studies of potential sur-
faces have been advanced by the development of tech-
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niques to evaluate analytic derivatives for general-type
wave functions.* ‘

More recently, these energy-gradient concepts have been
developed within the density-functional formalism using
the local-spin-density approximation (LSDA). Satoko’
presented a method for evaluating the energy gradient
(with respect to atomic coordinates) in the linear combina-
tion of atomic orbitals (LCAO) Xa approach and applied
it to a cluster model of an oxygen atom chemisorbed on
the Al(111) surface. Generalized force formulas and fur-
ther applications have recently been presented.® A for-
malism for direct calculation of the force has also been in-
dependently derived within the density-functional ap-
proach by Bendt and Zunger.” In other LSDA works,
adequate Hellmann-Feynman forces have been obtained
for light molecules through the use of accurate basis sets,®
in some cases combined with circumvention of the special
problem of the core, either by a valence-only energy-
functional approach® or by pseudopotential methods.!°

The basic idea in these recent developments is the direct
evaluation of the gradient of the total energy with respect
to the specified nuclear coordinate, allowing for the impli-
cit dependence of the one-electron wave functions on the
nuclear coordinate, which arises for nuclear site-centered
functions. The force is then easily shown to be®” the usu-
al Hellmann-Feynman component plus an additional basis
derivative force term; for example, the x component is
written (in the following, the force will be understood to
be that on the pth nucleus)
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The second term in Eq. (2) corrects the Hellmann-
Feynman force for basis set incompleteness in the sense
that the first-order basis-set error is canceled.!! This
corrective term then puts the force on the same footing re-
garding approximations as the total energy.

In the derivation of Satoko® a decomposition of the to-
tal gradient force into pair interaction forces between
atoms is introduced corresponding to an atomic partition-
ing of the electron charge density according to a Mulliken
population analysis. This decomposition of the total force
provides a useful way of analyzing the bonding in the sys-
tem. In the following, we describe a simple alternate way
of analysis of the total force which establishes a connec-
tion with the single-particle solutions of the Schrodinger
equation. The total force due to the electron density is
decomposed into molecular-orbital (eigenfunction) constit-
uents. Carrying out such an analysis with the Hellmann-
Feynman term alone has been found to provide useful in-
sight into the nature of bonding in transition-metal di-
mers.'? In the following, this orbital force description is
developed within the gradient approach, such that the to-
tal force obtained on summation over occupied states is of
the same accuracy as the negative derivative of the total-
energy surface. :

II. ORBITAL FORCES IN THE ENERGY-GRADIENT
APPROACH

In the density-functional formalism,'>!* the minimiza-

tion of the total energy (corresponding to determination of
the ground-state density p and energy E) is shown to be
equivalent to the self-consistent solution of a set of one-
electron equations,

H (o) (r)=¢;4;(r) , (3)
where the corresponding density is given by
p0=3 fi|¢(r)|? @)

with occupation numbers f; corresponding to the orbital
solutions ;.

Since the electronic part of the Hellmann-Feynman
force depends on the density linearly, it can be expressed
as a sum of orbital forces.””> The x component of the
Hellmann-Feynman orbital force for state “i” is defined
as

Zp d (5)
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The same orbital decomposition carries over to the total
force calculated by the gradient method. In this case,
however, new terms enter in addition to the orbital
Hellmann-Feynman terms of Eq. (5) due to the implicit
dependence of the orbitals on nuclear position:®’
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These terms cancel the first-order error in the orbital
Hellmann-Feynman force so that basis set sensitivity is
greatly reduced. The net x component of the (ith) orbital
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force is then simply
Fg,iEFg,i(HF)+F£’i(BS) . @)

The gradient force is then expressed in terms of the orbi-
tal forces as

JoFE
Tax. - > [iFf;+FZ(NN), (8)
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is the repulsive nuclear component. The gradient force,
Eq. (8), is equivalent to the negative derivative of the
total-energy hypersurface at a prescribed location in the
parameter space, showing relatively the same sensitivity to
basis-set choice as the total energy itself.

For linear variational calculations utilizing a fixed basis
set, Eq. (6) can be put into a more computationally con-
venient form. The orbital solutions are expanded as linear
combinations of basis functions X;(r),

Pi(n)=3 Cix;(r) . (10)
J

The orbital derivative (with respect to nuclear coordinate)
in Eq. (6) then resolves into two derivatives, one of the
basis functions, the other of the coefficients {Cj’} The
site dependence in most basis functions is such that the
first-type derivatives are straightforward to evaluate. Dif-
ferentiation of the coefficients is conveniently handled
since, as demonstrated by Pulay,’ they can also be ex-
pressed in terms of derivatives of the basis functions. The
correction term to the ith orbital force then takes the
form

F2(BS)=— 3 Cf*C} [

X}
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(11

which can be compared with the derivations of the correc-
tion to the total force of Satoko® and of Bendt and
Zunger’ when summed over occupied states.

In the calculations for the copper dimer which are
described in the following, orbital and total gradient
forces are used to analyze the stability of the molecule.
The accuracy of the gradient force is demonstrated by
comparison of the total force curve calculated using Eq.
(8) with the negative energy derivative calculated numeri-
cally from the binding energy curve.

III. FORCES IN THE COPPER DIMER

Calculation of the orbital forces for the copper dimer
has been carried out as an extension of the augmented
Gaussian orbital linear variational method which has been
described previously.!® Evaluation of the Hellmann-
Feynman orbital forces according to Eq. (5) is carried out
analytically using the algorithms of McMurchie and
Davidson.!” Many of the integrals involved in the compu-
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tation of the corrective terms to the orbital force in Eq.
(11) are also evaluated analytically. Exceptions are the in-
tegrals over the Coulomb and exchange-correlation poten-
tials, which are evaluated by the same numerical tech-
niques described for the corresponding matrix elements in
the augmented Gaussian orbital approach.'®
There is no restriction to a particular type of exchange-
_correlation potential in this approach, but for continuity
with our earlier published study of Cu,, only results from
the Xa (with exchange factor a=0.7) model will be
presented here.!® Two basis sets were used in these
calculations—one derived from the minimum [14s, 11p,
5d /4s, 2p, 1d] Gaussian basis,!° the other an extended
basis [14s, 11p, 5d /6s, 4p, 3d] generated by adding the
two most diffuse Gaussians in the s, p, and d channels.!®

A. Total force in Cu,

The total force on one of the copper nuclei is plotted as
a function of internuclear separation in Figs. 1(a) and 1(b).
for the minimum and extended basis sets, respectively.
The force has been calculated by the gradient method us-
ing Eq. (8). Also appearing in Fig. 1 are force values (tri-
angles) calculated by direct numerical differentiation of
the total-energy curves. The agreement between the gra-
dient and numerical force values provides a stringent
cross-check of the internal consistency of the energy and
force calculational procedures and establishes the conver-
gence properties of the gradient approach.

Vanishing of the force on the nuclei occurs at approxi-
mately 4.22 a.u. with the minimum basis compared with a
value of approximately 4.13 a.u. for the extended basis.
These equilibrium bond lengths are consistent with our
previously published results,'® with the extended basis
bond length contracted about 2% relative to the experi-
mental value®® of 4.20 a.u.

The striking similarity between the gradient-force
curves of Fig. 1 for these two different basis sets attests to
the removal of first-order basis-set errors in the
Hellmann-Feynman force through the correction terms.
The total gradient force calculated by Eq. (8) is, in this
case, highly insensitive to basis choice. The gradient-force
curve for the extended basis is to a very good approxima-
tion simply a rigid displacement of that for the minimal
basis, consistent with the change observed in the binding
energy curve.

On the other hand, the uncorrected Hellmann-Feynman
force curves with both basis sets are in large error for all
separations, becoming repulsive only for very contracted
bond lengths. The Hellmann-Feynman force curve for
the extended basis is shown in Fig. 2. At the equilibrium
separation, the uncorrected Hellmann-Feynman force lies
off the scale of the gradient-force curves in Fig. 1 by fac-
tors of 4 and 12 for the minimum and extended basis-set
results, respectively.

B. Orbital forces in Cu,

In Table I, the orbital forces for all occupied states in
Cu, are given for the extended basis calculation with a
fixed bond length of 4.1 a.u. For each state of specified
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FIG. 1. Cu, total gradient force (in eV /bohr) as a function of
the bond distance, r, for the (a) minimal basis set and (b) extend-
ed basis set. The force is computed both as a simple numerical
derivative of the binding energy curve (triangles) and as the sum
of the orbital forces (circles) from Eq. (8). Equilibrium position
as determined from minimum in binding energy curve denoted
by vector on axis.

symmetry in column 1, the occupation number (weight
for the orbital force), Hellmann-Feynman force (in
eV/bohr) as given by Eq. (5), basis-set correction term
[Eq. (6)], orbital force [Eq. (7)], and orbital force weighted
by the number of electrons appear in columns 2 through
6. Discussion of the entries in columns 7 and 8 will be de-
ferred to the next section. The values of F;(HF) fall in a
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FIG. 2. Total Hellmann-Feynman force (in eV/bohr) in Cu,
as a function of internuclear separation r (in bohr) for extended
basis set. Vector on axis denotes equilibrium separation (zero
force) according to binding energy minimum and zero gradient
force.

—2.0

rather narrow band at approximately —23 eV/bohr. The
orbital exhibiting the greatest attractive force is the 60, as
expected, and it is for this orbital that the basis-set correc-
tion, F;(BS), is greatest. It is observed that with the ex-
ception of the lowest two valence states, the basis-set
corrections are all near zero or positive for all states, con-
sistent with the result that the total Hellmann-Feynman
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force is much too attractive at this bond length. The neg-
ative values for F;(BS) for the 60, and 3w, bonding states
signify that the orbital densities of these states are not suf-
ficiently well converged (in basis) to provide the degree of
attractive force consistent with the energy curve.

This is further evidenced in comparison of the results
for minimum and extended basis sets where the orbital
forces of the 60, and 3, states are more attractive (as
are those of all the valence levels) for the extended basis.
The basis-corrective terms F;(BS), while still negative, are
smaller in magnitude for the extended basis than are those
for the minimum basis. For nearly all of the other states,
the basis-set corrections F;(BS) (all positive) are greater
than those for the minimum basis set. This seems curious
at first sight, but is consistent with a lower-lying
Hellmann-Feynman force curve for the extended basis at
this separation. The basis-set extension, while bound to
give a lower energy by the variation principle, is not
guaranteed to provide uniform convergence of the
Hellmann-Feynman force to the exact force. The higher-
lying 37, and 60, antibonding levels are observed to be-
come more attractive on basis extension, signifying a need
for additional basis functions to span the antibonding
states for an improved Hellmann-Feynman force. It is in-
teresting to observe the effects of basis extension reflected
in appreciable changes in the core region; for example, a
reduced attraction of the 4o (predominantly 3s-like) orbi-
tal forces accompanies the enhanced attraction associated
with the 60 and 50 orbitals.

The total force obtained by summing the orbital contri-

TABLE 1. Orbital forces in units of eV/bohr for Cu, at b=4.1 bohr with extended basis. The orbi-
tal Hellmann-Feynman force, F;(HF), is corrected by the orbital derivative term, F;(BS), to give the gra-
dient orbital force F;. The orbital cohesive force, F;(C), results by subtraction of the point-charge refer-
ence force (—23.47 eV /bohr) from F;. Occupation numbers f; denote state population.

State fi F;(HF) F;(BS) F; fiF; F;(C) fiFi(C)
Core
log 2 —23.14 0.71 —22.45 —44.89 1.03 2.05
lo, 2 —23.22 0.79 —22.45 —44.89 1.02 2.05
20, 2 —20.87 0.35 —20.52 —41.04 2.95 5.90
20y, 2 —20.64 0.13 —20.53 —41.05 2.95 5.89
30, 2 —26.19 0.79 —25.38 —50.77 —1.91 —3.82
30y, 2 —26.12 0.72 —25.39 —50.77 —1.91 —3.83
1m, 4 —23.24 0.56 —22.68 —90.72 0.79 3.17
g 4 —23.24 0.56 —22.68 —90.73 0.79 3.16
4o, 2 —18.14 0.14 —18.00 —36.00 5.47 10.95
40, 2 —17.48 0.09 —17.39 —34.79 6.08 12.16
So, 2 —28.33 0.16 —28.17 —56.34 —4.70 —9.40
So, 2 —28.67 0.22 —28.44 —56.88 —4.97 —9.93
21, 4 —21.33 0.15 —21.19 —84.77 2.28 9.12
21, 4 —21.08 0.12 —20.96 —83.86 2.51 10.03
Valence
60, 2 —36.21 —0.65 —36.85 —173.71 —13.38 —26.76
3, 4 —25.99 —0.11 —26.09 —104.35 —2.61 —10.46
15, 4 —22.35 0.29 —22.08 —88.31 1.40 5.58
Tog 2 —26.63 0.41 —26.22 —52.45 —2.75 —5.50
18, 4 —21.39 0.48 —20.92 —83.63 2.56 10.26
37, 4 —25.75 1.33 —24.43 —97.67 —0.95 —3.78
60, 2 —28.35 1.49 —26.87 —53.72 —3.39 —6.77
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butions of Hellmann-Feynman and basis-set correction
origin is given with the total orbital force and nuclear-
nuclear repulsive term in Table II. The necessity of the

basis-set corrections for an accurate total force is clear .

from these results. Erirors in the Hellmann-Feynman
force alone amount to 8 and 24 eV /bohr for the minimum
and extended basis sets, respectively. While these are er-
rors of only approximately 1% to 2%, the components of
the total force are each four orders of magnitude greater
than their sum, so that structure determinations would be
in large error without the corrective terms of the gradient
force.

C. Orbital cohesive forces in Cu,

A striking feature of Table I is that the orbital force of
the different states, F;, varies over a narrow range; most
forces fall between —20 and —25 eV/bohr. This charac-
teristic can be easily understood in terms of a simple
screening model. If an electron’s charge in the copper di-
mer were distributed in localized spherically symmetric
charge distributions centered on the two nuclei, the elec-
trostatic force of that electron’s charge on a given nucleus
would be due entirely to the charge distribution centered
on the other site. The charge of that distribution would
be?! e/2 and the electrostatic force due to that distribution
on the nucleus would be — Ze?/2b? where in atomic units
e=1, and for the copper reference system Z=29 and
b=4.1 bohr. This gives a force of —0.86 hartree/bohr or
—23.47 eV/bohr, which is about the midpoint of the
range of forces in Table I. :

As a first approximation then, the orbital force is given
by simple equipartitioning of the orbital charge into frac-
tional point charges on the atomic sites. This value for
the orbital force is also the limiting value on separation of
the nuclei such that the bonding between sites vanishes
and the molecular orbitals are sums of nonhybridizing
atomic orbitals. From this standpoint, the point-charge-
model force represents a useful reference nonbonding
force value by which the bond character of the orbitals
can be quantified. From another point of view, this refer-
ence value is the portion of internuclear repulsive force
which each orbital would have to-balance, if all orbitals
were equivalent, in order that the sum of orbital and inter-
nuclear forces vanish.

Of course, the orbitals are not all equivalent and some
contribute more strongly to bonding than others. The or-
bital forces of Table I are observed to fall nearly equally
about the reference value, suggesting the qualitative one-
electron bonding picture of some orbitals which effect
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cohesion and others which do not contribute significantly
to cancellation of the nuclear repulsion. Those orbitals
giving forces which are appreciably larger in magnitude
than the reference value are associated with bonding orbi-
tals. Other orbitals showing forces much reduced from
the reference are suggestive of antibonding (since they do
not effect complete cancellation of the portion of the nu-
clear repulsion associated with one electron). Orbitals
with forces near the reference value are characterized as
nonbonding.

The relative differences in bonding character of the
various orbitals can be emphasized by subtraction of the
reference force from each orbital force, F;:

Fi(c)=F,;+Ze?/2b? . (12)

This new force is a direct measure of how effectively the
orbital binds the nuclei together in the molecule. For. this
reason, it will be referred to as an orbital cohesive force.
The sign of the orbital cohesive force indicates the nature
of the bond character (bonding or antibonding) of the
relevant state. Another useful property of the orbital
cohesive forces in that the sum over occupied states in the
dimer gives (with 2Z electrons in the system) a net
cohesive force,

S fiFi(c)=3 fiF; +(2Z)(Ze?/2b?)

= fiFi+Z%*/b?. (13)

The second term in Eq. (13) is simply the nuclear repul-
sive force so that

S fiFi(c)=3, fiF;+F(NN) . (14)

The right-hand side of Eq. (14) is, from Eq. (8), —9E /09X,
i.e., the orbital cohesive forces summed over all states give
the total gradient force on the nucleus.??

The calculated orbital cohesive forces (and occupation
number weighted values) are given in columns 7 and 8 of
Table I, and the results clearly delineate the effective
bonding and antibonding states. Those orbitals giving
negative cohesive forces are effectively shielding the point
charge defining the reference force while those character-
ized by positive values are incompletely shielding this unit
internuclear repulsion. These orbital cohesive forces will
be used in the next section to analyze the bonding in the
copper dimer.

TABLE II. Components of the total gradient force in Cu, at the reference bond length of b=4.1 a.u.
Orbital components are defined in the text and given in Tables I and II. The basis derivative terms,
F;(BS), correct the Hellmann-Feynman terms, F;(HF), to give the orbital forces, F;. The sum over the
latter combines with the nuclear-nuclear repulsion, F(NN), to give the total force, —9dE /dX. Units are

in eV /bohr.
S fiF:(HF) 2 fiFi(BS) > fiFi F(NN) —3E/3X
i i i
Minimum basis —1369.0878 + 8.0005 —1361.0873 . + 1361.3918 + 0.3045
Extended basis —1385.2120 +23.8959 —1361.3161 + 1361.3918 +0.0757
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D. Bond analysis for Cu,

In an earlier study of bonding in the copper dimer!¢ the
Hellmann-Feynman valence orbital forces were found to
be attractive at equilibrium separation and to fall in a
range of about —1.5 to —2.7 hartree/bohr (including the
occupation number weight factor). The orbital cohesive
forces calculated within this gradient approach provide
greater detail on the nature of bonding in Cu,.

The largest attractive (negative) orbital cohesive force is
given by the 60, state, and the 37, orbitals are observed
to provide a strong attraction when weighted by the four
electrons occupying these degenerate levels (Table I).
Bonding in Cu, is clearly dominated by s-s and do-do
hybridized orbitals with a secondary but significant d-
dm component. The d&-d8 contributions emerge as
weakly antibonding for both 18, and 13, orbitals.

It may at first sight appear curious that the 18, orbital
which is traditionally viewed as “bonding” gives a repul-
sive orbital cohesive force. But examination of the orbital
density [Fig. 7(a) in Ref. 16] shows the charge distributed
in lobes perpendicular to the bond axis, and this results in
an insufficient cancellation of the repulsive point-charge
reference force which defines net bonding behavior. Simi-
larly, the 37, and 60, orbitals, normally viewed as anti-
bonding, can give negative orbital cohesive forces (attrac-
tive) depending upon the relative amounts of density shift-
ed from the bond region to the space outside the bond.?
Near equilibrium in the copper dimer, these states might

best be viewed as nonbonding since their orbital forces are
never very strong and can change from attractive to repul-

sive with small changes in bond length and basis set.

One of the more striking features to emerge from the
calculation of the orbital cohesive forces is the clear im-
portance of the core states (1o, through 27, in Table I).
Not only are the magnitudes of these forces appreciable,
but a distribution among attractive and repulsive types is
also apparent. The importance of core polarization is
quite clear from these results, for if the core orbitals were
actually unaltered from the atom, they would be charac-
terized by vanishing orbital cohesive forces.

The role of the core electrons is further illustrated in
the results summarized in Table III, where the atomic
parentage of the various core and valence molecular orbi-
tals is shown. Partial sums over the core orbital cohesive
forces by atomic shell show that those of p-type atomic
origin are individually large (Table I) but largely cancel
within the shell (Table III). The remaining orbital
cohesive forces of s-type origin combine to give a large
net repulsive core force, which, at the energy minimum,
exactly balances the large attractive force produced by the
sum over valence orbital cohesive forces.’* The charac-
teristic that the sum over core orbital cohesive forces de-
fines a net repulsive force while that for the valence orbi-
tals is attractive is quite general.’’ The defined orbital
cohesive force thus serves to identify the nature of the
bonding in the dimer in terms of a balance between repul-
sive and attractive forces originating in the core and
valence space, respectively. It is clear from the results
that a frozen-core approximation would produce a very

inaccurate total force without corrections to account for"

core polarization.2®?’
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TABLE III. Orbital cohesive force partial sums for bound
molecular orbitals (MO) of various atomic orbital (AO) paren-
tage for Cu,. The sum, 3", is over states within the given atom
core shell; ¥ includes all core and valence separately, and >

includes all states. Values of F;(C) from Table I; units are in
eV/bohr.

AO MO

2ULFC) B RO 3 fiF(0)

1s lo,
1o, 4.10
2 20% 11.79
20, ’
2p 3oy
30,
1,
1m,

—1.32 37.50

3s 40,

40, 23.11

+ 0.07

3p S0,
S0,
21,
27,

—0.18

3d,4s 60,
37,
16,
18,
3mg
60,

—37.43

IV. SUMMARY

Energy-gradient techniques have been used to derive
one-electron orbital forces within the density-functional
formalism. The sum of these forces is equivalent to the
negative of the direct derivative of the total-energy hyper-
surface at the relevant point in parameter space. Ac-
counting for the implicit dependence of the basis orbitals
of nuclear coordinates removes the first-order error due to
basis incompleteness and determines the gradient force to
the same level of accuracy as the energy. Although not an
extremal quantity like the energy, the force requires only a
few further iterations beyond that required for the energy
to establish convergence adequate for mapping the energy
surface. Knowledge of the force field in a cluster is of
crucial importance as the number of atoms N is increased.
Explicit evaluation of the energy in the 3N parameter
space of nuclear positions is reduced by a factor of order
3N for arbitrary geometries when the forces on the nuclei
are known.

The individual orbital forces corresponding to the solu- -
tions of the local-spin-density equations provide further
insight into the bonding mechanisms in the cluster. By
introducing a point-charge electrostatic reference force
representing the portion of nuclear charge which must be
shielded by a given orbital in order for a net attraction to



occur through occupation of the state, an orbital cohesive
force has been defined whose sign alone signifies the type
contribution made to stability of the cluster.

In an application to the copper dimer, the utility of the
gradient approach in treating transition-metal clusters has
been demonstrated by the excellent correspondence be-
tween the gradient force and the direct numerical deriva-
tive of the energy curve. The necessity of the basis-set
corrective terms to the usual Hellmann-Feynman force
was shown to be crucial for Cu,.

The orbital forces for Cu, show the major role of s-s
and do-do bonding with significant components in the
dw-dm mode: The orbital forces of the & states were iden-
tified as repulsive, and this characteristic was attributed to
the orientation of the 6§ bonds relative to the dimer axis.
The results for Cu, clearly identify the nature of the core
polarization which accompanies bonding in the valence
space. The core-electron distribution is altered by the
valence bonding such that each core electron no longer
completely shields a proton in the nucleus. The p-core
electrons give both attractive and repulsive cohesive
forces, however, the 7 and o components largely cancel
such that almost the entire core cohesive force is due to
the s-core states, each characterized by a repulsive
cohesive force. The net repulsive core cohesive force is
balanced by the attractive valence cohesive force at equili-

‘brium. From this point of view, the valence orbitals are
very effective in giving a net attractive force, and it is
only the diminishing of the core orbital forces through po-
larization and commensurate net core repulsion that
equilibrium results.

While the orbital forces F; and orbital cohesive forces
F;(C) are useful conceptually, their individual numeric
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values are much more basis set dependent than their sum.
Their relative values are rather invariant to basis set, how-
ever, and this affords the framework used in this work for
interpretation of the bonding in Cu,. Another point con-
cerning the orbital forces is that their connection with the

respective orbital charge densities is not direct except in

the case of exact solutions. This is not a problem in typi-
cal uses of the orbital densities, such as interpretation of
the bonding. It should be kept in mind, however, that
while the Hellmann-Feynman orbital force is based on or-
bital density alone, the basis derivative corrections bring
in less interpretable contributions arising from the in-
tegrals of the orbital derivatives and Hamiltonian, e.g.,
kinetic-energy and exchange-correlation terms.

The availability of accurate force fields for atomic clus-
ters is opening whole new classes of problems for study,
both through reduction in calculational effort and
through enhanced conceptual insight offered in the re-
sults. The present contribution extends the gradient ap-
proach in the density-functional formalism to the impor-
tant class of transition-metal atomic clusters. It is antici-
pated that the new information available in the orbital
forces can be used to gain further insight into the one-
electron characteristics of bonding and interactions in
atomic clusters.
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