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The electronic structure of small clusters of lithium atoms has been calculated using the self-
consistent-field, molecular-orbital method. The exchange interaction is treated at the unrestricted
Hartree-Fock level whereas the correlation is treated perturbatively up to second order by including

pair excitations. This is done in two steps, one involving only the valence electrons and the other in-

cluding all the electrons. A configuration-interaction calculation has also been done with all possible
pair excitations. The equilibrium geometries of both the neutral and ionized clusters have been ob-
tained by starting from random configurations and using the Hellmann-Feynman forces to follow
the path of steepest descent to a minimum of the energy surface. The clusters of Li atoms each con-
taining one to five atoms are found to be planar. The equilibrium geometry of a cluster is found to
be intimately related to its electronic structure. The preferred spin configuration of a cluster has
been found by minimizing the total energy of the cluster with respect to various spin assignments.
The planar clusters are found to be less magnetic than expected by Hund's-rule coupling. For
three-dimensional clusters, however, the magnetism is governed by Hund's rule. The effect of corre-
lation has been found to have decisive influence on the equilibrium topology and magnetism of the
clusters. The binding energy per atom, the energy of dissociation, and the ionization potential of the
clusters are compared with experiment and with previous calculations. The physical origin of the
magic numbers and the effect of the basis functions on the calculated properties have also been in-

vestigated.

I. INTRODUCTION

One of the popular methods for studying the electronic
structure and properties of metals and metal defects has
been to represent the infinite system by a finite molecular
cluster of constituent atoms. ' While these calculations
have yielded valuable information regarding the electronic
structure of point defects, a nagging concern has always
been to assess the sensitivity of the results to the finite size
of the molecular clusters. This problem arises since a very
large fraction of the atoms in small clusters lie on the sur-
face. In addition, how fast the properties in the molecular
clusters approach the bulk value may depend on the prop-
erty being investigated. This aspect of using molecular
clusters as fragments of the bulk metal will be discussed
in detail in a forthcoming paper.

In this paper we treat a different aspect of the physics
of small metal clusters. Recent improvements in the
matrix-isolation method and the development of
molecular-beam technology have enabled researchers to
produce small metal clusters consisting of two to a few
hundred atoms per cluster. iStudies of the structural, elec-
tronic, and magnetic properties of these clusters have re-
vealed novel features. For example, recent experiments
on alkali-metal clusters have shown that clusters consist-
ing of a certain number of atoms are more abundant than
others. The number of atoms in the more abundant
species is called the "magic number, " the origin of which
has been attributed to the electronic shell structure of the
clusters. The electronic structure of small clusters can
also be used to understand how the localized electrons in
an atom transform to delocalized (conduction) states in a

metal. The change from the "bond picture" to the "band
picture" is a topic of interest not only in physics but also
in chemistry. The magnetism of small clusters is also a
fascinating problem. While a metal may be nonmagnetic
in the bulk phase, small clusters of its atoms may exhibit
magnetism. This can be studied through electron-spin-
resonance (ESR) techniques. Despite considerable
theoretical and experimen'tal works in this field, answers
to some basic questions are lacking. For example, what
mechanism determines the spin configuration of a small
cluster? Does the magnetic behavior of a cluster have any
relationship to its topology? What is the equilibrium
geometry of a cluster and is it determined solely by its
electronic structure? What is the origin of the magic
numbers? Are the magic numbers determined by the elec-
tronic shell structure as the recent jellium calculations
seem to suggest or are there more subtle effects? In this
paper we address these issues.

Many of these questions cannot be answered directly
from experiments. Both theory and experiment are neces-
sary to understand the link between the equilibrium
geometry, electronic structure, and magnetisrn. Theoreti-
cally, one can obtain the optimized geometry of a cluster
by minimizing the total energy with respect to all variable
parameters, e.g., bond lenths, bond angles, and spin con-
figurations. The binding energy per atom, the dissocia-
tion energy of the molecule, the ionization potential (ener-

gy to remove one electron from the molecule), and the
electron spin density at the atomic sites in the cluster can
be compared with the experimental results. Once a con-
sistent agreement is achieved between the available experi-
mental data aed theory, one can regard the optimized
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geometry of the cluster obtained theoretically to be the
"true" topology of the cluster.

This may be much more difficult than it appears since
the theoretical results may depend upon various approxi-
mations, e.g., the level of exchange approximation
(Hartree-Fock versus local density), treatment of correla-
tion, and the limitations of the basis functions used. For
small clusters consisting of only a few atoms, it is possible
to carry out sophisticated calculations including the ex-
change interaction at the Hartree-Fock level and the
correlation contribution using configuration interaction.
Clearly, these calculations are prohibitively difficult for
larger clusters of light atoms as well as for small clusters
of transition-metal atoms. For these systems, one is then
forced to use less -sophisticated methods such as those
based on the pseudopotential scheme and local-density ap-
proximation. On the numerical side, most of the cluster
calculations use molecular orbitals as a linear combination
of atomic orbitals (LCAO). The atomic orbitals are either
taken as numerical wave functions (as is done in the
discrete variational method') or are, expanded in terms of
a set of Gaussian orbitals. The advantage of the latter
approach is that the integrals can be carried out analyti-
cally, thus enabling an accurate determination of the total
energy. The difficulty, however, is in confirming that the
results are insensitive to the choice of the number of
Gaussian functions used to fit the atomic orbitals. While
the discrete variational method is not plagued by this
problem, the evaluation of the total energy is difficult
since one has to resort to numerical integration to obtain
the matrix elements. One then needs to know how sensi-
tive the total-energy calculations are to the choice of in-
tegration points.

Despite the difficulties cited above, numerous studies
have been done on small clusters ' " using different ap-
proximations for exchange and correlation and different
choices of basis sets. It is customary to compare one's re-
sult with other existing calculations. While such compar-
isons can give qualitative ideas of the validity of one ap-
proximation versus another, no quantitative information
can be extracted since the results may also depend on nu-
merical details in the calculations.

In this paper we present a thorough investigation of the
electronic structure of small clusters of lithium atoms as
an example. For these clusters, consisting of up to five
atoms, we have calculated the total energy and topological
parameters of the optimized geometry within the unre-
stricted Hartree-Fock (UHF) approximatiou. These cal-
culations were repeated by including the correlation con-
tribution at three different levels. The first two schemes
take into account correlation effects perturbatively by in-
cluding pair excitations of valence electrons and all elec-
trons separately. We have also performed calculations us-
ing configuration interactions with all possible pair excita-
tions. The comparisons of these results reveal the effect
of correlation at various levels of approximation on the
equilibrium geometry and binding energy. This compar-
ison does not suffer from the ambiguity that arises due to
basis-set choice since all calculations have been done with
the same basis. The magnetism of the clusters was inves-
tigated by minimizing the energy of the optimized clusters

For the calculation of the energy of the clusters, we
have used a self-consistent-field (SCF), molecular-orbital
(MO) method. In this approach one starts with an as-
sumed geometry of the cluster as a molecule. The total
wave function describing the system is a Slater deter-
minant formed out of molecular spin orbitals. For the
UHF procedure, in general, the number of electrons with
spin up (denoted by a) and those with spin down (denoted
by P) are not the same. In such a case the electronic ener-
gy is given by

(1)
where p and q denote the number of a and P electrons,
respectively. H;; represents the one-electron part of the
matrix elements. The Coulomb and exchange integrals
are defined as

Jj = J J Q; (1)QJ*(2) Q;(1)QJ(2)d~)d~2
~l2

(2)

k,j = f f y, (1)f,(2) p (1)Jp;(2)d~ d~ (, 2(3)
~l2

where P; denotes a moelcular orbital with spin a. One
can express the MO as a linear combination of atomic or-
bitals P,

qa (p) y ( n (p)y

P
(4)

The combination coefficients C define the density ma-
trices

with respect to their spin configurations. The clusters
with planar structures were less magnetic than expected
from Hund's-rule coupling. However, for three-
dimensional clusters, the magnetism was dictated by
Hund's rule. We should clarify at this point what is
meant by Hund's-rule coupling in real clusters. Hund's
rule, which states that maximizing spins always lowers
the total energy, was empirically derived from atomic
spectra. Consequently, it should apply to situations with
spherical symmetry. Real clusters, especially when they
are small, are not spherical. Therefore, the applications of
Hund's-rule coupling in the understanding of spin states
of small clusters may not be meaningful. In this paper,
we refer to Hund's rule as it applies to results of spherical
jellium clusters and its relationship to real clusters. We
find that electronic structure, equilibrium geometry, and
magnetism are found to be closely linked.

We have also calculated the ionization potential and en-
ergy of dissociation for all the clusters. The results are
compared with experiments as well as with available
theories. In Sec. II we present a brief description of the
theory used. Section III discusses our results for Li clus-
ters. A summary of our results and conclusions is given
in Sec. IV.

II. THEORETICAL METHODS
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Pp„g——Cp, C;

and

Pp„g—C~, C
g

.P P P

The sum of both the density matrices is given by P„„.
Then the energy of Eq. (1) is rewritten in the LCAO ap-
proximation as

E= pe„Hq„
P, V

+
2 g (PI P~ PIMP. —P—„),P. ~~P

P, V, A, , CT

where

(6)

1
P~(2)P~(2)dr~dr2 . (7)(pv~&a)= I f P„(1)P„(1)

~&2

The next step is to find optimum values of the coefficients
C&, and C~; by carrying out variations of the a and f3 or-
bitals independently. One then obtains two sets of cou-
pled equations:

g (F~ e; Sq„)C„=O—

and

g (Fp~ e~S„,)C—~ =0,

where S& and F& are the overlap and Fock matrices,
respectively, and e; are the one-electron energies. F„ is
defined by

yp(r) = y dpJgp(ap/„r),
k

(10)

where d&~ are the combination coefficients and g„are the
Gaussian-type orbitals. For different symmetries these
are given by

This generalization of Roothaan's equations was first
given by Pople and Nesbet. ' Starting with a set of trial
density matrices P and P~, one obtains solutions to Eq.
(8) by an iterative procedure that can be continued until
self-consistency is reached.

In the LCAO procedure of Eq. (4), one can use atomic
orbitals in any form. For our work we have chosen to use
a Gaussian representation for the atomic orbitals. In this,
one expresses the atomic orbitals as a sum of Gaussian-
type orbitals. ' ' We write

a„I,(molecular) =s a„~(atomic) . (13)

This scale factor is obtained by calculating certain proper-
ties of several molecules involving this atom and other
atoms and choosing a suitable value for s which would
simulate these properties as closely as possible. Thus,
there is no unique value for s. In addition to this, more
ambiguity can also enter an LCAO calculation using
Gaussian basis sets through the choice of k, the number
of Gaussians being contracted at a time. By makin'g k
very large one expects to minimize the errors caused by
the fitting procedure. Another possible improvement is to
use a large number of MO's in the SCF procedure so that
the electrons can delocalize freely and can mimic the in-
teractions as accurately as possible. However, in adding
extra MO's one has to be careful about the basis-set super-
position error.

With so many possibilities of choosing different atomic
basis sets one would have to justify the choice of one par-
ticular basis. The most important reason for choosing a
particular basis would be governed by the size limitations
in the computer. With this in view, one has to choose a
limited basis set which should represent the properties
suitably. Comparison of results from various types of
limited basis sets has been made in our work and is dis-
cussed in the next section.

To improve the results of the UHF procedure one must
include the effect of correlation. In the present work it is
done by an approach suggested by Mufller and Plesset'
(MP) and developed by Binkley and Pople' for SCF
LCAO-MO procedure. For this, one writes the correct
Hamiltonian in the form

tion of Hartree-Fock MO theory, the simplest are the
minimal Slater-type basis sets, least-squares fitted by N
Gaussian as given in Eq. (10) (STO-NG). The next level
of sophistication is the split-valence basis' ' of s and p
functions where two P&'s are used for each valence orbital.
In this case each P& is obtained by separate contraction of
a different set of primitive Gaussians. This is expected to
introduce su'fficient flexibility in the basis sets so that the
interactions in a molecule are reproduced reasonably well.
Some examples of these are the 4-31G, 5-31G, and 6-31G
basis sets. ' In all these basis sets one would normally
expect the lithium atoms to be represented by one 1s and
one 2s function for the MO's. But for the valence shell,
p-like orbitals are also added to the basis sets. This facili-
tates the simulation of various types of excitations in
terms of which interatomic interactions can be expressed.
In the least-squares-fitting process the exponents a&~ and
coefficients d&1, are obtained for a specific value of k.
But the values of a&I, need to be changed slightly from
their atomic values to represent the molecules better.
Therefore, one usually uses a scale factor s such that

g„=exp( —a„f,r 2)

for s-type orbitals, and

H= gF~+ H gFp—
P

(14)

gp„——x exp( a„I,r)—(12)

for the components of p-type orbitals. Among the
Gaussian-type basis sets developed for efficient applica-

where E& is the one-electron Hartree-Pock Hamiltonian
which has the UHF orbitals. as eigenfunctions. The sum-
mation is over all electrons. The terms within large
parentheses in Eq. (14) are then treated as a perturbation
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Rgb(2)dr(d~p . (16)

In Eq. (15) g; and tPJ are occupied and g, and g~ are
unoccupied. The unoccupied orbitals are sometimes
denoted as virtual orbitals. Thus, after obtaining the
UHF energy, we can make corrections due to correlation
using this approach. In the present work the perturbation
expansion is done up to second order only (MP2) and the
total energy is given as

EMP2 EUHF +E2 (17)

This procedure for the calculation of EMp2 .can be done
for all the electrons in the system (AEMP2). However, we
have also tried to include the excitations of the valence
electrons only (VEMP2). As will be apparent from later
sections, in most cases the VEMP2 calculation represents
most of the correlation. This "frozen-core" approxima-
tion works reasonably well because the correlation energy
associated with the core electrons varies little with the en-
vironment.

In addition to this, we have also used the
configuration-interaction (CI) procedure including all pair
excitations and have calculated the correlated energy non-
perturbatively. The comparison of all the results is given
in the next section.

All the above procedures are for obtaining the energy of
a cluster in a given geometry. For finding the best
geometry of a cluster (which would give the lowest ener-

gy) there are several available procedures. For our calcu-
lations here, we start with a random geometry, calculate
the Hellmann-Feynman forces at the atoms, and follow
the path of steepest descent to a minimum of energy. For
all the results presented in this paper, the root-mean-
square Hellmann-Feynman force at any nuclear site was
considered to be zero if its magnitude was found to be less
than 0.0003 hartrees/bohr. After the UHF calculations
we start with the equilibrium geometry obtained from
these calculations and study the variations of the energy
with minor changes in the topological parameters. The
energies thus computed at points in the vicinity of the ini-
tial values define a multidimensional energy surface. This
surface is fitted to a function from which the new equili-
brium geometry (including correlations) is obtained by
finding the new energy minimum. The above two pro-
cesses are repeated successively until the root-mean-square
force falls below 0.0003 hartrees/bohr.

and correlation due to this perturbation is calculated up to
several orders using Rayleigh-Schrodinger perturbation
theory. In this case, the energy correct to first order is the
Hartree-Fock energy, EUHF. The second-order energy is
given by

„„,J(ij fr 'Jab ba—) ['
(Eg +By —E) —EJ )

(i (j) (a &b)

where

III. RESULTS FOR Li CLUSTERS

In this section we discuss the results for clusters of
lithium atoms. We have chosen this example for several
reasons. Of all metals, lithium has the smallest atom
Since the number of electrons (core and valence) is small,
it is computationally feasible to study the various aspects
of theory pointed out earlier. In addition, there is a great
wealth of experimental data with which our results can be
compar ed.

We have investigated the dependence of our results on
the choice of basis sets and the level of approximation for
correlation. For Li clusters consisting of up to five atoms,
we have obtained the total ground-state energies, equilibri-
um geometries, spin configurations, ionization potentials,
and dissociation energies. For the sake of clarity we dis-
cuss these aspects separately.

A. Choice of basis sets

As mentioned in the preceding section, in the
molecular-orbital representation the wave functions are
represented by a linear combination of atomic orbitals.
The atomic-orbital wave functions are, in turn, given in
terms of a combination of Gaussian functions. As an il-
lustration, we have used five different Gaussian basis sets:
the minimal Slater-type orbital, fitted by three Gaussians
(STO-3G), the improved STO-6G, ' the split-valence 6-
31G,' ' the Dunning basis, and the modified Dunning
basis. ' In each case the contractions of the primitive
Gaussians are shown in Table I. The latter two basis sets
were chosen because they provide atomic properties in ex-
cellent agreement with experiment. Using these basis sets,
we have calculated the total energy and ionization poten-
tial of the Li atom and the total energy, equilibrium bond
length, and binding energy of the Liz molecule. The re-
sults are presented in Table I. Several remarks are in or-
der. There is no unique rule for choosing the best basis
set. A particular basis set, for example, may give the best
result for atomic properties while it may be completely
inadequate to describe molecular properties. This is what
is quite noticeable in Table I. Note that the modified
Dunning basis yields the best energy and ionization poten-
tial for the atom. However, it yields much poorer agree-
ment with experiment for bond length and binding energy
of Li2 than that obtained from the use of STO-6G basis.
The reasons are clear. To obtain the best energy of the
atom, one needs to improve the core states considerably.
However, in forming a molecule, the deeply bound core
electrons do not play too significant a role. Here the
valence electrons are important. This is not to imply that
an inadequate representation of the core states in compar-
ison to valence orbitals would yield satisfactory results for
the binding energy of the molecule. As valence electrons
are allowed to relax, the core-electron orbitals get influ-
enced because of antishielding. Thus, a compromise has
to be reached between the proper representation of
valence- and core-electron states. From the results of
Table I, we see that the STO-6G basis yields the best bind-
ing and bond length of Li2 when compared to experiment.
Therefore, for all the remaining calculations in Li clus-
ters, we have used the STO-6G basis. It is, of course, al-
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TABLE I. Comparison of results obtained from different basis sets. Total energies are given for Li, Li ion, and Li2 molecule.
The ionization potential Eqp, binding energy E&, and interatomic distance for Li2 at equilibrium (a) are also presented. In the basis
set notation the left-hand side denotes the primitive Gaussians and the right-hand side is the final set of contracted Gaussians.

Basis details

6-31G
(10s4p /3s 2p)

Calculation

details

HF
AEMP2
CI

E;
(a.u. )

—7.431 236
—7.431 520
—7.431 553

Li+
(a.u. )

—7.235 480
—7.235 658
—7.235 643

Erp

(eV)

5.235
5.327
5.329

E„;
2

(a.u. )

—14.866 317
—14.882 560
—14.893 434

(A)

2.815
2.810
2.760

(eV)

0.105
0.531
0.825

STO-6G
(12s6p /2s 1p)

HF-
AEMP2
CI

—7.399 931
—7.400 186
—7.400 238

—7.221 333
—7.221 578
—7.221 557

4.858
4.858
4.860

—14.808 879
—14.825 713
—14.837 075

2.699
2.678
2.646

0.245
0.689
0.995

Dunning basis
(10s /4s)

HF
AEMP2
CI

—7.432 392
—7.443 066
—7.445 272

—7.236 210
—7.247 030
—7.249 317

5.336
5.332
5.330

—14.861 293
—14.890 026
—14.901 531

2.858
2.911
2.983

—0.095
0.106
0.299

Modified Dunning
basis (10s2p /4s 1p)

HF
AEMP2
CI

—7.432 392
—7.443 229
—7.445 465

—7.236 210
—7.247 066
—7.249 343

5.336
5.336
5.335

—14.870 469
—14.906 616
—14.918 652

2.783
2.760
2.699

0.155
0.548
0.754

STO-3G
(6s 3p /2s 1p)

HF
AEMP2
CI

—7.315 526
7.315 782

—7.315 836

—7.135448
—7.135 674
—7.135 653

4.898
4.899
4.900

—14.638 747
—14.655 495
—14.666 734

2.699
2.694
2.630

0.209
0.651
0.954

Experiment

'Reference 30.

5.392' 2.672' 1.03'

ways possible to use more extensive basis sets than what
is used here. However, in doing so, the self-consistent cal-
culations for the clusters as done here would become
prohibitively difficult. Thus, a compromise has to be
made between the accuracy desired in the calculations and
the size of basis sets which influence computer time.

B. Level of correlation approximation

In the present work we have obtained results for all the
basis sets using UHF, AEMP2, and CI methods. In Table
I we compare the total energies and ionization potentials
of the Li atom and the total energy, bond length, and
binding energy of the Liz molecule. The inclusion of
correlation (at the AEMP2 or CI level) lowers each of the
energies as expected. For a given basis set, note that the
improvements in the ionization potential of the atom are
only minimal when the two levels of correlation are con-
sidered. However, the CI result for the binding energy of
the Li2 molecule is significantly better than the corre-
sponding perturbative AEMP2 result. The bond length,
an the other hand, is not very sensitive to the level of
correlation approximation.

Another interesting observation can be made from
Table I. We note that the binding energies of the Liz mol-
ecule in the CI calculations using different basis sets
differ by as much as 0.7 eV (see the STO-6Cx and Dunning
basis). This is of the same order as the difference between
the Hartree-Fock and the CI results of a given basis set.
Thus, we wish to emphasize that in situations where two
different calculations (e.g., local density versus CI, pseu-

dopotential versus all-electron calculations) yield nearly
equal results, caution should be exercised in justifying the
approximations involved unless both the calculations uti-
lize identical numerical procedure.

From further investigation of the effect of various lev-
els of correlation on the electronic and structural proper-
ties of clusters, we list in Table II the total energy and
bond lengths of neutral Li clusters consisting of up to five
atoms using the STO-6G basis set. The optimized
geometries for all the cases are given schematically in Fig.
1. All the forms shown are planar in structure. Correla-
tion contributions have been calculated at three different
levels, i.e., VEMP2, AEMP2, and CI. As before, the total
energy of each cluster is lowered with increasing improve-
ments in correlation approximation. The differences in
topological parameters between Hartree-Fock and various
levels of correlation approximations are not very large.
The clusters tend to be more closely packed as correlation
is included. We wish to emphasize here, again, that for
each of the calculations presented in Table II the
geometries were optimized starting initially from random
structures. Since the numerical details for all these clus-
ters are identical, the results in Table II represent the true
influence of correlation on the topological parameters and
total energies. It is quite clear that even within the
Hartree-Fock scheme, one can obtain the right equilibri-
um geometry for a cluster. The bond lengths are also in
reasonable agreement with the CI results. However, we
will show later in this paper that while the structure of a
cluster can be well described by the Hartree-Fock scheme,
many of the electronic properties require the inclusion of
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TABLE II. Total energy and bond lengths (a, b, c,d) of neutral lithium clusters at the corresponding
optimal geometries. The shape of the geometries are given in Fig. 1. Energies and bond lengths are
given in atomic hartrees and angstroms, respectively. The spin configuration for which the energy is
the lowest is shown in the second column for each cluster.

Quantity HF

—7.399 931

VEMP2

—7.399 931

AEMP2

—7.400 186 —7.400 238

E(ts)
a

—14.808 879
2.699

—14.824 828
2.696

—14.825 713
2.678

—14.837 075
2.646

F(&sr)

b

—22.231 568
2.698
3.045

—22.241 549
2.695
3.175

—22.243 038
2.687
3.162

—22.253 448
2.684
3.266

E(t&t&)
a
b

—29.650 737
3.033
2.524

—29.686 364
3.002
2.576

—29.688 658
2.997
2.570

—29.708 516
2.938
2.612

E(rs~ss)

b
C

d

—37.093 920
2.904
3.520
2.911
2.903

—37.113595
2.920
2.963
2.980
2.929

—37.116357
2.928
2.923
2.979
2.919

—37.137382
2.880
2.991
2.939
2.934

correlation effects for proper understanding. The spin
configurations for clusters in Table II are given in the
second column. These correspond to the lowest-energy
states as compared to other possible spin configurations.
We will discuss this aspect more fully in the later sections.
In what follows, we shall only present results obtained
from complete CI calculations.

C. Electronic structure

We now discuss the role of electronic structure on mag-
ic numbers and equilibrium geometries of clusters. Re-
cently, Knight et al. have observed conspicuously large
peaks in the mass spectra of Na clusters. These peaks oc-
curred for N=2, 8, 20, 40, 58, and 92 where N is the
number of atoms in the cluster. Similar peaks have been
observed by other workers earlier for Na, Li, and rare-
gas-atom clusters. Knight et al. explained the oc-

currence of these "magic numbers" in terms of an elec-
tronic shell model. Using a jellium model for clusters,
they showed that the energy per atom in a cluster is
lowered in comparison to its adjacent clusters when the
electron shells are completely filled. This simple explana-
tion and its remarkable ability to explain the experimental
features imply that the abundance of clusters is governed
by a very fundamental principle. In the following discus-
sion we shall show that such an optimism is premature, at
least for small clusters, and that the abundances of clus-
ters are governed by many different competing mecha-
nisms. Moreover, kinetic effects' also have to be con-
sidered while dealing with these magic numbers.

In Fig. 2 we present the total energy per atom of Li
clusters consisting of N= 1 to 42 atoms per cluster ob-
tained from a spin-polarized density-functional jellium
calculation. In the jellium model, the positive charges are

-0.0 Q

Z,'

-0.07

Id 2s

(iv)
IO 20 30 40

FIG. 1. Shape of optimum geometries of Li& clusters up to
%=5.

FIG. 2. Plot of energy per atom versus N obtained from jelli-
um calculations. The shell filling has been indicated by suitable
labels at the bottom of the graph.



2064 B. K. RAO AND P. JENA 32

R =r,X'~

The electron density parameter r, is given by

(19)

no

4~
3

r, .

We have used the bulk value of r, for all the jellium cal-
culations of Li clusters. The electronic structure of these
spherical jellium clusters is obtained self-consistently by
solving the density-functional equation. Before we dis-
cuss the results in Fig. 2 we want to remind the reader
that the jellium model for small clusters is an oversimpli-
fication of reality. As pointed out earlier, clusters of up
to five Li atoms do not even form a three-dimensional
structure. This aspect will have strong influence on
magnetism as will be discussed later.

In Fig. 2 we see distinct dips in the energy per atom for
clusters with %=2, 8, 20, 34, and 40. Thus, on energy
grounds, one would conclude, for example, that an %=2
cluster is more likely to form than either an %= 1 or
1V=3 cluster. This would make %=2 a magic number.
Clusters containing %=2, 8, 20, 34, and 40 electrons cor-
respond to situations where 1s, 1s 1p, 1s 1p 1d2s,
ls lp ld 2s 1f, and ls lp 1d 2s 1f2p orbitals are filled. These
results agree with the jellium calculations of Knight
et al. 3 and have the same features as experimental results
in Na. In addition, we also see dips in the energy diagram
for iV =5, 13, 27, and 37. These correspond to half-filling
of lp, ld, 1f, and 2p orbitals, respectively. These features
(which can be seen more pronouncedly in the second
derivative of the energy plot ) are absent in the calcula-
tions of Knight et al. since theirs was a nonpolarized cal-
culation whereas ours is spin polarized. In all our jellium
calculations we found that maximizing the spin according
to Hund's rule coupling always lowers the energy. Thus
the N =5 cluster in the jellium model is a quartet,

modeled by a sphere of homogeneous density no, namely,

n,„,(r) =noe(R —r),
where R is the radius of the sphere and is related to the
number 1V of atoms in the cluster through the relation

whereas it was a doublet in our calculations of the real
- cluster. In addition to this discrepancy, the jellium model
also fails to explain other systematics in the mass spectra.
For example, Knight ef; al. observed that the %=14 clus-
ter is more abundant then either the %=13 or %=15
cluster. Our spin-polarized jellium cluster calculation
would suggest just the opposite. Here we find the %=13
cluster to be more abundant than the %=14 cluster.
Thus, the jellium model not only yields the wrong spin
configuration but also fails to account for all the conspi-
cuous peaks in the mass spectra.

The origin of the magic numbers, therefore, has to be
looked for elsewhere. Here it is important to realize how
the experimental information is obtained. In a typical ex-
periment, one starts with the vapor (consisting of single
atoms) which, upon cooling in a rare-gas-atom environ-
ment, condenses to form molecular clusters of different
sizes. These clusters are then ionized and subsequently
studied in a mass spectrometer. Thus, the magic num-
bers, seen in terms of conspicuously large peaks in the
mass spectra, can be influenced at several different stages.
First, it must be energetically favorable for a certain clus-
ter to form more easily than its immediate neighboring
sizes. Second, having formed, the cluster should have a
high threshold against dissociation. Third, it must be
easy to ionize this cluster. All these three effects may not
always act in the same direction. Thus, one needs a com-
plete understanding of the energy per atom, dissociation
energy, and ionization potential of the clusters to under-
stand the occurrence of magic numbers. It may also be
necessary to consider kinetic effects which may affect
the cluster formation.

It is prohibitively difficult, with the present status of
computer technology, to perform completely ab initio CI
calculations of the energetics of Li clusters of up to 40
atoms per cluster and to determine their equilibrium to-
pology. We, therefore, restrict our discussion concerning
the magic numbers for Li to %=5. In Table III we list
the total energy of the ionized clusters along with the to-
pological parameters for their optimized geometry, energy
per atom, the energy of dissociation, and the adiabatic
ionization potential. These results are based on an STO-

TABLE III. Some properties of singly ionized clusters (total energy EN and optimized geometries)
and neutral clusters [energy per atom, dissociation energy (AE), and ionization potential E&p]. The
geometries correspond to Fig. 1 and the bond lengths are given in angstroms. EN and EN/N are given
in hartrees. 4E and EIP are in ev.

Ionized clusters
EN Geometry EN /Ã

Neutral clusters
EIP =EN —EN kE =EN 1+El —EN

1

2
3

—7.221 557
—14.677 998
—22. 140 043

—29.569 373

—37.025 352

a =3.028
a =2.994
b =2.996
a =3.092
b =2.774
6 =5.441
b =3.087
c =2.830
d =3.099

—7.400 238
—7.418 538
—7.417 816

—7.427 129

—7.427 476

4.860
4.327
3.085

3.785

3.047

0.995
0.439

1.491

0.779
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FIG. 3. UHF (dashed line} and CI (solid line) results for ener-

gy per atom, dissociation energy, and ionization potential.

6G basis with full CI calculation. We have defined the
dissociation energy as

EN+(EN —1+El ) ~

where E~ is the total energy of the X-atom cluster and
E& is the energy of a single atom. Thus a positive value
of hE for an ¹tomic cluster implies that it is stable
against dissociation to an X—1 cluster and a free atom.

To facilitate the discussion of magic numbers, we plot
in Fig. 3 the energy per atom, dissociation energy, and
ionization potential of Li clusters. Note that the energy
per atom for the N=2 cluster is lower than that for the
N = 1 or N =3 cluster, thus making the formation of
N=2 clusters more likely than that of a N=3 cluster.
The dissociation energy, on the other hand, for the N =3
cluster is lower than for the N=2 cluster. This implies
that it is easier for a Li3 cluster to dissociate to Li2+Li
than it is for a Li2 molecule to dissociate to two Li atoms.
However, the dissociation energy for the Li3 cluster is
about 0.5 eV and thus it is quite stable against dissocia-
tion. On the other hand, it is energetically more favorable
for' a Li3 cluster to accept an additional Li atom to
transform to a Li4 cluster. It is probably for this reason
that the abundance of Li2 clusters is higher than that of

Li3 clusters. The ionization potential for the Li3 cluster is
much lower than that of the Li2 cluster. Consequently, it
is much easier to ionize Li3 than the Li2 cluster. Thus,
the observed abundances have to be inftuenced by not only
the formation of clusters but also by the ease with which
they can be ionized. While the ionization potential argu-
ments would make %=3 a magic number, the energy per
atom and the dissociation energy arguments should make
%=2 a magic number. Thus, the experimental observa-
tion of N =2 as a magic number leads to the conclusion
that the higher energy per atom of N=3 and its easier
transformation to a N =4 cluster make the abundance of
Li3 less likely than that of Li2. The higher magic num-
bers have to be understood in a similar way. Unfortunate-
ly, it' is difficult to carry out calculations of the type
described here for larger clusters. We feel that the jellium
model provides an incomplete picture of the occurrence of
magic numbers and its apparent early success shrouds
some interesting physics. In Fig. 3 we have also plotted
the energy per atom, ionization potential, and dissociation
energies for N =1—to N =5—atom clusters by optimiz-
ing the geometries within the unrestricted Hartree-Pock
scheme. Note that the UHF calculations fail to produce
the systematics found in the complete CI calculations.
We can therefore conclude that, although the geometries
and bond lengths of clusters can be reasonably calculated
in the UHF procedure, it fails to describe the electronic
properties well. In Table IV we compare our results with
previous CI calculations and available experimental re-
suits. We would like to remind the reader that in previous
CI calculations (except for Liq) the geometries have not
been completely optimized. Thus, the discrepancy be-
tween our CI results and others could partly stem from
the different geometries used. Some of the discrepancies
can also originate from the details in the numerical pro-
cedure as discussed earlier. Despite this, the agreement
between the various calculations and experiment is very
reasonable.

We now discuss the relationship between the electronic
structure and equilibrium geometry of the clusters. In Fig
4 we plot the charge density contours for N =2 to N =5
Li clusters. The presence of delocalized electrons can be
clearly seen from these contour plots. In all these plots
the charge density in the interatomic region is reasonably
large because of these delocalized electrons. An under-
standing of the orbital character of these electrons is very
useful in relating the electronic structure of clusters to
their equilibrium geometries and magnetic configurations.
In atomic calculations, the orbitals are characterized by
angular momentum (I ) and azimuthal quantum numbers
(m). In real molecular clusters, on the other hand, such
characterization is not possible. As mentioned earlier, an
attempt to explain the magic numbers was made in terms
of successive filling of angular momentum states in spher-
ical jelhum clusters. A comparable understanding can
also be achieved for the molecular orbitals. For example,
in the present case, we start with only 1s and 2s atomic
orbitals and form a series of o. and o.* molecular orbitals
for the occupied stats. The o.* orbitals are antisymmetric
and therefore will have nodal planes. Comparing these
with the p levels of the jellium model, one can say that the
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TABLE IV. Comparison of results with previous CI calculations and available experimental values.
The geometries correspond to Fig. 1. The units are as mentioned in the preceding tables. Note that in
other CI calculations (N )3) the geometries are not completely optimized.

Quantity

a

Present results

2.646
0.995
4.327

Other CI results

2.694'
0 99'

Experiment

2.672b

1.03"
4.86+0. 1'

a
b

Erp

2.684
3.266
1.434
3.085

2.815' 2.964
3.329c 3.442d

1.49'
4 0c

1.79'
4.35+0.2'

a
b
E
EIP

2.938
2.612
2.925
3.785

3.080'
2.749'
2.263'
4.54'

3.34+0. 1g

4.69+0.3g

'Reference 31.
Reference 30.

'Reference 9.
"Reference 10.

a
b

C

d

Erp

2.880
2.991
2.939
2.934
3.704
3.047

2.774"

'Reference 32.
Reference 11.
Reference 33.

"Reference 8.

o.* orbitals are p-like in character. Depending upon the
position of the nodal planes, these can be described as p -;
pz-, or p, -like in behavior. Proceeding with the MO pic-
ture, one would then expect these orbitals to be filled suc-
cessively. Thus, for' example, the outermost electrons of
the Li4 cluster will fill the s-like and the p„-like (the
choice of x, y, or z depends upon the choice of the axes)
molecular orbitals, making the Li& ground state a spin
singlet. Upon forcing the configuration to go to the next
higher state, p - and pz-like orbitals would be filled. This
would permit Hund's rule to force the state to be a spin
triplet. In either case, the atoms would lie in the x-y
plane, making the cluster a planar one. However, for
clusters of X)7, the p, -like states will start filling up and
the clusters will become three dimensional. This is in
complete agreement with the observation of Martins
et al. To confirm the link between the filling of the
molecular orbitals and dimensionality of clusters further,
we have performed self-consistent calculations of the Be4
cluster. Here, there are eight valence electrons, and thus

p, -like orbitals would be filled and the optimized
geometry will be expected to be nonplanar. Indeed, the
equilibrium structure was found to be three dimensional.

In the present calculations, for Li clusters, we had in-
cluded 2p functions in the atomic basis to introduce flexi-
bility and to simulate the interactions of the valence elec-
trons properly. This also helps to demonstrate the rela-
tion of the topology and the electronic structure in terms
of the successive filling of the electronic states. In Table
V we present the orbital charges connected with the vari-

ous states in Li4 clusters. As expected, the singlet planar
configuration shows occupation of the p orbitals only
while the triplet shows occupation of both p and p~ orbi-
tals. In either case, the p, states are empty. However,
when Li4 is forced to be three dimensional in structure
(tetrahedral in the bcc phase) the occupation of p, is clear-
ly observed.

TABLE V. Orbital charges associated with a lithium atom in
different configurations of Li4 clusters.

Configuration

Orbital

1s
2$

2px
2pg

2'

Singlet
Planar

1.9887
0.5038
0.3890
0.0
0.0450

Triplet

1.9904
0.7671
0.1437
0.0
0.1493

Singlet

1.9880
0.3902
0.0236
0.0620
0.4299

bcc
Triplet

1.9899
0.6715
0.0446
0.1189
0.1751

D. Magnetism versus cluster geometry

It is now appropriate to discuss the magnetic behavior
of small clusters and its relationship to cluster topology.
For %=2 and %=3 clusters the spin configurations are
& & and p & &. Flexibility in these assignments begins to
arise with the %=4 cluster where we can have either a
singlet ( t t t t ) or a triplet ( t t t t ) state. For each of these
assignments, the geometries have to be optimized. We
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FIG. 4. (a) Charge density contour for Li2. Starting from the nuclei and moving outward, the charge densities have been given for
0.5, 0.2, 0.1, 0.05, 0.03, 0.02, 0.017, 0.014, 0.01, 0.009, 0.008, 0.007, 0.006, 0.005, and 0.004 a 0, respectively. {b) Charge density con-
tour for Li3. See caption of (a) for details. {c)Charge density contour for Li4. See caption of (a) for details. {d) Charge density con-
tour for Liq. See caption of (a) for details.

have actually compared (see Table VI) the total energies
for the singlet and triplet states of the N =4 cluster in the
optimized planar structure. As pointed out earlier, we do
see that the %=4 cluster prefers to be in a singlet spin
state. This is, again, a reconfirmation of our earlier state-
ment that p„-like, p~-like, and p„-like states are filled in
succession.

In the discussion of the spin-polarized-jellium calcula-
tions, we pointed out that maximizing spins according to
Hund's rule always lowers the total energy of the cluster.
Thus, in the jellium model, a Li4 cluster will be magnetic.
This result is in contradiction with our calculations on the
real cluster. To understand the origin of this discrepancy,
we note that the four-atom jellium cluster is three dimen-
sional, whereas the equilibrium geometry is completely
planar. To see if the preferred spin orientation is linked
to the dimensionality of the cluster, we forced the four Li
atoms to have a tetrahedral configuration in the bcc struc-
ture. We, then, varied the lattice constant of this cluster
for both singlet and triplet spin configurations until the
minimum in the energy was achieved. The corresponding
total energies and bond lengths for both of these
tetrahedral clusters are shown in Table VI along with the
planar structures. Note that, in this case, the triplet

TABLE VI. Comparison of energies and bond lengths of Li4
clusters in optimized planar and bcc (tetrahedral) structures.
All calculations are with STO-6G basis and full CI.

Geometry Quantity TripletSinglet

Planar Energy
a
b

—29.708 516
2.938
2.612

—29.687 650
2.848
3.276

Energy
Lattice

constant

—29.674 681
3.246

—29.689 877
3.210

state has lower energy than the singlet state in agreement
with the jellium result. The preferred spin orientation and
its relationship with the dimensionality of the cluster can
be understood in the following way. An analysis of the
populations of the molecular orbitals of the planar clus-
ters reveals that the p -, p~-, and p, -like states are filled in
succession. For the %=4 cluster, p~- arid p, -like states
are empty. For the three-dimensional tetrahedral cluster,
on the other hand, p„-, p~-, and p, -like states are filled
simultaneously, and hence energy can be lowered by max-
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imizing spin due to the exchange interaction. In addition,
we want to point out that the spin-singlet %=4 planar
cluster is more compact that the spin-triplet 1V=4
tetrahedral cluster. This leads to a larger electron density
along the bond in the two-dimensional cluster as com-
pared to the corresponding three-dimensional one. The
increased electron density favors antisymmetry in the
spin, making the planar cluster less magnetic. Since the
dimensionality of the cluster topology is linked to the
magnetic order for N &7 in monovalent metals, we can
say that the jellium model would predict the wrong spin
configuration for N =4, 5, 6 clusters. We have found that
the equilibrium geometry for . N = 5 in Fig. 2(iv) has the
spin orientation Tt TlT instead of Tt TTT.

IV. CONCLUSIONS

We have performed self-consistent molecular cluster
calculations of total energies and electronic properties of
Li clusters consisting of N = 1 to N = 5 atoms per cluster.
Our results can be summarized in the following steps.

(i) We have investigated in detail the dependence of
binding energy and bond length of the Li2 dimer and ener-

gy and ionization potential of the Li atom on the choice
of basis set. The results are quite sensitive to the basis set
used. The basis set which gives the best atomic properties
may not necessarily predict the molecular properties with
similar accuracy. It is argued that for an understanding
of cluster properties, the valence-electron-orbital represen-
tation has to be improved. We find that for cluster calcu-
lations a basis set should be chosen which can predict the
binding energy and bond length of the dimer with most
accuracy. The effect of correlation has been investigated
by including it perturbatively through pair excitations of
valence electrons and all electrons separately as well as
through configuration interaction of all pair excitations.
While the bond length of the Li2 dimer is not very sensi-
tive to the level of correlation approximation, the binding
energy is strongly influenced by correlation. Using the
STO-6G basis, our CI calculation predicts bond length
and binding energy of Li2 in quantitatiue agreement with
experiment, .

(ii) We have obtained optimized geometries of N =2
to %=5—atom I.i clusters by varying all possible topolog-
ical parameters until the total energy reached a minimum.
All the geometries were found to be planar. In agreement
with the observations in Na clusters, we find the clusters
of Li form a close-packed structure.

(iii) The effect of correlation did not have much influ-
ence either on the equilibrium geometry or on topological

parameters. However, the agreement of the dissociation
energy with experiment improves considerably when
correlation is included.

(iv) The equilibrium geometries of ionized clusters have
been obtained in a way similar to that used for neutral
clusters. The ionized clusters are found to be more open
structures than their corresponding neutral counterparts.

(v) The energy per atom, dissociation energy, and ioni-
zation potential have been obtained as a function of the
number of atoms in the cluster from both UHF and CI
calculations. While the UHF procedure yields optimized
geometries and bond lengths in good agreement with CI
calculations, the structure in the energy per atom, dissoci-
ation energy, and ionization potential are only evident
when correlation is taken into account. It is pointed out
that simultaneous understanding of all these properties is
needed to explain the origin of the magic numbers in the
mass spectra. The first two quantities are responsible for
the formation and stability of clusters, whereas the third
quantity signals the probability of finding abundances in
the ionized clusters. In addition to these static properties,
dynamic effects may also be important in the study of
magic numbers. For transition-metal-atom clusters, core
electrons may also play a significant role in the equilibri-
um geometry and electronic interactions. Thus, the oc-
currence of magic numbers cannot be regarded as simply
arising from the electronic shell structure as implied by
recent jellium calculations. Further work is necessary on
this point.

(vi) We have found that small clusters can be magnetic.
For planar clusters, the preferred spin configuration is
different from that expected from Hund's-rule coupling.
Hund's rule does not hold true until the cluster assumes a
three-dimensional geometry.

(vii) All the arguments presented here are expected to
hold true for small clusters of simple metals. For clusters
of transition-metal atoms where core electrons are impor-
tant, the physics may be different. Thus, transition-
metal-atom clusters provide an attractive system to study
interesting problems in physics and chemistry of mole-
cules. Such an investigation is presently under way.
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