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Electronic response function of coupled chains of finite radius
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Following Williams and Bloch, we consider the random-phase-approximation electronic response
function of an array of parallel chains, treating the chains as cylindrical potentials of radius ro. A
careful discussion is given of the form-factored interchain Coulomb interaction, both in real space
and in momentum space. We extend the calculations to include the Tomonaga-Luttinger model
keeping only the small-momentum forward-scattering processes (g2 and g4). The finite chain radius
is necessary in order to make the intrachain interaction well defined. The continuum approximation
for the interchain interaction is examined in detail and compared to the analogous problem in type-
II superconductors. We give the corrections to the plasmon frequency (for coupled chains) which

depend on the ratio ro/d~, where d& is the distance between chains.

I. INTRODUCTION

In connection with the electronic properties of quasi-
one-dimensional conductors, there have been many stud-
ies' of the electronic response function X of a system of
coupled parallel chains. In an important early paper, Wil-
liams and Bloch worked with a simple model of a chain
(electrons in a cylindrical potential of radius ro) using the
random-phase approximation (RPA) for both the intra-
chain and interchain long-range Coulomb interactions. In
the more recent literature (see, for example, Ref. 4), the
intrachain interactions are treated along the lines of the
generalized Tomonaga-t. uttinger model, but usually for a
chain of zero radius. In the present paper we extend the
Williams-Bloch analysis slightly so as to include an im-
proved treatment of the forward-scattering intrachain
processes (g2 and g4, in the usual notation ' ) but at the
same time to work with a chain model with a finite radius
ro. As we shall see, a finite radius is necessary if we are
to remove certain divergences in a physically well-defined
manner (this problem occurs even in the coupled-chain
problem).

In most theoretical studies of coupled-chain problems,
the major interest has been in the study of charge-density
and/or superconducting phases, whose stability depends
very much on the high momentum transfer processes [the
backward (g& ) and umklapp (g3) scattering processes
which involve momentum transfers q -2' j. In contrast,
we are mainly interested in using the coupled-chain elec-
tronic response function in connection with long-
wavelength plasmons and the screening of ion-ion interac-
tions in Hg chain compounds. For this reason, we limit
ourselves to processes involving small momentum
transfers.

As in the Williams-Bloch theory, the key role is played
by an effective Coulomb interaction which involves form
factors associated with the finite radius of the cylindrical
potentials. Besides the usual expression written as a sum
over reciprocal-lattice vectors of the chain lattice, we
derive an equivalent expression in terms of a sum over
chain positions in real space. This new expression allows

one to discuss the properties of 7 as a function of the lat-
tice spacing (dq ). In particular, we show how the
coupled-chain results reduce to uncoupled chains as
dz~ op and obtain the corrections to the so-called "con-
tinuum limit" often used to approximate sums over a lat-
tice of chains. We feel that a systematic discussion of
these questions is useful, and it is not available in the
literature.

In a second paper we use the results of this paper to
calculate the statically screened Coulomb interaction be-
tween Hg ions in Hg chain compounds. These, in fact,
are more complicated since they involve two perpendicu-
lar arrays of chains. The electronically screened Hg-Hg
interaction allows one to estimate the phonon velocity in
the Hg chains, which are known to behave as one-
dimensional (1D) harmonic lattices at temperatures above
I2O K."

A brief summary of this paper is as follows. In Sec. II
we define our model for a parallel array of cylindrical
chains, then sketch the mean-field theory of the coupled
chains. In Sec. III, after generalizing the analysis to allow
for g2&g4, the form-factored potentials are discussed in
some detail. The results are then used in Sec. IV to show
how the nature of the plasmon dispersion relation changes
from 1D to 3D as dz decreases. The role of the finite size
of the cylindrical potentials is emphasized throughout.

In an Appendix we discuss the noninteracting electronic
response function of a 1D system, comparing the results
when the electronic dispersion relation is quadratic to that
when (as in the Tomonaga-I. uttinger models) it is linear-
ized. While these results are already known, the
mathematical details are not usually discussed.

II. GENERAL EXPRESSION
FOR THE ELECTRONIC RESPONSE FUNCTION

FOR COUPLED CHAINS

In our model the chains will be approximated as a uni-
form cylindrical potential well of radius ro. The free-
particle wave functions are given by
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1 i«t„xP(r)= e "uo(rl),I.
and we assume the electron is always in the ground state
for motion perpendicular to the x axis. For a cylindrical
well with infinite walls, uo(rq) —Jp(kl rl ) where
ki 2.4/rp. For

~

kyrie

~
&& 1,

Jp(k~r~)= exp( kl—r~ /2) .

However, for analytical simplicity, we use the Gaussian
approximation

1 —rj /2ro
uo(r~) = 2, e

(n.rp)

In view of the fact that the "potential-well" description is
only a crude approximation for the chain, there is not
much justification in using more "realistic" localized
wave functions than the Gaussians in Eq. (2).

We next sketch the derivation of the electronic response
function within the standard mean-field approximation
(or RPA). Within linear response, we have

5p(r, co)= f dr'X(r, r', co)Vp(r', co),

where

X(r, r', co)= i f —dte' +' "([5p(r,t),5 (r', 0)]} .

(4)

Taking into account our neglect of dynamics perpendicu-
lar to the chain direction,

5p(r, co) = g 5p~(x, co)w(rj —R},

X (r, r', co)= g w(rj —R)w(rl —R')XR R (x,x', co)
RR'

g w(ri —R)w(rl —R)X (x —x', co) . (10)

We have used XR,R —XR,~SR,R w&th +R R—=g being the0 0 ~ 0 0

same for any chain.
Combining (6), (8), and (9) we have the familiar RPA

equation for the response function. Fourier transforming,
we find after some calculation that

g X(p, —p —G,~)Vo(p+G, ~)

X'(P, —P —G,~)Vo(P+G, ol)
G

+ gX (P„,lo)u(P)X(P, —P —G, lo) Vo(P+ G,a)),
G

where (X equals the number of chains)

], —ip&-R i(p&+G) R'
X(p, —p —G,co)=——g e ' e

xP(p|)P*(pj +G)

—EP xf dx e XR R (x cia)«

=f3(P~) ge ' Xa,p(P, ~) I3'(Pl+G)
R

(12)

where w(rz) =
~
uo(rl )

~

and the sum is over the lattice
vectors of the set of chains (i.e., the vectors R describe a
2D lattice in the y —z plane). Thus (3) can be written in
the form

5p(r, lo)= f dx' f drI g XR R(x,x', co)w(r| R)—
R,R'

&&w(r,'-R) Vo(r', p ) . (6)

X (p, —p —G,ol)=p(p|)X (p, lo)p*(pl+G) . (13)

In (ll) and elsewhere, the G sum is over the reciprocal-
lattice vectors of the R lattice (G is a 2D vector in the y-z
plane). The effective form-factored potential is

u(p) = g f dx f drje' ""e' ' "u(
~

r+R
~

) —,
'

w(rl /v 2),
R

(14)

The response function has the translational symmetry

Xa R'(X«x «co) =XR R' p(x —x,cij)

Within the RPA, we have

5p(r, co)= g f dr|w(rz —R)w(rj —R}
R

X f dx'X (x,x', co)V«, (r', co), (8)

and the form factors are

P(pz)=—f dr|e ' 'm{rj)

p 2@2 /4=e (15)

—,
' w(r, /v 2) = g P(p, )P*(p, )e

IVY,C p~

in our Gaussian approximation. In the algebraic manipu-
lations used in deriving (11), we have used the identity

where the self-consistent potential is

V«, (r', a)) = Vp(r', co)+ f dr"u(r' —r")5p(r",to) (9)

and u(r) =e2/r is the 3D Coulomb potential. Only elec-
trons in a given chain are correlated in the noninteracting
case and hence

= f driw(1I )w{rj +ri) «

which follows directly using (14) in conjunction with

w(r, ) = g P(pl )e
C p~
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A, is the area of the unit cell ( 3,=di for a square lattice
and A, =di V 3/2 for a triangular lattice).

We note that since the external driving field Vp(p, co) is
arbitrary, Eq. (11) immediately implies that

0
X( a) X(p —p —0 ) (18)

1 —u(p)X (p», co)

or equivalently

—
ipse

'R N(eF )UFP.'[ I+g4(p) —g2(p) ]
XR,o(p

R pi UFP I [1+g4(P)]'—g2(p) I

where the barred quantities are defined as

g;(p)=——,'N(eF)g;(p)= g;(p) .
7TRUy

(25)

(26)

—tp~ R~ X (Px~~)0

e ' 'XR, o(p. co) =
R 1 —u(p)X (p„,cp)

(19)

e(p, co)=1—u(p)X (p»ro) . (20)

Clearly the collective modes of the coupled chains are
given by the zeros of the dielectric function

The result in (25) is a generalization of the RPA expres-
. sion in (22), but at the same time is more limited in that
Schulz treated the chains as strictly 1D, with ro~0. Let
us consider the intrachain Coulomb interaction arising
from the R=O term in (23), namely

u~(p„)—=e f dr&K0(p„r2)w(r2 /~2) . (27)

As reviewed in the Appendix, for p„«2qF, one has
2 2

X (p„,~) =N(eF)
CO —UgP~

Using this in (19) gives the RPA result
2 2—Epg'R N(eF )UFP

e XR p(P, CO) =
co —UFP„[1+N(eF )u (p) ]

(21)

(22)

For our finite-radius chain model, this is given by

uA(px)=e e Ei(px"o /2) (28)

uz(p„) = —e [in(p„ro /2)+y], (29)

where @=0.577 is Euler's constant. In contrast, noting
that

where Ei(x) is the exponential integral function. For
p„ro «1, this reduces to' '"

where u(p) is given by (14).
For the Coulomb potential, the form-factored effective

potential in (14) can be reduced to

u(p)=e pe' ' f dr&K0(p»
~

ri+R
~

)w(ri /v 2),

lim w(r2 /~2) =25(rz),
ro~o

we see that if we set rp ——0,

u~ (p„)=2e Kp(p ri ~0)= ln(p„ri ~0) . (30)

(23)

where Kp is the zeroth-order modified Bessel function.
This result is especially convenient in that one can see
directly the contribution from intrachain interactions
(from R=O) and the interchain interactions (from R&0).
We note that using Eqs. (16) and (17), one can show that
(23) is completely equivalent to

g 2 ( P ) g 20 +u A (P ) + uti (P )

g4(P) g40+uA(P )+uB(P)
(31)

It is this same divergence which makes (24) diverge in the
absence of the form factors.

The generalization of Schulz's result (25) to the case of
chains with a finite radius is straightforward. This is
especially clear in the case

u(p) = g ~
13(p&+&)

~

'U(p+&)

—
~
&i+6~'"o ~'

4~e + e

~c G p'+(pj+&)' (24)

where uti(p) is the interchain Coulomb interaction arising
from the R&0 terms in (23). Here g2p and g40 are
momentum-independent intrachain interactions. One
may easily verify that (25) reduces to

Thus our result (20) is in agreement with the RPA result
of Williams and Bloch. If we had worked with strictly
1D chains (r0=0), the form factors P(pi+Cd) would be
absent in (24), in which case u(p) is divergent due to the
high-momentum transfers.

III. DISCUSSION OF THE INTRACHAIN
AND INTERCHAIN COULOMB INTERACTIONS

In recent work, Schulz has pointed out that if one re-
stricts oneself to small-momentum forward-scattering
processes g2(p) and g4(p), the Tomonaga-I. uttinger
model can be diagonalized exactly. Using Schulz's re-
sults, we find

XR p(p, co) =
R 1 —u~(p)X"'(p„,~)

(32)

2 2N(eF )vFP
XRp~(Px pi)=

2 2 2~' —UFP.'[ I+»~ (P. ) ]
(33)

Of course, the Tomonaga-Luttinger result for a single
chain reduces to this if we ignore g2O and g4o.

We next turn to a discussion of the interchain form-
factored Coulomb interaction in (31), namely

where the response function 7'" includes all intrachain in-
teractions. It is formally identical to (25) with uti(p) left
out in (31). We note that our RPA result (22) can also be
written in the form (32), with
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us(p) =e g e f driKo(p„
I
ri+R

I
)w(ri /V 2) .

R~O

(34)

ite radius. We have already discussed uz(p„) [see Eqs.
(28) and (29)] and pointed out that it diverges for ro~0.
The interchain interaction contribution uz(p) is given by
(23) with R=0 excluded. An expansion gives

Similar expressions have been discussed at length by
Fetter, especially in the context of a. vortex lattice in
type-II superconductors. In the usual case, vortices of
zero radius are considered, which corresponds to the
ro~0 limit of (34},

us(p)=2e g e ' Ko(p„R) .
R+0

One finds

Ko(p
I
ri+R

I
)=Ko—(p R)—,'(p, r )—(r /R)K, (p 8)

+ ~ ~ ~

valid for R&0 and ro «di. Calculation then giveso, , ip, R Ki(px& }
us(p)=us(p) —e p„g e

R+0

(38)

(39)

lim ue(p) =e —ln 2 +2y —1 .o 2 4~ 4~
p 0 Ap Ap~

(36)

At this point, we can now discuss the continuum ap-
proximation many authors use in discussions of filamen-
tary lattices. This corresponds in keeping only the Ci=O
term in the effective interaction (24), i.e.,

Po
uB(p) =ua(p) —2e p a f dRJo(piR)Ki(p„R )

(40)

where u~(p) is defined in (35). If pdi &&1, we can use
the continuum approximation for the sum over R in the
second term to give (it is convenient to define A, =ma )

2

4me 1
lim u(p)=up(p„)+u~(p)= + ~

p~o A, p2

To obtain this result and the first correction to it requires
a careful treatment of u~(p„) and us(p) for chains of fin-

=ue(p)+e
a

2

p a
ln + ~ ~ ~

Putting all these results together, we obtain

(41)

2 2 2 2
px~o 4m pxa

lim u(p)= —e ln +y +e + ln
p o 2 g,p 4

2

2 ~o pa+2/ 1 + o ~ o +e ln + o ~ ~

a
(42)

=e
2

—ln
4m

A,p

2P' 0
2

2 +
a

P'o 2a 2

ln + ~ ~ ~

a 4
(43)

po ((dg~ pd~ (( 1 (44)

To the authors' knowledge, this is the first explicit calcu-
lation of such correction terms which depend on the ratio
(ro /di) (we recall that A, -di and a-di).

In the opposite limit of di —& oo, clearly only the R=O
term contributes in (23). That is, the interchain Coulomb
interaction us(p) is negligible. We' also note that in the
dj ~op limit one can replace the sum over G in the
Williams-Bloch expression (24}by an integral; the result is

In (42), the first term is the intrachain Coulomb interac-
tion for a chain of radius ro, the second is the interchain
interaction for a chain of zero radius, and the last is the
lowest-order correction to this involving the finite radius
of the chain. The correction terms to the continuum ap-
proximation [the 1/p term in (43)] have been derived on
the assumption that

In summary, by working with chains of finite radius ro,
we have a well-defined intrachain Coulomb interaction
uz(p„). In the usual treatment where ro ——0, uz(p„) is
not well defined. At best, it can only be included in terms
of some parametrized short-range screened interactions
(such as g2o and g4o). On the other hand, we have seen
that the logarithmic intrachain potential is cancelled out
by a contribution from the interchain potential in the lim-
it p„ro, pd& ((1. Thus it is a good approximation to use
(37), i.e., only keep the Cx=0 term in (24) as is usually
done in the literature treating Coulomb interactions in
coupled chains. '4'

All the results in this section are easily generalized in
the case when the chains are embedded in a medium with
static background dielectric constants e~~ and ez in the
longitudinal and transverse directions. In this case, Eq.
(24) is replaced by

dpi I P(pi) I

'
u(p) =4m.e

(2m ) p„+p
(45)

4~e' I@pi+&) I

'
u(p)=

G e~p +ei(pi+6)
(46)

One can show that this result is identical to u~(p„) in
(27), as it.should be. while (23) is replaced by
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2

u(p)= ge ' f «i&0[p. Iri+R I(&ii/&i)'"]

&&to(rz/V 2) . (47)

In the next section we set eii
——ei ——ep for simplicity.

IV. PLASMONS

The collective charge fluctuations (plasmons) of the
coupled-chain problem are given by the zeros of the
dielectric function in (20) or equivalently, the poles of
(25). In Sec. III we found that in the long-wavelength
limit p„rp «1, u(p) is given by (43) for pdi « 1. Hence
the plasmon dispersion relation given by (25),

~'=UFP.'[(I+g40)' —g20+2u(P)(1+g40 —g20)] (48)

reduces to

after Eq. (1)] and have used quasi-one-dimensional metals
as a specific example. However, recently there has been
considerable interest' in the related problem of collective
modes in thin wires. In that case, transitions between the
lowest few transverse states can give rise to acoustic
plasm ons.
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APPENDIX

For the convenience of the reader, we discuss here the
response function of free electrons in a 1D system. The
Lindhard function for free electrons is

2

( 1 +@40 g20)~pi, + [( 1 +g40 )' —g20]UFPx
p

0 ~ n(k) —n(k+q)X q~co =2 ~ 7

(co+i 0+ ) —[E(k ) —e(k+ q ) ]
(Al)

2

+(1+g40 g20) (P
~I] 2 Pa

X

+(p„a) ln
Zrp

(49)

where e(q ) = (q —qF )/2m. At the temperatures of in-
terest, T«TF, the Fermi distribution n(k) can be ap-
proximated by a step function:

n (k ) =B(qF k)B(qF +—k ) .

One may reduce (Al) to

for pid «1, p rp «1, and dz »rp. Here we have intro-
duced the bulk plasma frequency

2
COpi = 4~ne

&pm

4e
'17Ep IlUF

27TUF UF
2 . 2

d', ' (50)

N
LA,

(51)

The first two terms in (49) are well known. ' ' The last
term (which is given here for the first time) is interesting
in that it depends on the size and spacing of the chains.

In the opposite limit pidz »1, the interchain Coulomb
interaction is negligible. Using (28) in (48), we obtain

4e 2

I
ln(P "o)

I
UFP ('+g40 g2o)—2 2 1

6'ply UF

where n is the net density of electrons in the system of
chains

(2k+q)q/2m
[(2k+q)q/2m ] —~

—2m + Q
dQ

Q —CO

where, with X (q, co) = ReX (q, co) —i ImX (q, co),

2 2
qF CO —CO+

ReX (q, co) = N(6F) —ln
CO —CO

ImX (q,co)=, co &co&co+ .p m
q'

Here,

CO+ = UFq+ q
2m

(A2)

(A3)

(A4)

(A5)

+ [( I+g40)' g20]UFPx+ '— (52)

The first term gives the well-known (usually g40 and g2p
are not included) plasmon dispersion relation for electrons
in a cylindrical potential of radius rp. The coefficient of
the first term [see also (50)] is of order unity (for
qF 2 A and Ep 1 ). Consequently, in the long-
wavelength limit, the plasmon modes have a frequency
well above the particle-hole continuum concentrated
around UFp„; as a result, they are not Landau damped.

Throughout this paper, we have assumed that the elec-
trons are in the lowest transverse state [see discussion

(A6)

while the low-frequency limit is

lim ReX (q, co)—= —N(eF), co«qUF .
q~p

(A7)

are the maximum and minimum energies in the electron-
hole excitation spectrum of X (q, co), and N(eF) is the 1D
density of states at the Fermi level, N(eF) —=2/mkUF. This
is the standard result based on the quadratic dispersion re-
lation for free electrons.

In the high-frequency limit, Eq. (A3) gives

Q
Eeq UFq

ReX (q, co)=, 1+, , ~ &&qUF
me@ L co
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In the Tomonaga-Luttinger model, ' ' the electronic
dispersion relative to the Fermi level is approximated by
the linear form

ln
2 2

CO —CO+

2 2
CO —CO

—2(vzq) (q/qI') 2 (vFq) (qlqF)
3 [~ (v—Fq) ]

N ((VFQ 1— g

2' or 6) Q)VFg +
2$F

(A10}

one has

e(q) =vz—(
I q I

q—F } (A8)

and one obtains (for q «qF )

N(e~)vFq
&TL(q, ~)= (A9)

Q) —VFg
One can see the relation between (A3) and (A9) by ex-
panding the logarithm in (A3} in a power series. For

+ 0 ~ 0 (Al 1)

The leading-order term gives the Tomonaga-Luttinger re-
sult (A9). Thus the RPA and Tomonaga-Luttinger
models give the same results for low momentum transfers
(q «qF), in both the high-frequency (co »qvz) and low-
frequency (co «qvF ) regimes.

This comparison graphically shows how the RPA
particle-hole states (in the region co & co & co+ ) are
"squeezed" out of existence when one linearizes the quasi-
particle spectrum.
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