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It is shown how phonon dispersion in germanium along the [100] and [111] directions can be
described in terms of planar force constants, which are determined ab initio by using the local-
density-functional theory. Anharmonicity, real-space extent, and physical origins of the above

forces are discussed.

I. INTRODUCTION

Since the ab initio force-constant method for deter-
mination of phonon dispersion in covalent semiconductors
was proposed,' —3 little interest has been paid to the force
constants themselves, i.e., to the forces connecting the dis-
tinct atomic planes perpendicular to the selected propaga-
tion direction. Yet we are in possession of first-hand in-
formation which, for the first time, can be obtained
without any adjustable parameters: The sets of forces
have a figurative meaning in direct space and their
knowledge can bring us new insight into the nature of
crystal bonding. In this paper we apply the ab initio
force-constant method to germanium and, using the
local-density-functional (LDF) technique, we calculate
planar forces that determine complete phonon dispersion
o(k) and u(k) in [100] and [111] directions. The main
part of the work consists of discussing different aspects of
behavior of the bonding forces obtained in this way, and
their physical meaning. The ab initio approach is applied
to the [111] direction for the first time.

After a brief reminder of the method (Sec. II), the
anharmonicity of the forces is quantitatively discussed in
Sec. III; it is shown how the information relevant to har-
monic lattice dynamics is to be extracted. Section IV ex-
amines spatial variation of the interactions and, as dif-
ferent lattice dynamical quantities can be expressed in
terms of planar forces, convergence properties of the
respective series are examined; the convergence itself is a
mathematical expression of what we intuitively feel as
spatial extent of forces. Besides giving quantitative results
pertinent to germanium, Secs. III and IV provide the
methodic details necessary for systematic application of
the ab initio force-constant method, which have only been
evoked in the previous works.! =3 Peculiar features of the
convergence of lattice-dynamical quantities with range of
forces, which are shown in Sec. IV, have a more general
significance and apply, as well, to compounds “similar” to
Ge; these particularities are then shown in Sec. V to ori-
ginate from alternation of signs of the transverse forces
which, in turn, reflects presence of angular interactions
characteristic of covalent bonding. We finally demon-
strate in Sec. V how the transverse forces arise through
screening of the electrostatic core-core interactions by
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electronic terms, and we show the analogy between this
screening and composition of energies of frozen phonons.

II. METHOD

The ab initio force-constant approach to lattice dynam-
ics of homopolar semiconductors was proposed on the ex-
ample of germanium in Ref. 1 and generalized to hetero-
polar compounds in Ref. 2. Procedures similar to previ-
ous work,! which was originally restricted to homopolar
substances, were independently applied in Ref. 3 to sil-
icon. The method is based upon realization that a mono-
chromatic plane wave propagating through a periodic
structure does not destroy the crystal’s translational sym-
metry in the direction perpendicular to the phonon propa-
gation. This means that in a crystal through which an ar-
bitrary plane wave of wave vector k propagates, the atoms
of every plane perpendicular to k vibrate in phase; with
planes moving as rigid units, the crystal vibrations can be
described as those of a linear chain.

Two examples of such chains are given in Fig. 1. The
atomic planes are connected by interplanar force constants
k, and, for symmetric choices of propagation direction,
the equations of motion of the “linear chain” lead to a
simple secular equation 2X2, whatever the range of
forces;* different sets {k,} are needed for different
choices of polarization and of propagation direction.

The above picture of linear chain is not new; the new
ingredient is the faculty to determine the force constants
ab initio, independent of any phenomenological model for
the interactions, and without assumptions limiting their
range a priori. This became possible only recently with
the development of the local-density-functional (LDF)
theory® and with the demonstration®’ that the Hellmann-
Feynman theorem applied to the self-consistent charge
densities can precisely provide the restoring forces
equivalent to energy changes defining the corresponding
“frozen phonons.””8 In the present paper we apply the
LDF in very much the same way as in our previous works
on phonon energies in GaAs (see, e.g., Ref. 7). In particu-
lar the Fourier expansions of all quantities include plane
waves with kinetic energy up to E,=9.15 Ry; only those
with E; <2.55 Ry are treated exactly, while the remaining
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FIG. 1. Linear chains representing the vibrations in Ge prop-
agating in the [100] and [111] directions. The origin (plane 0)
and positive sense of the [100],[111] directions are chosen as de-
fined in Fig. 2. The interplanar force constants k, connecting
the planes determine the phonon dispersion w(k) along the prop-
agation direction perpendicular to the planes. The relation
k,=k_, holds for even n (and with longitudinal [100] forces
for any n).

ones are dealt with by Lowdin perturbation theory.

In order to conserve the freedom of dealing with super-
cells of medium and large sizes, we are using a local pseu-
dopotential® for Ge (together with the Slater Xa
exchange!®)—even if this choice implies giving up part of
the rigor and accepting large numerical uncertainties; it
turns out that in the final results it is essentially only the
TA modes that are affected. Unlike in Ref. 1, we choose
for Ge an average of pseudopotentials for Ga and As,
which were defined in Ref. 11 and used in our previous
works.!>!3 The main advantage of this choice (over the
Ge pseudopotential from Ref. 11 used in Ref. 1) is that
the predicted equilibrium lattice constant is close to the
_experiment (—1.6% error)!“—a quality which is crucial
for all lattice-dynamical calculations; the convergence
properties with number of plane waves are expected to be
similar to those of GaAs.

In order to evaluate the force constants we choose
periodic supercells likes those in Fig. 2, which repeat the
elementary unit cell m times along the direction of propa-
gation; entire planes of atoms are then given a small (long-
itudinal or transverse) displacement u and, after the self-
consistent charge densities are found within the LDF
framework, the Hellmann-Feynman theorem provides us
with forces acting on all atoms in the supercell. The
interplanar force constant k, is then defined as the nega-
tive of the force acting on the atom in the plane »n per unit
displacement of the plane O: '

—F(n)=k,uy, (1a)
or, in analogy with the more conventional notation,'®

—F(L)=K(L;l',ku(l',k") ; (1b)
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FIG. 2. Supercells and displacement patterns used for the
calculation of planar force constants connecting the atomic
planes of Ge shown in Fig. 1. The origin of coordinates is
chosen so that the atom (0,0,0) is in the plane O; positive direc-
tions [100] and [111] are such that the atom at (a /4)(1,1,1) is
in the plane + 1, atoms (a/4)(—1,1,—1) and (@ /4)(—1,—1,1)
in the plane —1.

different sets of force constants are obtained for longitudi-

nal and transverse vibrations, as well as for different prop-

agation directions. The origin of coordinates is chosen so

that the atom at (0,0,0) is in the plane O; positive direc-

tions [100] or [111] are such that the atom (a/4)(111) is in"
the  plane +1, atoms (a/4)(—1,1,—1) and

(a/4)(—1,—1,1) in the plane —1. The symmetry of the

structure implies that k, =k _, only for even n; for longi-

tudinal vibrations in [100], however, k, =k _, holds for

any n.

Present calculations were performed on supercells with
m =4 to 8 (quadrupled to octupled) and with displace-
ments |u| ranging from 0.0la to 0.02a. The results
from different supercells are consistent within
<0.004x10° dyn/cm, and the force constants summa-
rized in Table I are those obtained on the smallest of the
supercells tried (which we expect to limit the roundoff er-
rors and thus to be more reliable); they will be discussed
later. Writing down the equations of motion for the
linear chains shown schematically in Fig. 1 leads to 2X2
secular equations, which have as solutions the phonon
dispersion shown in Fig. 3; before reaching this point,
however, two problems require an adequate treatment:
anharmonicity and spatial extent of forces. They are the
topics of the next two sections:

III. ANHARMONICITY

A characteristic feature inherent to all “direct” ap-
proaches to lattice dynamics is that the harmonic terms



2012

K. KUNC AND P. GOMES DACOSTA

TABLE 1. Interplanar force constants k, defined by Eq. (1) as obtained from the ab initio self-
consistent calculations; the anharmonic contributions of the lowest order are eliminated. The transverse
[100] force constants were determined on a 6 X Ge, supercell, all other on 4 X Ge,; the last decimal is not
guaranteed. The values in parentheses were not used in calculation of the phonon dispersion in Fig. 3.

All force constants in 10° dyn/cm.

[100] [111]
n Longitudinal Transverse Longitudinal Transverse
0 + 2.248 + 1.806 + 2.161 + 1.931
+1 —1.050 —1.695 —1.142 —0.101
—1 —1.050 —0.203 —0.900 . —1.899
+2 —0.083 + 0.086 —0.054 + 0.048
+3 (—0.006) —0.035 —0.020 —0.044
-3 (—0.006) —0.094 —0.029 —0.024
+4 (4 0.014) + 0.029 (+ 0.020) (+ 0.021)
+5 —0.007
-5 —0.023
+6 (4 0.015)

appear intertwined with the anharmonic contributions:
As the response to finite displacements u is computed,
care has to be taken to correctly isolate the harmonic part.
It has either to be verified that the u in question is small
enough to give rise to any noticeable anharmonic effects
or to be ascertained that the anharmonic contribution is
properly eliminated; this can readily be done by repeating
all procedures with several magnitudes of the displace-
ment. The entire process may thus become somewhat
heavy—but it is shown below how symmetry considera-
tions can be used. Unless the study of anharmonic terms
is a goal for itself, one usually finds that only the lowest
order of anharmonicity, if any, is numerically important:

cubic or quartic, according to the symmetry of the
mode."’

Anharmonic contributions to the vibrational energies of
semiconductors have already been studied ab initio in
Refs. 8 and 18, within the frozen-phonon approach. In
the present force-constant method the anharmonicity can
show up in two different ways: (1) The relation between
the force and displacement may not be exactly linear as
given in Eq. (1); (2) the force may not have exactly the
same direction as the displacement.

The first case, which was expected from analogy with
frozen-phonon calculations,”® requires working with dif-
ferent values of |u|, so that the linear part of the varia-
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FIG. 3. Phonon dispersion (k) in germanium calculated from the planar force constants determined ab initio and summarized in
Table I. Experimental points from Ref. 16. The I'—X part of this figure has already been shown in Ref. 12.
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tion can be extracted. In the second case, one only retains
the projection of F onto the direction of u before writing
Eq. (1) or before checking its linearity. Here the anhar-
monic terms emerge to remind us of the limited validity
of the one-dimensional representations: The symmetry-
suggested decoupling into longitudinal and transverse
modes is only exact within the limits of the harmonic ap-
proximation.

Among the modes studied here, the longitudinal [100]
vibrations belong to the first category: We find
F,=F,=0 at all atomic sites x, but a perceptible cubic
anharmonicity makes F,(u,) deviate from linearity

—F=ku+lu’+--- . : (2)

In the general case, the contribution /u? would be elim-
inated by repeating calculations twice, with u, = +u and
u, = —u and by averaging the two results for F, /u,. In
the longitudinal [100] geometry, however, the symmetry
simplifies the task by imposing not only the equality
k . ,=k_, for the harmonic part at any n, but also by
making the force at the site k=—n, |F(k=—n)| com-
puted with the displacement +u equal to |F(k=+n)|
obtained with — u; consequently, only one calculation
with a single u is sufficient and the harmonic %, is ob-
tained by averaging “k,” and “k_,” evaluated naively as
F/u.

In a calculation with |u| =0.01a we have obtained the
force constants the harmonic part of which is given
in Table I; the anharmonic contributions
|“k1”—“k_1”| /2 and |“k,”—“k_,”| /2 are, at this
displacement, respectively, ~3% of k; and <2% of k.

The transverse [100] vibrations illustrate the other man-
ifestation of anharmonicity. The = displacement
u=(0,c,c) produces forces with components F,,F,
equal, but with a small nonzero component F, orienting
F slightly off the direction u: for u=0.007a(0,1,1)—the
value used in our calculations—this “longitudinal” com-
ponent of F is roughly 10% of the transverse one at the
first-neighbor sites, 3.5% at second-neighbor ones. We
found that this contribution is a consequence of cubic
anharmonicity and it is readily eliminated by projecting F
onto u—which, in this case, simply means not considering
the F, component. After this “projection” is accom-
plished, there is no cubic anharmonicity left because, as
one finds from symmetry, every k, evaluated as above is
exactly the same, whether determined with trial displace-
ment +u or —u. We also took care to verify! that the
contribution of the quartic anharmonicity to k, is numer-
ically negligible: By repeating the same calculations (on a
smaller supercell) with |u| =0.01a and 0.005a, the larg-
est variation in k, found was —0.005X% 10° dyn/cm in
k ,1; it could not be distinguished from the background
noise of the calculation.

The anharmonicity turns out to be markedly stronger in
the [111] direction, and not even approximate results
could be expected from a single calculation, with only one
value of the displacement. In order to determine longitu-
dinal [111] force constants, two calculations with dis-
placements u=10.006a (1,1,1) were performed on super-
cell shown in Fig. 2(b); a simplification of the kind used
with the longitudinal [100] configuration is not possible

here. The resulting forces are all parallel with the direc-
tion [111], but rather different for the + and — displace-
ments: With the above |u|, the cubic term /u? in (2)
represents 14% of the harmonic one for k., 3% for
k_1: like in the TO(T) frozen phonon, not the same ener-
gy is required for stretching as for compressing the bonds
(see Fig. 7 in Ref. 7). Averaging the two results obtained
with +u and —u eliminates the cubic anharmonicity and
yields the force constants given in Table I; they can, at
worst, contain some quartic contributions, which the anal-
ogy with the TO(I") frozen phonon (Fig. 8 in Ref. 7) sug-
gests to be small.

The most complicated anharmonic terms are found in
the transverse [111] configuration, where both “forms”
mentioned at the beginning of this section appear at the
same time: Forces are not parallel to the displacement,
and their variation is not linear. Two calculations were
first performed with u=+0.004a(1,1,—2), and the cal-

" culated forces were projected on the three perpendicular

directions [112], [111], and [110]. Whereas all projections
on [110] are zero, the longitudinal [111] component of the
force at the first-neighbor site (k= 4-1) is, with the above
|u|, as much as 46% of the transverse [112] one; at the
sitess k= —1,%+2, the nonparallel components are still,
respectively, 13% and 20% of the parallel ones. For ob-
taining the harmonic force constants, only the “parallel”
[112] projection of the force was retained, and (in contrast
to the transverse [100] case) a noticeable anharmonic
behavior was still found: k, determined with displace-
ments +u and —u were averaged, in order to eliminate
the cubic contributions, because they still differed
considerably—for k _; the cubic term /u? in (2) represents
7% of the harmonic one.

As the behavior of the nonparallel [111] projection at
k= —1 suggested that not only the cubic but also a non-
vanishing quartic anharmonicity is present, two more cal-
culations  with  displacements twice as large,
u=1+0.008a(1,1,—2) were accomplished. Processed as
above, the forces provided k, which differed very little
from the previous set: —0.010 and —0.006 variation in
k_q and k ., and less than the error margins for all oth-
er k,. Although a presence of quartic potential is clearly
demonstrated, it is sufficiently weak to be neglected in our
present applications, and no further effort was made to
isolate it. The harmonic force constants given in Table I
are those found with the smaller displacements
u=+0.004a (1,1, —2).

The force constants summarized in Table I represent
the harmonic terms of Egs. (1) or (2). It is clear that the
anharmonic contributions, whose presence has been in this
study an unpleasant perturbation to be eliminated, carry
in themselves a considerable amount of valuable informa-
tion, which still remains to be explored.

IV. CONVERGENCE IN REAL SPACE

The first question one naturally asks when addressing
lattice dynamics of any solid, by any method, is that of
the actual range of forces: How far do the forces extend?
The answer is getting a new meaning in the context of
ab initio calculation of these quantities. In contrast to the
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phenomenological model treatments where the range of
forces is limited “technically” by the number of parame-
ters which the numerical fitting procedures can handle
and by the volume of experimental information that is
available or that one wishes to incorporate into the model,
the ab initio methods allow one, at least in principle, to
determine forces acting on arbitrarily distant neighbors.
However, as the size of the computations increases very
quickly with the size of the supercells used—i.e., with the
range of interactions sought—the unrestricted amount of
accessible first-hand information is still limited by the
computational effort one is ready to invest. Thus, aware-
ness of the spatial extent of interactions helps one to
choose the supercells which are, for a given purpose, no
larger than necessary; it allows one to judge whether a cal-
culation in question is at all feasible.

The main problem of this section is the question beyond
which point the additional information gained is not
worth the increased effort or cost. It is clear that it would
be pointless, for example, to look for forces that are small-
er than the numerical uncertainty of the calculations; it is
not necessary to deal with supercells which are much
larger than the minimum required by the range of interac-
tions. On the other hand, even if the sets of meaningful
force constants are obtained, the convergence properties of
one physical quantity or another may be such that the last
terms contribute only slightly to the quantity in question
and are thus beyond practical interest.

Unlike most LDF calculations, the convergence of
force series examined in this section is not convergence
with the number of plane waves, but that with the extent
of forces in real space; as for the other type of conver-
gence, we rely on tests performed in the context of our
previous works.”8

The notion convergence expresses mathematically what
we intuitively feel as “range of forces,” because, strictly
speaking, the spatial extent of forces is infinite. Thus,
rather than asking “how far do the forces extend,” a more
rigorous formulation of the question is “what error do we
incur by neglecting forces beyond the nth neighboring
plane?” As the answer obviously depends on the quanti-
ties studied, we concentrate on phonon frequencies, elastic
constants, and few related quantities, briefly, on phonon
dispersion.

Let us note that phenomenological models of lattice
dynamics can shed very little light on the issue, because
they start by assuming some range of forces and end by
skillfully, often successfully, minimizing the disagree-
ments with the experiment. An excellent fit of experi-
mental data thus cannot be considered as the ultimate jus-
tification of any force-constants set; at best the relative
physical realism of different models can be judged on this
basis.

Comparing the results obtained on supercells of dif-
ferent sizes, we found in Sec. II that differences in the
force constants can be as large as 0.004 X 10° dyn/cm; this
is the estimated numerical precision of our method. It
concerns namely the small forces, and it suggests that at
the present stage all calculated k, <0.004 have to be
viewed as effective absences of interaction; consequently,
the last figure given in Table I.is not guaranteed.
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A good estimate for the “significant” range of forces is
provided by the self-consistent electronic charge density
n(r), viz. by modification of its distribution due to the
displacement of one atomic plane. This is shown in Fig. 4
for a longitudinal [100] displacement in Ge; so as to retain
only that part of the information that is relevant to k,,
the picture was made one-dimensional by averaging the
An (r) over the remaining two coordinates y,z. The per-
turbation in charge density produced by the displacement
is strong at the first neighbor plane, weak at the second,
and negligible at the third. This agrees with the values of
the forces found ab initio and given in Table I. k; is of
the same order as the error margin and the roundoff er-
rors made | k4| > | k3 |; thus, only k; and k, are to be
considered as meaningful interactions.

The longitudinal [100] dispersion w(k) shown in Fig. 3
was calculated with k; and k, only; the inclusion of k;
does not produce any ‘“visible” modification of w(k), but
neglect of k, does: the frequency of the LOA(X) mode
falls by 8%. The role of distant forces is even better
judged on the elastic constants which determine the slope
at the origin, because the force constants enter the expres-
sion for c;; as n’k,. The values of c;; calculated with
cutoffs after first, second, and third neighbors are, respec-
tively, 9.28, 1221, and 12.67 (the experiment:"’
13.11x 10" dyncm™—2); apparently, k; still can alter the
c1; by 4%, which provides an estimate for error margins
of the calculated ¢;;. We conclude that the longitudinal
[100] forces extend to second neighbors; presence of the
third ones is uncertain and their role negligible.

Much more interesting is the spatial extent of the [100]
transverse forces, and interactions up to the fifth neigh-
bors were included for calculation of the phonon disper-
sion in Fig. 3. The choice of n =5 deserves some atten-
tion.

The most sensitive part of the transverse dispersion is
the TA branch. A fairly steep slope at the origin (elastic
constant c4q) becomes a flat dispersion near the Brillouin-
zone edge, behavior which is characteristic for covalent
bonding. In Fig. 5(a) the calculated frequency v(TA(X))
is plotted versus the range of forces n. The frequency of
the mode is given in terms of the transverse force con-
stants as

.0 18t 2nd grd _pejghbor plane

1N -+ -

(el.7a3)

An(x)

POSITION x —— [100]

FIG. 4. Modification in electronic charge density n(r) of Ge
caused by a longitudinal displacement u =—0.0la. (In
electrons/a>; the An(r) was averaged over y and z in planes
perpendicular to [100].)
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FIG. 5. Convergence with spatial extent of forces in Ge: dif-
ferent quantities are evaluated, with forces included up to the
nth neighbor plane. Error bars at n correspond to +£0.004 X 10°

“dyn/cm in k, and k_,. (a) The TA(X) frequency given by Eq.
(3). The n—>c limit of the force-constant method is the
frozen-phonon result. The experimental value from Ref. 16. (b)
The elastic constant cq(n) evaluated from the transverse [100]
forces through Eq. (4). The reason for the “zig-zag” conver-
gence is that the expression for c44 in terms of force constants is
an alternating series. Experimental value from Ref. 19. (c) The
internal strain parameter & calculated from transverse [100] and
longitudinal [111] force constants using Egs. (5) and (6). (Error
bars are smaller than the circles.) Experimental values form
Refs. 20 and 21.
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and the values of frequency in Fig. 5(a) represent partial
sums of the series (3), from k_; through k.,. The
mathematically rigorous limit of (3) for n— « is known:
It is the calculated frequency of the frozen phonon, which
is shown in Fig. 5(a) by a black dot. This alternative ap-
proach, proceeding via energies, includes all force interac-
tions up to infinite neighbors within the same physical ap-
proximations.

Inspection of Fig. 5(a) suggests that the limiting value

is already attained at n =3 although as many as 6 to 7
neighbor forces may be needed to “stabilize its evolution,”
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i.e., in order to achieve convergence. Note that fourth-
and eighth-neighbor forces do not contribute at all to vi-
brations at the Brillouin-zone edge.

In Figs. 6(a) and 6(b) we have plotted, with different
cutoffs n, the entire sensitive branch TA(A), results corre-
sponding to even and odd n are plotted separately. At
first sight all “partial sums” with even n have to be elim-
inated; the dispersions with odd # shown in Fig. 6(a) then
allow us to choose between n =3, 5, and 7, values which
Fig. 5(a) left us with. Judged merely by a sum of least
squares, the n =3 and n =5 curves match experiment to
about the same degree. - Nevertheless the curve with n =3
misses an important physical feature: the characteristic
flatness of the TA branch. The value n =5 is thus the
smallest n reproducing this flatness adequately. Including
an even more distant force (k4;) appears desirable in or-
der to remove a small, barely visible bow on the flat part
of the n =5 dispersion. Unfortunately, the values we
found on the octupled supercell are less reliable and k.-
turns out to be of the same order as the present precision
of the method. We choose therefore n =5 as an accept-
able compromise and conclude that transverse forces ex-
tend at least to the fifth-neighbor plane. Limiting the ex-
pansion to n =3 might, nevertheless, be justified in com-
plex situations, if only rough estimates of the transverse
dispersion were acceptable. .

A possibly unexpected feature of Fig. 6 is that includ-
ing one more interaction does not necessarily improve the
result: fwo have to be added. This is a remarkable prop-
erty of the slope at point T, the origin of which can be
traced back to the nature of transverse forces in covalent
crystals.

The elastic constant cy4, giving the slope of the TA(A)
branch, is given,? in terms of interplanar force constants,
as

dacy=— 3 nzk,,+[znk,,]+2[zk,,]”l (42)

n=-—ow oddn oddn
+ o0
=— 3 n’k, 48 3 ky s (4b)
n=—cw oddn
where
g:[znk,,][zk,,]_' ®)
oddn oddn

is the internal strain parameter. All the summations are
infinite, and for finite cutoffs n the expression (4) is
evaluated in Fig. 5(b); the error bars correspond to an un-
certainty of 0.004 in k,. The conspicuous zig-zag
behavior of c44(n) is not surprising once we notice (see
Table I) that expression (4) is an alternating series.

The physical meaning of the alternation of signs of k,
will be discussed in Sec. V. In the meantime we notice
that c44(n) with odd n’s, n >1, seems to converge to a
different value than the series with »n even. This behavior
should not be surprising: As there is no evidence that Eq.
(4) converges absolutely, we recall a well-known property
of alternating series, viz., that their convergence can be
accelerated by an appropriate grouping of the terms.
Despite the increasingly large roundoff errors in the par-
tial sums, Fig. 5(b) merely suggests that the rate of con-
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FIG. 6. Convergence with spatial extent of forces in Ge: dispersion w(k) of the most sensitive branches TA(A) and TA(A) is calcu-
lated from the planar force constants given in Tab. 1. (a) Odd-n cutoffs; (b) Even-»n cutoffs.

vergence for the upper dotted line is more favorable than
for the lower one. It is understood that for large n both
of them should reach the same limit.

The optimal “grouping” of terms in the series (4),
which is suggested by Fig. 5(b), is thus in pairs, and with
the cutoff after an odd-neighbor interaction. A clear
physical meaning of this rule is not obvious, but it is rem-
iniscent of assembling terms in the expression for
Madelung energy in the way that makes them correspond
to electrically neutral shells.

Behavior of c44(n) does not bring any new light upon
the question of the range of forces: For both n =3 and
n =5, the c44 has about the same value; the n? weighting
which, obviously, concerns the error bars, too, makes it
meaningless to speculate what ¢4, might be with k4, in-
cluded. We notice by the way that, in absence of any
“frozen shear” calculation for c44, the reasoning above is
based on physical rather than purely mathematical
grounds, viz., on the assumption that the #n— o0 limit of
(4) will be close to the experimental value c4y.

In the [111] direction, the behavior of the longitudinal
[111] dispersion was found similar to the longitudinal
[100] one, except that forces at third and fourth neighbors
are still sizeable. The w(k) shown in Fig. 3 was calculated
with k4, through k.;; neglect of k.; makes the LA(L)
frequency drop by as little as 1%, but the value of
€11+2c; +4c4, controlling the slope at the origin, de-
creases by 16% if only k4, and k., are employed and
even with the cutoff after third neighbors, this quantity is
not yet completely converged, despite a reasonable agree-
ment with experiment.?3

Finally the transverse [111] dispersion is similar in all
respects to the transverse [100], and the I'—L part of Fig.
6 indicates that also the same rule for optimizing the con-
vergence will apply here: Cutoffs after odd-neighbor in-
teractions are to be preferred. The conclusion that third-
neighbor forces are not sufficient to describe adequately
the flat TA dispersion applies in [111] direction as well.
As the most sensitive part of Fig. 6, the slope at the ori-
gin, visualizes the value of ¢ ; —cyy +caq, it is, again, the

shear elastic constant that is to be questioned. The disper-
sion shown in Fig. 3 was calculated with forces up to the
third neighbors included; the sensitive TA branch is still
far from being flat and it points out that also in the [111]
direction the transverse forces extend beyond the third-
neighbor plane. Further calculations on larger supercells
are needed.

The conclusion reached in this section, viz. that the
transverse forces extend at least over a distance ~1.6a (to
the fifth-neighbor plane) is in itself not shocking,
nevertheless, it brings a certain surprise, because several
valence-force-field (VFF) models have demonstrated that
excellent phonon dispersion in Ge, including the flat TA
branches, can be obtained with forces extending to the
third-neighbor [100] plane only, while neglecting all more
distant interactions.’*?> Also the result of Herman?°—
that at least the fifth-neighbor interatomic force constants
are needed—is consistent, despite first impressions, with
other phenomenological models: If we denote by {®(n)}
the set of interatomic force constants between atom 0 and
the shell of its nth neighbors, then the [100] interplanar
ki3 can be written as a linear combination of {®(3)},
{®(5)}, {®(7)},..., and is, according to Herman,
“needed;” on the other hand, it follows from geometry
that k.5 is only composed of {®(7)}, {®(9)}, ..., and is
thus zero when all ®(n), n > 5 are zero.

Different approaches give clear but different answers to
a question as simple as “how far?”” We note that
phenomenological results generally do not carry much
weight if any disagreement with ab initio results occurs.
The assumption at the spatial extent of forces, which
every model treatment starts with, is not necessarily con-
firmed or disproved when the good agreement with exper-
iment is limited to w(k) only. A recent experience”? has
taught us that, for example, models fitted to phonon
dispersion, and matching the experimental values of fre-
quencies excellently can be completely unreliable in
predicting quantities other than the information fed in.
The force constants (and, a fortiori, their range) are cer-
tainly such data, and any set of fitted parameters should
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thus be taken with reservation, as to its physical meaning.
On the other hand, since present calculations use a rather
low-quality pseudopotential, some reservation is not out
of place here either.?’” Although our calculations support
the conclusion »n >5 unambiguously, an error bar +2 can-
not be presently made smaller; it would be decreased, at
best, by more exact ab initio calculations in the future.
Nevertheless, a limited number of checks on the available
data can be proposed at this stage already. Predicted
eigenvector dispersion along I'—X or I'—L would not be,
in the case of Ge, a sufficiently sensitive test for compar-
ison of different representations;?® a testing ground might
be found, however, in comparing different predictions for
the '—K and namely K—W directions. Also, it would be
interesting to see a deconvolution of the bond-charge
model?*—the most realistic among all phenomenological
descriptions of Ge—before any new and more precise
ab initio determinations are performed.

To close this section, we have also plotted in Fig. 5(c)
the convergence of the internal strain parameter { which,
in terms of transverse [100] force constants, is given by
Eq. (5) and, in terms of the longitudinal [111] ones as

e=5+ [ 3 nk, |[Zha]™ ©)
oddn oddn

(see Ref. 22). The pseudopotentials used in this work are
probably too simple to conclude anything more than their
convergence (£=0.786,0.649,0.600 for n=1,3,5 in [100]
and {=0.619 and 0.603 for n =1,3 in [111]). Our calcu-
lated value £=0.60110.002 is somewhat smaller than the
experiment®® £=0.640+0.004, but compares not as well
with the older ones?! £=0.71. It seems to confirm the
general trend emerging recently:*® All values of ¢ calcu-
lated ab initio by different methods®>3%3! and on dif-
ferent materials lead systematically to a lower value than
experiment, sometimes by as much as 20%.

V. VIBRATIONS AND FORCES

The interplanar force constants defined by Eq. (1) and
determined ab initio are summarized in Table I. As ex-
plained in Sec. III care was taken to remove from them
the anharmonicity of the lowest order allowed by symme-
try; the values quoted in parentheses were not used for

calculation of phonon dispersion. Translational invari-
ance of the supercell implies that the restoring force — ko
on the displaced plane O is given by

—ko= 3 ky, @
n (0)

which allows one to check error margins and internal con-
sistency of each column in Table I: the discrepancies are,
respectively, +0.002%10°, —0.013x10°, —0.002% 10°,
and —0.001 % 10° dyn/cm. On the other hand, the sum

S= 3 k, - ®

oddn

is required to be invariant for all four columns given in
Table I—because it is proportional to the degenerate
LTO(I') frequency (squared)—independent in Ge of both
propagation and polarization directions. Our values of S,

respectively —2.112, —2.057, —2.091, and —2.068
(2.7% spread), allow one to judge the overall consistency
of the numerical procedures. Furthermore, the value of &
displayed in Fig. 5(c) shows that calculations using two
different supercell geometries lead to the same result
within 0.5%.

The complete eigensolutions, w(k) and the normalized
eigenvectors w(k), are shown in Figs. 3 and 7. Internal
consistency of the calculations [appearing already through
the invariance of the expression (8)] is verified by the fact
that four sets of force parameters, which were provided by
four independent and completely different calculations,
give the LO and TO branches converging to the same
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FIG. 7. Dispersion of amplitudes of eigenmodes in Ge. The
complex quantities are translated into real amplitudes | w(k) |
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in a mode (k,j) are given by Eq. (9). ¢#(Ge;) and ¢(Gey) are the
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LTO(T) frequency degenerate to within 1.3%. Also, the
energy of the TO(I') mode agrees with our prediction us-
ing the frozen-phonon approach (i.e., proceeding via total
energies) to within 0.3%, which illustrates the physical
equivalence of both approaches. There is in general a very
good agreement with experiment, except in the transverse
acoustic branch [0.48 THz at point X (—19%), and 0.80
THz at point L (—42%)] which is due to the low quality
of the ionic potentials used (local pseudopotentials) and,
possibly, to the Slater Xa form for the exchange; at the L
point, part of the problem comes from the insufficient
range of forces considered. The same difficulty, and
roughly the same disagreement, has already been encoun-
tered in GaAs, both in the frozen-phonon context® and in
the force-constant approach;? of course, this particular
phonon is the most difficult to reproduce by any ab initio
method, cancellations of different contributions to its en-
ergy making it particularly sensitive to all approximations
and roundoff errors. Finally, the imperfect agreement be-
tween the TA(X) frozen-phonon calculation (1.61 THz)
and the endpoint of the transverse branch (1.93 THz) sug-
gests that even the real-space convergence may not yet be
achieved perfectly with forces up to the fifth neighbors in-
cluded (see Sec. IV.)

Figure 7 shows the second part of the eigensolutions,
the normalized (complex) eigenvectors w (« | k,j), translat-
ed into (real) amplitudes |w (kx| k,j)| and phases; the ac-
tual displacement of an atom (/x) in the mode (kj) is

ulk |k, j)=[MK)]"?|wik|k,j)|
Xexp{id(k | k,j)+ik-x(Lx)—iwt} . (9)

The form of Eq. (9) [factor x(/,«) rather than x(/)] re-
flects the choice of phase factors in the dynamical matrix:
The one used in the present work corresponds to the “C-
type” matrix [Eq. (2.1.58) of Ref. 15] and the eigenvectors
w in Fig. 7 are those of Eq. (2.1.60) in Ref. 15. We note
that the endpoints of the eigenvector dispersion in Ge are
fully determined by symmetry plus normalization condi-
tions, but not necessarily the variation between them.
Closer inspection reveals that the form of the variation is
determined (in nontrivial cases) essentially by the first-
neighbor force constants and depends little on interactions
with more distant planes.

Figure 8 displays graphically the longitudinal forces
(negative of the planar force constants) resulting from the
displacement of a (100) plane: The “restoring force”
— ko, acting on the displaced plane, aims at restoring the
undistorted structure; the forces at the first and further
neighbors have the same orientation as the displacement,
and fall off rapidly. All longitudinal forces originate
from cancellation between the Coulomb forces (ion-ion in-
teractions between the unscreened + 4| e | cores) and the
electronic forces (electron-ion interactions); k, and k,
have their signs determined by ion-ion interactions, while
the sign of k4, is given by the electronic forces. The
“right-left” symmetry (k, =k _,) results from the crystal
symmetry of the (longitudinally distorted) structure.

Quite a different symmetry is met in the structure with
a transverse [100] displacement (Fig. 9): here the bonds at
the left of the displaced plane are mainly bent, while those

K. KUNC AND P. GOMES DACOSTA : 32

- FORCE CONSTANT  ( 10%dyn/em)
0 1.0 2.0

T T T T T

- (;‘3 ' 4

]
» o
T

1

)
I

_ko "

SEQUENCE NUMBER OF PLANE

<

[o11]

il

[1001]

FIG. 8. Longitudinal forces in Ge for the [100] direction.
The restoring force — k¢ is a sum of all other forces. The in-
teractions are negligible at distances > 3a /4 (third neighbors).

at the right are mainly stretched. The lack of symmetry
between bond-stretching (k;) and bond-bending (k_;)
force constants is the first conspicuous feature of the pla-
nar forces for transverse vibrations in [100] (Fig. 9). Al-
though in absolute value the forces fall off with distance
fairly quickly, we note that k_; and k _s are still respec-
tively 46% and 11% of k_;; these “medium range”
forces are those responsible for the flat TA(X)
branches—one of the characteristic features of covalent
compounds already mentioned.

The most interesting feature of the forces in Fig. 9 is
the regular alternation of their signs. This alternation,
which was responsible for the peculiar c6nvergence prop-
erties of ¢4y in Sec. IV, can be explained by angular in-
teractions,>? which are another typical feature of covalent
compounds (see Ref. 33). The connection can be seen
more clearly if we adopt for a while the language of
phenomenological theory, viz. a description in terms of
Valence-Force-Field (VFF) potentials (see, e.g., Ref. 24).
Figure 10 shows a chain of atoms, along the [100] direc-
tion, with each atom number n in the nth plane (100);
atom O is given a displacement u, as in Fig. 9. As there is
a central interaction between atoms O and 1, the (bond-
bending or bond-stretching) force F, follows the direction
of u. The force on atom 2 would equally follow the direc-
tion u if the 0—2 interaction were central, E,=¢(r). On
the contrary, if it is angular—e.g., the one governed by a
three-center potential Ep = %k@l——the force F, will have
exactly the opposite sign: As uy “opens” the angle 6, it
increases the potential energy Ep and the force F,p will
thus tend to “close” 6, in order to restore the equilibrium.

The ab initio-determined force constants in Tab. I or
Fig. 9 leave no doubt as to which of the two potentials
mediates the 0—2 interaction: They clearly support the
idea of angular forces.
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FIG. 9. Transverse forces in Ge for the [100] direction. The
restoring force — ko is a sum of all other forces. The fifth-
neighbor force k_s is still =~10% of the first-neighbor one k_;;
accounting for forces extending to distant neighbors is essential
(see Fig. 6) for reproducing the flat TA branches of phonon
dispersion. The force constant k., is due essentially to bond
stretching, the k_; to bond bending. The alternating signs of
the forces reflect the presence of noncentral (angular) interac-
tions (see Fig. 10).

The argument applies to more distant neighbors as well.
For the third neighbors [Fig. 10(b)] and fifth neighbors
(not shown), both central and angular mechanisms lead to
the same direction of F; or Fs, a direction which agrees
with that shown in Fig. 9. For the fourth neighbors, how-
ever [Fig. 10(c)], the dilemma central versus angular is,
again, resolved by Table I, viz. in favor of the angular
force Fyp.

The above argument and the values of transverse force
constants give a great deal of justification to the physical
realism of the VFF descriptions of covalent crystals
despite the disagreement on the actual range of interac-
tions discussed in Sec. IV.

The transverse [111] forces show a similar behavior to
the transverse [100] ones: In particular, the alternation of
signs further supports the idea of angular forces; we do
not plot them because the present picture, stopping at the
fourth neighbors, would necessarily be incomplete (see
Sec. IV).

Finally in Fig. 11 we have represented the transverse
[100] forces of Fig. 9 as a sum of the ion-ion and electron-
ic terms; in order to visualize also the barely visible dis-

tant terms, all forces are weighted by n2. Two features

2019

[001]
[110]
——[100]

[ Eg= 1

00 BT 2

FIG. 10. Valence-force-field potentials which can explain the

alternating signs of the transverse [100] forces in Fig. 9 (see

text). Presence of noncentral (angular) interactions is typical of
covalent materials.
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are worth noting at Fig. 11: (1) The unscreened core-core
interactions vanish beyond the fourth neighbors, and their
contribution to k44 is rather small. (2) The force k.,
shows the “composition” typical of bond-stretching
forces, k_; that of bond-bending ones: a strong ion-ion
interaction, respectively, positive and negative, is opposed
by a strong electronic contribution. Whereas in k ; the
electrostatic interactions are only weakened (screened),
they are “over-screened” in k_;.

Configurations similar to those of bond-stretching and
bond-bending forces are found in the analogous energy di-
agrams (Fig. 12), which similarly reconstruct the energies
of the TO(I") and TA(X) frozen phonons. Here the ion-
ion force respectively stabilizes and destabilizes®* the crys-
tal structure, whereas the electronic contributions provide
compensation, allowing a stable structure to be achieved
in both cases: The crystal’s total energy increases when
atoms are displaced. The force k3 in Fig. 11 behaves
similar to k_;, and the other ones show various inter-
mediate compositions.

VI. CONCLUSION

The lattice dynamics of germanium have been formu-
lated in terms of planar force constants determined from
first principles by using the local-density-functional
theory. Two methodical questions of this approach have
been examined: (1) dealing with anharmonicity and (2)
spatial extent of forces present. We have demonstrated
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FIG. 11. Screening of ion-ion interactions in Ge by the elec-
tronic terms. The transverse [100] forces k, of Fig. 9 (weighted
by n?) are shown as the result of competition between the
Coulomb forces (ion-ion interactions between the unscreened
+ 4| e | cores) and the “electronic” forces (electron-ion, Har-
tree, and exchange-correlation terms). The electrostatic contri-
butions vanish at distances >a (fourth neighbors), the forces at
distant neighbors are then of purely electronic origin. Compare
the “composition” of the bond-stretching force k,; and bond-
bending one k_; with the “reconstruction” of the TO(I') and
TA(X) frozen phonon energies given in Fig. 12.

how the first problem is to be treated, and have found the
anharmonic interactions to be the strongest in the
k||[111] vibrations, particularly in the transverse ones.
The spatial extent of interactions turns out to be fairly
limited in longitudinal modes (second- to third-neighbor
planes), in contrast to transverse vibrations where forces
extending to the fifth-neighbor plane were found to be still
significant, for both [111] and [100] phonons. As rather
simple pseudopotentials have been employed, some uncer-
tainty of the latter conclusion persists, however, and an
error margin +2 (neighbor planes) cannot be made smaller
until determinations based on more elaborate pseudopo-
tentials become feasible.

A surprising convergence property found for quantities
controlled by transverse force constants is that accounting
for one more interaction does not cause any improvement
of the physical results; two have to be included. Thus, for
achieving a’ fast convergence, the terms have to be
grouped in pairs, with cutoff after an odd-neighbor in-
teraction. It is shown how this behavior relates to the
presence of angular forces (three- and more-center interac-
tions), whose occurrence is characteristic of covalent sub-
stances.
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FIG. 12. Composition of the phonon energies in Ge from the
ion-ion energy and “electronic” energy. [The ion-ion contribu-
tion corresponds to the energy of positive core charges in a uni-
form negative background (yE*?9), the electronic term is the
sum of all contributions involving electrons: electron-ion ener-
gy, kinetic energy of electrons, Hartree- and exchange-
correlation terms.] In TO(T") the ion-ion energy increases with
displacement, i.e., the structure is “stabilized” by the ion-ion in-
teractions, which are merely weakened by the electronic terms;
with respect to the TA(X) distortion, the structure is ‘“destabi-
lized” by the electrostatic interactions and stabilized by the elec-
tronic ones. This behavior of TA(X) is typical of covalent crys-
tals (cf. Ref. 34).

Besides determining ab initio the complete phonon
dispersion (eigenfrequencies and eigenvectors) along the
[100] and [111] directions, we also studied the mecha-
nisms building up the planar forces, which arise through
screening or “over-screening” of the electrostatic core-core
interactions by electronic terms, similar to the way frozen
phonon energies arise from cancellation of ionic and elec-
tronic contributions.
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