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Extended x-ray-absorption fine-structure Einstein frequency and moments
of the phonon spectrum: An experimental and theoretical study
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Extended x-ray-absorption fine-structure measurements of the nearest-neighbor mean-square rela-
tive displacements (MSRD) for the fcc materials Ni, Cu, Yb, Pt, Au, Pb, and Th are presented. It is
shown experimentally that the temperature dependence of the MSRD is well characterized by a sin-

gle parameter coE, the Einstein frequency. This frequency was found to be equal to the square root
of the second moment of the phonon density of states (co2)'~~ in all cases studied. Theoretical cal-
culations are presented which show that if nearest-neighbor interactions dominate, co+ should equal
(co2)'~2 to within 5%.

INTRODUCTION CONNECTION WITH HEAT CAPACITY DATA

We hive measured the temperature dependence of the
extended x-ray-absorption fine structure (EXAFS) on a
large number of fcc materials. For harmonic solids the
temperature dependence of EXAFS data is describable by
a temperature parameter, ' often called a Debye-Wailer
factor, in analogy with the x-ray diffraction temperature
parameter. Whereas in x-ray diffraction the mean-square
displacerrient of a given type of atom is measured, the
relevant quantity in EXAFS measurements is the mean-
square relative displacement (MSRD) of the central atom
relative to its neighbors. The MSRD, for a pair of atoms
at sites l and I' is defined by

One of the earliest methods of measuring phonon prop-
erties was to measure the heat capacity as a function of
temperature and this method is still widely used. It can
be easily shown that certain moments of the phonon den-
sity of state (DOS) can be found directly from heat capa-
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where uI is the displacement of an atom at site I from its
equilibrium position R~, R~I is a unit vector in the direc-
tion RI —Rr, and (. . . ) denotes a thermal average. Pre
vious work ' has indicated that an Einstein model quite
accurately describes the temperature dependence of the
MSRD for nearest neighbors. The Einstein model for the
nearest-neighbor MSRD gives
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where p is the reduced mass for the atom pair (1,l') and
coz is the Einstein frequency.

We have measured the MSRjD for the first shell of
neighbors for the fcc metals z8Ni, 29Cu, 70Yb 78Pt 79AU,
82Pb, and 90Th at a large number of temperatures in the
range 20—400 K.. The value of co@ was determined for
each metal by least-squares fitting, e.g., (2) to the cr (T)
data; the results are listed in Table I. In Fig. 1 the data
are plotted in the dimensionless form o (T)/o (0) vs
T/0, where 8~ ——(trt/k)roE, ' the solid lines represent the
least-squares fits. Note that for all elements the Einstein
model gives a very good fit to the data.

1.5

FIG. 1. The normalized MSRD versus reduced temperature
for the indicated elements. The normalization parameters are
oo——R/2pcoz and O~ ——%co~/k. Here the co~ parameters are
found by least-square fits of the indicated data and are given in
Table I.
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29CU

7oYb
78Pt
79Au

82Pb
90Th

Einstein frequency
from EXAFS

(THz)

30.0
11.0
22.8
17.5
9.3

15.9

(second moment)'
from heat capacity

(THz)

31.0
10.7
23.0
17.5
9.2

16.0

city data. In particular, by making accurate measure-
ments near the Debye temperature, the second moment
(co ) can be found ' from fitting the data to the expres-
sion for heat capacity, C, at high temperatures, which is

Here R is the gas constant, A is a small anharmonic con-
tribution, and for metals y is the electronic contribution.
In Table I, co@ and (co ) '~ are shown for all the materials
we studied except Ni [for which Eq. (3) does not hold be-
cause the magnetic transition gives an additional contribu-
tion to the electronic term]. Note the almost exact agree-
ment between the second moment and coE. In the next
section we discuss the theory of the MSRD and show how
this result can be explained.

THEORY

TABLE I. A comparison of the Einstein frequency derived
from the EXAFS technique [Eq. (2}] and the second moment of
the phonon spectra derived from heat capacity [Eq. (3)].

terms of a single sum over coordination shells, and,
separating out the first shell term, we get

( V) =—z,a)o, +—g z, a, o,j)l (6)
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j (»j

we obtain the result

where zz is the coordination number for the jth shell'and
X is the number of atoms in the solid.

In many materials the nearest-neighbor central force
constant is an order of magnitude larger than all other
force constants, and for such solids we expect the second
term on the right-hand side of Eq. (6) to be small com-
pared to the first. Assuming this term to be small (as will
later be verified for the case of fcc metals), we can replace
it with an approximation. To do so, we note that as j in-
creases the correlation of atomic motions decreases and,
for a pair of atoms with one at the origin and the other at
site l in shell j, oj approaches its limiting value of
[(uo.RO&) ]+[(u& Ro]) ]. Ignoring anisotropy in the
mean-square displacements and assuming a monatomic
lattice, there is a single limiting value for ol, which will
be labeled o. . This quantity is not only an upper limit,
but is also a good approximation for o.j when j & 1. Cal-
culations of oz and o.

& for some fcc and bcc metals show
that the magnitudes of these quantities are typically 70%
to 90%%uo of o. . Hence, to approximate the term in ques-
tion, o~ will be replaced by o . If we also define a (small)
parameter A, which characterizes the contribution to the
potential energy of higher coordination shells relative to
the first, with

In this section we will derive an expression for coE in
terms of the moments of the phonon density of states.
The presentation will be kept as general as possible, al-
though parts of the discussion will be limited to the case
of a monatomic Bravais lattice. This restriction is made
only for clarity and simplicity of notation, and the argu-
ments can be modified to give the final result a more gen-
eral validity, as will be discussed below.

We start by considering the harmonic part of the poten-
tial energy for a solid, which can be written in the general
orm

o~- (V) —A,o„.Xzio. i

If we now use Eq. (4) to determine the equations of
motion for the atoms and look for normal mode solutions,
we obtain the eigenvalue equation

(9)

Since the trace of D&,(l, l') is equal to the sum of its
eigenvalues, we can write

where u~& is the }uth Cartesian coordinate of ug and
D&„(l,l') is the dynamical matrix. The MSRD for nearest
neighbors, which can be thought of as the mean-square
compression of a bond, should depend mainly on the
nearest-neighbor central force constant. Hence we choose
to express Dz„(l,l') in terms of central pair potentials.
After some rearrangement of terms, the thermal average
of the harmonic potential energy can be written

3%co = g D„„(l,l),
p, l

where we have defined the nth moment of the frequency
spectrum by

(10)

n

3X

In terms of the central force constant model, the second
moment is given by

The double sum over atomic sites can be rewritten in which can be rearranged to give
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Z = ' 2

(1+A,)
(13)

We can estimate the moments in Eq. (19) using the De-
bye model. The result is

Substitution into Eq. (8) yields

4(1+k)
( )
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(14) ~ =(~~)'"x.
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'
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1 1 %co,
( V) =—+fico coth

2 kra
(15)

The limiting value of cr, assuming cubic symmetry, is
equal to 2(u ~ ) = —,

' (u ), and its temperature dependence
is given by

(16)

Now we consider the temperature dependence of. the
factors ( V) and cr in Eq. (14). It follows from the virial
theorem that ( V) = —,

' (H) for a system of harmonic os-
cillators, and hence

1 1 Acu
cri —— pi(co) —coth — dco .

2P CO
(21)

The expression (17), with only nearest-neighbor central
forces, is equivalent to this with

with (co )'~ =V'3/5con. If we ignore force constants
beyond the second shell, A, =zza2/z&a&. For fcc metals,
zz /z~ ———,

' and a2/a~-0. 1, and hence one would expect
to find coE—(co )'~ with a correction factor of approxi-
mately 5%

It is interesting to connect these results with the inter-
pretation of the MSRD in terms of a projected density of
modes, p~(co), contributing to relative motion,

Substitution of Eqs. (15) and (16) into Eq. (14) yields
CO

p](co) = ~ pp(co), (22)
2

CTj = cog +I, cog-
3NMco g

CO

2 kT

(17)

and in the low- and high-temperature limits this becomes

where pp(co) is the normalized phonon density of states.
Thus the above analysis also suggests a way to relate the
projected density of states to the phonon spectrum and its
moments.

—1

RB 1+A, 1— T=O,
DISCUSSION

1
0'i = X

MCO 2kT[1+A,(1—co co )], T» —co

(18)

Comparing these results to the high- and low-temperature
limits of Eq. (2), we observe that

~E=(~~)'"X

CO CO
[(co )' /co] 1+1, —1, T=O~

(19)
[1+—,

'
A, (co co —1)], T» —co,„.

Although we have derived it only for a monatomic Bra-
vais lattice, our formula for coE has a more general validi-
ty. The derivation can easily be modified for the case of a
lattice with a two-atom basis. Furthermore, a crystalline
lattice is not required. By introducing configuration aver-
ages, one can obtain the same result for coE for a mona-
tomic amorphous solid and for diatomic amorphous
solids with sufficient symmetry. For some materials,
especially covalent solids, angular three-body forces may
be significant; however, the nearest-neighbor central force
should always dominate, and the first term in (19) should
be a reasonable first approximation for coE.

We have seen experimentally and theoretically that
there is a close connection between EXAFS measurements
and thermodynamic measurements of the second moment
of the phonon density of states for fcc metals. Is this re-
sult applicable to more complex solids? To check, we
have also compared coE to the second moment of NiO and
found agreement to within 10%%uo. In more complex solids
with more than one kind of near-neighbor some weighting
of the various coE values for the various pairs of atoms
must be done to compare with the second moment. It is
not clear exactly how this should be done. In another pa-
per on soft modes in some C-15 compounds a simple
optic-mode weighting scheme was used and agreement to
within 10%%uo was again found.

The measurement of the MSRD is quite easy and can
be done on almost any material. Only small quantities of
sample are necessary. If a material shows interesting soft
modes the MSRD is sensitive to it. Clearly the EXAFS
technique is a valuable tool for studies of average phonon
properties of materials.
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