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Collective multipole excitations in small metal particles:
Critical angular momentum 1"for the existence of collective surface modes
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The electronic multipole response properties of small metal particles are investigated within the
frame of a self-consistent spherical jellium model. The method used is the time-dependent local-
density approximation (TDLDA), which was used before in a study of the dipole response [W.
Ekardt, Phys. Rev. Lett. 52, 1925 (1984)]. On comparing the TDLDA response with the response of
a system of noninteracting electrons, we see clearly how the electron-electron interaction is switched
off rather suddenly around a critical angular momentum l". It is shown that the value of /" can be
obtained from the equation q"=l"/R, where R is the radius of the jellium background and q" is
the critical wave vector of the planar jellium surface. This result is consistent with a result found
earlier for l =1 [W. Ekardt, Phys. Rev. 8 31, 6360 (1985)j: A spherical surface behaves across the
jellium edge like a patch of a planar jellium surface.

I. INTRODUCTION

Quite recently a number of authors have shown' how
the microscopic dipolar response properties of small metal
particles deviate in a characteristic manner from that
predicted by classical electrodynamics. The model system
used in all of these investigations was the spherical jellium
particle whose electronic properties in the ground state
had to be studied ' before the time-dependent local-
density approximation (TDLDA) (Refs. 11 and 12 ) could
be applied.

In the present paper we extend this kind of study to the
higher multipoles mainly to see how the electron-electron
interaction is increasingly less important in determining
the electronic response properties. The reason why the
electron-electron interaction can be expected to be
switched off with an increase of I is simply the increasing
inhomogeneity of all physical quantities being involved in
this kind of excitation. In Fourier space this amounts to
taking into account larger and larger k components of the
Coulomb interaction 4m./k, which drops down in this
way. So the existence of a critical region of l values can
be expected to occur in the same way as the existence of a
critical wave vector is known to occur both for the
volume modes' and for the surface modes of a planar jel-
lium surface. '

As we know from our earlier study of the dipole
response, size-dependent damping is active as long as the
collective mode is located in one or more bound-
continuum transition regions. As with increasing l the
number of decay channels of this kind increases more or
less gently, it is an interesting question whether or not the
existence of collective modes breaks down abruptly. As
we shall see, this is indeed the case (curn grano salis) as
far as the collective surface mode is concerned.

Because of the existence of Kramers-Kronig relations,
connecting the real part and the imaginary part of every

kind of physical response, the same question can be stud-
ied just by looking at the l dependence of the static polari-
zability of a spherical jellium particle. In this respect our
work' is similar to the earlier work by Mahan' who calcu-
lated the static polarizability of a variety of atoms and
ions up to 1=4. Mahan's observations were that in the
case of atoms (and atomic ions) already the static quadru-
pole polarizability is essentially that of a system of in-
dependent atomic electrons. The reason for this result
seems to be that the l=2 atomic electron-hole pairs estab-
lish an induced charge density which is already overly in-
homogeneous to make the Coulomb force between various
electron-hole pairs an effective coupling mechanism for
collective motion. The I value, on which the independent
and the dependent particle responses are more or less the
same, is larger for an extended object (such as the self-
consistent spherical jellium sphere) than it is for an atom;
this is not surprising.

We compare our results with those of Liebsch, ' who
calculated the q~~ dependence of the induced charge densi-
ty of a planar jellium surface with the help of the same
formalism as used in the present paper.

The rest of the paper is organized as follows. Section II
gives a short summary of the formalism; Sec. III contains
the results concerning the static response properties; Sec.
IV turns to a presentation of the dynamical response and
shows how the critical angular momentum I„originates,
and Sec. V is the conclusion.

II. FORMALISM

As the application of the TDLDA (Refs. 11 and 12) to
the spherical jellium particle was already described, '

only a short summary is given here mainly to introduce
our notation for the rest of the paper. Within linear
response theory and with neglect of retardation, the in-
duced charge density p;„d(r;to), due to a frequency-
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dependent external potential V,„(r;co), is determined by
the retarded density-density correlation function X(r, r';co)
in the following way:

p;„d(r;co) = f dr'X(r, r';co) V,„(r';co) . (1)

Here, X(r, r';co) obeys an integral equation which can be
derived by demanding the system to respond in a self-
consistent manner:

where dV„, /dp is the density derivative of the exchange-
correlation potential in the' ground state. On the other
hand, the independent particle response function
X (r, r', co) is constructed from single-particle wave func-
tions of the Kohn-Sham ground-state potential as follows:

OCC

X (r, r';co) = g@;(r)4; (r')G(r, r', e;+co)

OCC

X(r, r';co) =X (r, r';co)
+ $4,*. (r)4&;(r')G*(r, r';e; —co) . (4)

+ f f dr" dr'"X (r, r",co)

XK (r",r"')X(r"', r';co) .

dV„,&(r",r"') = „„,+ 5(r"—r'"),
dp

(3)

In Eq. (2) the kernel K consists of the Coulomb interac-
tion and an approximate description of exchange and
correlation in the following way

In Eq. (4), the sum is over the one-particle states occupied
in the ground state @;,with energy parameter c;, and 6 is
the retarded Green's function in the ground-state poten-

If we restrict the calculations to ground states pertain-
ing to completely filled shells the system is spherically
symmetric and, as a corisequence, the response is diagonal
with respect to the angular momentum l. In that case, in-
stead of solving the general equation (4), we need to solve
only the much simpler equation, '

XI(v, r';co) =X~(r,r', co)+ f dr"(r") XI(v, r";co)[dV„,/dp)X~(r", r';co)

+ f dr" (r") f dr"'(r"') X~(r, r";co)[4m/(2l + l)]B~(r",r"')XI(r'",r', co),

with BI(r",r"') =2r & /r &' + . In Eq. (5) the Ith partial wave independent particle susceptibility XI(r,r', co) is obtained
from th'e general equation (4) after some angular momentum algebra in standard fashion in the following way [in Eq. (6),
R~ „(r) denotes the radial part of the occupied level with angular momentum quantum number I; and with n; being the
n;th state with l; and an energy si „]:

al —k +k+I; —k 2l; +2l —4k + 1
Xl(r, r', co)= g R(„(v)RI „(r',)(21;+1)

2m ""' '" '
k o aI +I k 2l;+2l —2k+1

X Gl. + I 2k ( r, r ', Ei, „,+co ) + c.c. (6)

I [sl „+co] -
[EI „—co] I. In Eq. (6) the function

ak ——(2k —1)!!/k!.
Finally the lth retarded Green's function GI(r, r', E) is

obtained from two solutions of the ground state
Schrodinger-like equation as follows:"

Gt(r r';E)=j, (v;E)hs(v& E)/[v'~j(i, hi)]v=~ .

Here j~ is regular for r~0, h~ fulfills the outgoing-wave
boundary condition, 8'is the Wronskian, and c is an arbi-
trary constant. As both the kernel K, Eq. (3), and the in-
dependent particle susceptibility X~, Eq. (4), are deter-
mined from the ground state Schrodinger equation, we
had to solve the ground-state problem first before the
TDLDA could be applied. This was done in Ref. 10 (see
also Refs. 6, 8, and 9).

Once Eq. (5) is solved, the induced charge density is ob-
tained from Eq. (1). For an external multipole potential
of the form

V,„= rP~(cos8)eIe—
with PI the Legendre polynomial and e~ a (small) con-
stant, the induced charge density p;„d is given as follows:

p;„d(r, 8;co)= eIP&(cos8) f d—r'(r') +'X&(r, r', co) . (9)

From this equation, - the polarizability uI can be shown to
be"

l 8~ 2 ~ ~2 Iai(co)= f dr r ( —1) r dr'(r') + X (r, r'co) .

(10)

Equation (10) completes the formalism.
Whereas the dipole response function a~ &(co) is probed

by single-photon experiments, the higher multipole polari-
zabilities can be experimentally observed either by inelas-
tic x-ray scattering or by inelastic electron scattering. Let
us work out the formula pertaining to the latter case.

An "external" electron at a position r, gives rise to the
following perturbing Hamiltonian H':

H'= f dr p(r) .2

/r —r, f

Here p(r) is the charge density operator of the jellium
sphere electrons. %"ithin first-order perturbation theory
the total transition probability due to H' is given by
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Fermi's golden rule as follows:

W —27ry y [ (5 kf
~

H
~

0 k')
[ 5lE o Ef)'

kf s
(12)

In this equation,
~

s ) is an exact, excited state of the jelli-
um sphere;

~

0) is its ground state, E p=—E —Ep an exci-

tation energy; and k; and kf are the, respectively, initial-
and final-state wave vectors of the probing electron.
Upon Fourier expanding the perturbation H' and after di-
viding 8' by the flux per incident particle, the differential
cross section can be shown to be given as follows
(q—= ikf —k,

i
):

a'o. 00 00=8 — g 4m(21+1) dr r j~(qv) dr'(r') jI(qr')ImXI(r, r', cojf) .
f &I ~' ~q I=o

(13)

III. STATIC MULTIPOLE POLARIZABILITY

Classically, the lth polarizability of a particle with ra-
dius. R and with bulk dielectric constant e(co) is given by

1( )
I[~( ) 1] R2j+1

Ie(co)+l +1 (15)

If the Drude dielectric constant is used for c(co) [which
implies e(co)~ —ao for co~0], it follows

ai (co=0)/R '+'=1 .

Quantum mechanically, a number of characteristic de-
viations are to be expected both due to quantum size ef-
fects (QSE) and due to the diffuse nature of the micro-
scopic surface of the particle. Both phenomena were dis-
cussed quite recently for the dipolar response, ' which
means l=1. More pronounced differences, compared to
the classical description, will occur at larger l values sim-

ply because they represent the 'short-wave part of the
response whose correct description is intrinsically missing
in the macroscopic, long-wave, classical description.
Hence, a constant ratio of aI(co =0)/R '+' is not to be ex-
pected.

In the case of the dipolar response it is custom to
rewrite the TDLDA-derived static polarizability' in the
following way:

3

n)/R = 1+ 6I
R

(17)

where 5I gives the position of the effective dipole surface
of the sphere with respect to the jellium background. The
main result on 5I was that it is very similar to but typical-
ly a little bit smaller than the corresponding value of a
planar jellium surface. ' Hence, the long-wavelength
response of a sphere (being not overly small) could be

In this equation, ji(qr) is the Ith spherical Bessel function
and Im means the imaginary part. In forward scattering
geometry we have q~O. Hence j~ can be expanded to
first order to give an expression,

/

j~(qr)~-(qr) . (14)

So it becomes clear how the various multipole polarizabil-
ities a~(co), Eq. (10), are directly experimentally accessible
in forward scattering experiments of fast electrons. In the
case of wide-angle scattering, which might be preferable
to "separate" a certain I, the full expression Eq. (13) must
be calculated.

IP

15 —i
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FIG. 1. Static l pole polarizability for 1V=92 and r, =4,
which corresponds to R=18.057 a.u. , for l=1 to i=10. Con-
tinuous line: TDLDA result, Eq. {10) of the text for co=0.
Dashed line: Noninteracting electron result, that means +I is
used instead of P~ in calculating ai via Eq. {10). Both polariza-
bilities are given in units of the classical electrostatics result,
ai' ——R '+'. Due to the very effective screening at low l values
there is a big difference between a~ and ai for 1=1 to 4.
Screening is more or less ineffective beyond l= 8.

l

shown to be very similar to that of a planar surface. '

Now, it is very interesting to investigate whether this is
true also for the short-wave response properties which
means in spherical geometry the higher l part of the
response. The results are shown in the figures.

Figure 1 shows for a "sodium sphere" of 92 valence
electrons the l-dependent static polarizability in units of
its classical value R +', both for noninteracting electrons
(a, dashed line) and for interacting ones (a, continuous
line) for / values up to i=10. First of all, there is a
tremendous reduction of the noninteracting 1= 1 polariza-
bility to the l=1 interacting one. This is nothing else
than the effect of screening. In contrast to what was
found by Mahan for atoms' there is a pronounced differ-
ence between the dashed line and the continuous one even
for 1=2 to 5. This tells us that (not surprising for an ex-
tended "atom" with R = 18 a.u. ) screening is still effective
in reducing the independent particle polarizability. Final-
ly, for l=8 and larger there is no longer any important
difference between aI and aI. We shall come back to this
I value later in this work.

The slow and gentle increase of the interacting
ai /R + ' can be understood in the following way: Let us
generalize Eq. (17) to higher l values by defining the ap-
parent I pole surface of a Kohn-Sham sphere 5~ as follows
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21+1

a1/R + = 1+—
R

(18)
at(r) = — r dv'(r') +'Xt(r, r';to=0) .2l+1 0

(22)

In Fig. 2, 5t is shown (in a.u. ) along with the ratio
at/R '+'. Except for little QSE-induced fluctuations 5t
decreases very smoothly and seems to settle down at
-0.65 a.u. above l=8. So, we have the important result
that the l-dependent apparent surface is moving inward
and that even for high I values the effective surface of the
sphere is located in front of the jellium background. On
the basis of the results obtained, we can define an I-

dependent effective static dielectric constant in the follow-
ing way:

which gives
21+1

eff
E'1

1+ 1+—1+1
l

' 21+1

1 — 1 — '
R

1+ 1+(2l+1)I+1 51

i R

(2l +1) 61
(20)

where the last equality is valid because of the smallness of
5t/R which is typically in the range of 0.035 to 0.058.
This equation makes very clear how the existence of a
small but finite 51 leads to a finite, negative dielectric con-
stant.

To gain further insight into the static screening
behavior we have investigated the I pole polarization
charge density at(r) being defined by rewriting Eq. (10) in
a way similar to what we have done for l= 1,2'

at(co=0) = dr r at(r), (21)
0

The next figures give a picture of the normalized version
of ctt(r), namely the quantity

cY~(r)=at(r)/ J dr at(r) . (23)

Figure 3 shows, as a reference, ctI(r) whose size depen-
dence was extensively discussed both by the present au-
thor in Refs. 1, 2, 4, and 7, by Beck in Ref. 3, and the
Finnish group in Ref. 6. In the following figures the ac-
tual cYt(r) (continuous line) is always compared with aI(r),
represented by disconnected dots. Figure 4 shows cY3 com-
pared with a1. There is no big difference between these
two except for the period of the Friedel oscillations which
is getting larger for l=3. The next figure, Fig. 5, shows
a5 compared to cY~. Now the surface charge density is al-
ready considerably smeared out. This is even more the
case for /=7, shown in Fig. 6. Not only the surface
charge density is decaying but also the Friedel oscillations
are heavily damped and smeared out. This is shown for
I=9 in Fig. 7 and for I= 10 in Fig. 8.

The behavior seen here is qualitatively in agreement
with a result obtained quite recently by Liebsch. ' He
studied the qII dependence of the static TDLDA response
of a planar jellium surface. The structure of the induced
charge density for qII kF/2 (an——d r, =2.07) compared to
qII

——0 looks very similar to what we obtained here (see
especially Fig. 1 in Ref. 16). We shall give further com-
ments on this analogous behavior later in this work.

Before we turn to the discussion of the dynamical mul-
tipole response properties, let's comment briefly on the ef-
fect of other particle numbers and different r, values. In
our previous work, ' ' ' we studied the dipolar response
properties over a wide range of particle numbers. In
sharp contrast to non-self-consistent models only
moderate size effects were obtained within the self-
consistent TDLDA calculations. This moderate size
dependence has been experimentally confirmed quite re-
cently by Knight et al. ' Because the higher multipoles,
1~ 1, correspond in wave-vector space larger q values, size
effects are expected to be even weaker, and this will be

2.5 0.3

2.0 0.2

1.5 0. 1

0 I I I I I I I I I I I I I I I I I

2 3 4 5 6 7 8 9 10
angular momentum

FICx. 2. Apparent l pole surface of a TDLDA sphere 8t de-
fined in Eq. (18) of the text (dashed-dotted line) versus aI/R '+'
(continuous line). The figure makes clear that even for large l
values the apparent surface is always in front of the classical
surface.

—0.1

0 10 15 20

y(ao)
PIG. 3. Static dipole polarization charge density, normalized

to 1, Eq. (23), for N=92 and r, =4. The size dependence of
a&(r) was discussed extensively in our previous work. It is
shown here as a reference for the higher l poles, shown in the
subsequent figures.
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FIG. 4. a3(r), continuous line, compared with a~(r), dots.
Nothing interesting happens except for the enlarged period of
the Friedel oscillations.

IV. DYNAMICAL RESPONSE

We turn now to a discussion of the dynamical response.
In our earlier work we studied extensively the size-
dependence of both the collective surface mode and the
collective Volume mode for the case l= 1. In this paper
we investigate the l dependence of the dynamical response
for a jellium sphere of sodium, r, =4, with a size
R=18.057 a.u. corresponding to N=92 valence electrons
(the uppermost filled shell in that case is the 3s shell).
From our earlier study for l= 1 we know what is to be ex-
pected when the number of particles (or the r, value) is
changed and, therefore, no other particle number or r,
value is studied in this work.

To begin with, we show in Fig. 9 a comparison of the
imaginary part of a &(co ) (continuous line) and a ~(co )

(dashed line) in units of lC, for frequencies co/(co&/v 3)

verified in a separate letter. On the other hand, Beck' s
work on different r, values has made it clear that noth-
ing special is happening if r, is changing from 2 to 4. We
think this is quite reasonable because of the similarity of
the response of a spherical jellium surface and a planar
one, and for the latter one we know that all the physical
properties are more or less smoothly dependent on r, .

I

20
I I I I I I I I

5 15 25 30
r{ao)

FIG. 6. a7(r), continuous line, compared with a&(r), dots.
The Friedel oscillations are more or less destroyed. An explana-
tion for this is possibly the growing number of terms in Eq. (6),
which must be summed up to give the corresponding g7.

-0.1

0

from 0.4 to 2.6. The Ima~(co) was already published and
discussed in detail in Ref. 7. It consists of numerous fine
cusps which correspond to the excitation of "individual"
electron-hole pairs and two collective features around 0.9
and 1.9. The former corresponds to the dipole surface
plasmon whereas the latter corresponds to the (first) dipo-
lar volume plasmon. An extensive discussion of the size
dependence of this (dipole) curve and of all the points re-
lated to how to identify a certain feature as being of col-
lective in character were already published ' ' ' and will
not be repeated here. In this paper we adopt the point of
view of the Finnish group. and compare always the in-
teracting particle response a(cu) (continuous lines) with
the noninteracting particle response (dots connected by
dashed lines). We see from this figure, a tremendous
redistribution of oscillator strength due to the electron-
electron interaction. This is nothing else than the dynam-
ical analog to Fig. 1 where we saw how the polarizability
is reduced upon the electron-electron interaction is
"switched on." Oscillator strength is transferred from
low-frequency excitation mainly to the new collective ex-
citation in the region around co/co,' =0.9. This makes the

0.3 I I I 0.3

0.2 0.2
p p

0.1 0.1
CQ

0.0 &

20
0.1

I I I I
'

I I I I I

0 5 10 15 25 30
r {oo)

FIG. S. a5(r), continuous line, compared with a~(r), dots.
Now, the polarization charge density for I=5 is already heavily
perturbed. This figure is similar to what has been obtained
quite recently i'or a planar jellium surface by Liebsch, Ref. 16.

0.1

0 2510 30205 15
r{oo)

FIG. 7. a9(r), continuous line, compared with a&(r), dots.
This should be basically the high- I independent particle
response, simply because there is no difference between a9 and
a9 (see Fig. 1).
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system "stiffer" and, consequently, less polarizable. At
high frequencies these effects are, of course, unimportant.
Hence a~(co) and a~(co) agree with each other (even for
this low I value). To demonstrate this, we show in Fig. 10
the corresponding real part of the dipolar response of the
system. Figure 10, together with Fig. 9, sho~s that at
high frequencies there is indeed perfect agreement be-

tween a&(co) and a&(co).
Before we go on to discuss the higher I poles, let us

show shortly that, of course, both a~(co) and a~(co) agree,
for co—+ ~, with the classical result obtained with the help
of Drude's dielectric constant. The starting point of that
proof is the leading term in the high-frequency expansion
of the exact density-density correlation function,

« I p( ) I & & I p( ')
I
0&

co+i 5 (E, ——Eo)
(0

I
p(r')

I
s & (~

I
p(r) I

0&

co+i5+(E, —Eo)

(co+i5) (0
I
[[p(r), II],p(r')] 'I 0&+.O(co ) . (24)

Using some operator algebra, the last expression can be
shown to be

X(r, r', co) (co+i 5—) e /m

a)(co) = dr ra, (r;co)
0

2 e 4n ~
3 dpo(")~ (co+i5) I dr r

m 3 o 9r
&& Ipo(r)6, 5(r —r')+ Vpo(r) V,5(r—r') I .

(25)
4m.noe = —R

(co+i 5)2 m m

cl 2
S

2 8 2 1
&& po(r) 5(r —r')

Qp2 fl Qp p2 p2

~po(r) a+ 5(r —r')
Bp BI" p

(26)

This expression for g&(r, r ', co), inserted . into Eq. (22) for
the dipolar polarization charge density, results in

In this expression po(r) is the density of interacting elec-
trons in the ground state. Because of the spherical sym-
metry of the problem under discussion, po(r)=po(r), and
an angular momentum decomposition can be applied to
Eq. (25). This gives us for the dipole part of X the follow-
ing;

g&(r, r';co) ~ (co+i 5) e /—m

ci( ) ~ 3 e(co) 1—
e(co)+2 ' (29)

and using the Drude dielectric function, Eq. (28) is indeed
agreeing with the classical high frequency behavior,
Q.E.D.

We continue with the discussion of the higher multipole
response properties. Because of the time consuming nu-
merical work we had to do, the results are shown only in a
restricted frequency region where the collective surface
mode can be expected to occur. So, the curves do not

(28)

Now it is an easy task to show that, starting with the clas-
sical expression for o, &,

a~(r;co) ~ apo(r)
r

(co+i5) m 3 c)r
(27)

Therefore, we obtain the following expression for the
high-frequency dipolar polarizability:

cU 0

1
3

M 2E

O

O

r
)I
)1

I&

(
I

I

I

0.2—
I = 10

o
0 0 0.8 1,2 2.0 2.4

0.1

tC

0.0 c

—0.1

0
I I I I I I I

5 10 15 20
y {Cio)

FIG. 8. The same as Fig. 7, but for i=10.

I

25

Imal(~)/&', continuous line, versus Ima&{m)/g',
dashed line, for frequencies 0.4 & G & 2.6. Here,
co=co/(co~/W3). The particle nntnberis %=92 and r, =4. The
physics and the size dependence of the continuous line were ex-
tensively discussed in our previous work, especially in Refs. 2
and 7. This curve is shown here as a reference. On comparing
a~(~) with a~(co) the formation of collective motion {at the cost
of low-frequency-pair motion) can clearly be seen. This is the
dynamical analog to the enormous difference in the static polar-
izabilities a& and a& shown in Fig. 1.
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I

2.0

FICx. 10. The same as Fig. 9, but for the real part of the
dynamical polarizability.

FIG. 12. The same as Fig. 11, but for 1=3. The collective
surface mode is around co = 1.08.

start at co =0 but at co =co/co,"(l= 1)=0.8 where
co,"(l=1)=to&/V3. The frequency co is scanned in steps
of 0.01 which is obviously sufficiently fine to catch all the
important features. The calculated points are then con-
nected (as eye guide lines) with a continuous line (interact-
ing spectrum) or by a dashed line (noninteracting spec-
trum).

In the classical description of a metallic sphere, based
on Eq. (15) with the use of the Drude dielectric constant
e(ro) =1 ~&I—(co+i 0+), the collective i pole is located at
the frequency

' 1/2
cl

COI =CO& (30)

CU

CL

3

E

CO

0

-3
0.8 2.42.01.2 1.6

FIG. 11. Imaq(co)/R, continuous line, versus Imaqt, 'm)/R,
dashed line, for frequencies 0.8 & G& 2.25. This is the frequency
region where collective motion is expected to occur. Similar to
the I=1 case, there is a big difference between dependent and
independent particle response. This is not surprising for low
values of I because, as it is argued in the text, low 1 values corre-
spond to long wavelength.

This means that for l~ ao, a spherical surface behaves as
a planar one (co' =co~/V'2). This result is not surprising
because l —+ Oo corresponds to a wavelength going down to
zero, and for this case any finite curvature, 1/R, is negli-
gible. But, as we have already mentioned, this classical
result is meaningless because large i values are definitely
beyond the scope of the classical, macroscopic description.
In a truly microscopic theory, a breakdown of collective
surface motion is expected to occur in a similar way as it

+

N
CL

0
3

E

0
0 —2

-I = 4

—3
0.8 2.0 2.4

FIG. 13. The same as Fig. 11, but for /=4. The collective
surface mode is around co = 1.24.

is known for a planar surface. ' This means a transition
region of critical i values should exist for which the col-
lective l pole motion starts losing its meaning. We know
from the work of Ingelsfield and Wikborg' that the criti-
cal q~~ value of a planar surface is similar to the critical q
value of the bulk plasmon' despite the fact that surface
induced coupling of electron hole pa-irs and collectiue sur
face modes occurs for all q~~ ualues down to zero 'The.
important result of his study is that at q ~~'-q" damping
is increased dramatically (see Fig. 1 in Ref. 14).

From the comparison of the i pole static polarizabilities
for interacting electrons and for noninteracting ones
shown in Fig. 1 for r, =4 and %=92 we can conclude
that around I"=7or 8 collective motion gets lost. This is
for the simple fact that at approximately equals aI.

There is another reason why around this l value a
breakdown of collective surface motion is to be expected.
An / pole surface excitation has a wavelength which is ap
proximate1y given by A,t=2~R/l. This is so because a
surface excitation is localized in the surface region of the
sphere and R can be considered as being a typical value
for this. Consequently, the corresponding wave vector of
this excitation is qt=1/R. Now, as we have argued ear-
lier, for a short wavelength the curvature 1/R seems to be
unimportant simply because A, t/2mR =1/l~0. Hence,
the spherical surface is expected to behave like a planar
surface. But for the latter case we know' that q~~'-q".
Within the random-phase approximation (RPA), '
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FIG. 14. The same as Fig. 11, but for /=5. The co1lective
surface mode is around co=1.41. For l=5 the two spectra start
agreeing with each other.
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FEG. 17. The same as Fig. 11, but for-l=8. Both curves
agree, more or less, with each other. The electron-electron in-
teraction is no longer determining the electronic response prop-
erties. The / value of 8 for X=92 and r, =4 can be "predicted"
by Eq. (33) of the text.
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FIG. 15. The same as Fig. 11, but for l=6. The collective
surface mode is around co=1.6. The agreement between a(cu)
and u (co) is more and more increasing.
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FIG. 18. To convince the conservative reader this figure
shows the corresponding real part of the dynamical polarizabili-

ties for l=8.
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FIG. 16. The same as Fig. 11, but for l=7. In this figure it
is actually no longer possible to identify a co11ective surface
mode.
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FIG. 19. The same as Fig. 11, but for /=9.
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FIG. 20. The same as Fig. 11, but for l= 10.

2.4

q"=co /VF -0.9/'(r, )' (31)

/"-0.9R /(r, )
' (32)

As in the spherical jellium model, the jellium background
radius R and the particle number X are related by the
equation

we get the final result in the form

(+) Q 9~1/3(r )1/2 (33)

For the case under study, N=92 and r, =4, we get
I"=8.125=8. %'e now look at what is happening with
our TDLDA-response functions. ' Figure 11 shows the
results for /=2. We observe similar behavior as for /=1,
a large transfer of oscillator strength with a collective sur-
face pole around co=0.95. This identification can be
made by means of the considerations discussed in detail in
Ref. 7. For /=3 (Fig. 12) no principal change occurs.
The collective surface pole is shifted to —1.08 and is con-
siderably broadened. Figure 13 shows the result for /=4.
The collective surface pole is now at —1.24. We observe
still considerable redistribution of single-pair oscillator
strength- to the collective region. At I=5, seen in Fig. 14,
the situation starts changing. One part of the spectrum
looks very similar for interacting and noninteracting elec-
trons whereas another part does not. The oscillator
strength being transferred to the collective pole around
co=1.4 seems to come mainly from low-frequency excita-
tions (not shown in this figure). For /=6 (Fig. 15) we ob-

This means q"=0.45.for r, =4, the case under study.
Defining a critical angular momentum /" via

I"=Rqi"=Rq i~'-Rq",
and after inserting Eq. (31) for q" we arrive at

serve still a broad collective surface hump at co=1.6,
whereas for a wide frequency region there is nearly a one-
to-one correspondence between peaks observed in cc(co)
and in ceo(co). For /=7, seen in Fig. 16, it is actually no
longer possible to identify a collective surface feature
though it is tempting (for the sake of continuity) to de-
clare the broad peak around co-1.82 as being partly col-
lective (simply because its width is considerably larger
than the corresponding feature in the noninteracting spec-
trum). Finally for /=8, shown in Fig. 17, there is more
or less perfect agreement between Imcc(co) and Imcco(co),
and this is exactly the l" value we have derived above in a
somewhat heuristic manner. To convince the conservative
reader, we show in Fig. 18- the corresponding real part of
the response function which reveals only small differences
between Rea(co) and Reao(co). This tells us that, of
course, the Coulomb interaction is still there but it is not
sufficiently strong to produce new spectral features. To
complete this picture we show in Figs. 19 and 20 the cor-
responding results for /=9 and 10.

V. CONCLUSION

Collective multipole motion has been -investigated
within the frame of the TDLDA with 92 valence electrons
of sodium as an example. We have found that a critical
angular momentum for the formation of surface plasmons
does exist in very much the same manner as it is known to
occur for the

qadi
dependence of the surface plasmon at a

planar metal surface. It has been shown that, starting
with the equation I"=q"R, the critical angular momen-
tum at a given number of valence electrons X for a bulk
density of r, is determined by

/
c r

(+,r ) =0.9+ i /3
( r )

i /~

For the time being no experimental data seems to exist
with which we could compare our predictions. However,
we think that in the near future experimental data will be
available at least for the static / pole polarizabilities. It is
hoped that these data will agree with our theoretical pre-
dictions in the same way as it was found earlier for the di-
pole case 2~18
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