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Metal-insulator transition in the compensated sodium bronze, Na„Ta«W& «03
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We have measured the dc electrical conductivity o of cubic Na„Ta„WI ~03 from 1.6 to 295 K for
various values of x and y. A sample with x —y=0.18 appears to fall directly at the metal-insulator
transition and shows an unusual temperature dependence, g(T) ~ T,- from 1.6 K to room tempera-
ture. A model for o.(T) based on the scaling theory of localization, when used to interpret the data
on this and other samples, gives a conductivity exponent v of 1.0. This model assumes that o.(T) is

controlled by a thermal smearing of the occupancy of one-electron energy states near the Fermi level

rather than by inelastic scattering. Comparison of the conductivity transition in Na„Ta~WI yQ3
with earlier data for the uncompensated material Na„WO3 indicates that the additional disorder in-

troduced by Ta doping does not shift the critical value of electron concentration.

I. INTRODUCTION

The nonstoichiometric compound Na„WQ3 (commonly
called sodium tungsten bronze) undergoes' a transition
from semiconducting to metallic behavior as x is in-
creased through an x value of about 0.20. A thorough ex-
perimental characterization of the transition has been in-
hibited by the fact that there are several changes in the
equilibrium crystal structure in the x range of interest. In
1978 Doumerc et ai. discovered that the tantalum-doped
bronze Na„Ta~%"I &03 also undergoes a metal-insulator
(M-I) transition but that the cubic crystal phase can be
produced on both sides of the transition. The transition
occurs when the composition parameter x —y is about
0.2. Doumerc proposed that the conduction-electron con-
centration in the metal is proportional to x —y, that is,
that the Na atoms act as donors and Ta atoms act as ac-
ceptors. The Ta-doped bronze can thus be regarded as a
heavily-doped, compensated semiconductor.

Band-structure calculations and Hall measurements in-
dicate that all Na atoms act as electron donors in metallic
Na„WO3. Doumerc's argument that Ta atoms act as ac-
ceptors in the Ta-doped bronze is simple. Tantalum is
one place to the left of tungsten in the Periodic Table; it
has one less electron. So when tantalum substitutes for
tungsten it must take an electron from the conduction
band in order to complete the covalent bonds with its oxy-
gen neighbors. Although there is compelling serniquanti-
tative evidence for Doumerc's x —y model, 4 there exists
no direct experimental confirmation such as Hall coeffi-
cient measurements.

We have prepared a set of samples of the tantalum-
doped material and we have made measurements of dc
conductivity cr as a function of composition and tempera-
ture. Our conductivity data complement the previous
measurements of Doumerc et al. ' We have also made
an extensive set of NMR measurements on the ' W spin
system. The purpose of this paper is to report our con-
clusions about the characteristics of localization in doped
and compensated materials such as this bronze. Our con-
clusions are drawn primarily from the conductivity mea-

surements.
(1) We have found that the conductivity of a sample

with x —y =0.18 .shows an unusual temperature depen-
dence, o(T) ccT, from 1.6 K to 295 K. This sample
divides those at larger values of x —y which are metallic
from those at lower values of x —y which exhibit insulat-
ing properties. [We define a metal as a material in which
o(T~O) ~0.] We will show that a model based on a
simple application of the Kubo formalism and the scaling
theory of localization ' can reproduce the linear T depen-
dence and provides a natural explanation of the tempera-
ture dependence of o for several samples with composi-
tions near the critical composition for the M Itransiti-on.
The temperature dependence of o, when interpreted in the
light of our model, permits a very sensitive determination
of the critical sample composition, (x —y), .

(2) Comparison of our values of cr(x —y) with values of
cr(x) previously measured for Na„WO3 by various work-
ers suggests that the M-I transition in this material is
governed by the density of uncompensated Na atoms rath-
er than by a certain threshold of "disorder. " Near the
transition, very strong electron scattering in the Ta-
compensated material lowers the conductivity by nearly a
factor of ten in comparison to values of o in the uncom-
pensated Na„WO3 at the same electron concentration,
x —y. Yet the M-I transition appears to occur at the
same value of x —y in both materials. This insensitivity
of the value of critical composition to the introduction of
a substantial degree of disorder via the tantalum substitu-
tion argues against a broad-brush description of the tran-
sition as an "Anderson transition. "

II. EXPERIMENTAL PROCEDURES

The samples are prepared in two stages. First, large
metallic single crystals about a centimeter on a side with
composition x =0.60, y=0. 16 are grown by fused salt
electrolysis. After fragmenting of the large crystals, some
of the sodium is diffused out in a process that involves
baking at high temperatures. The final products are
single-crystal chips with dimensions less than 2&1&0.3
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rnrn. By a combination of electron-probe microanaiysis
and precise lattice parameter measurements, the values of
x and y are determined with an absolute accuracy of
+0.01. The crystals have high homogeneity, with
x and y varying by less than 0.005 over the sample
volume. Procedures for the manufacture of Na WO3 are
relatively straightforward and can be found in the litera-
ture. ' However, we have found that the production of
high-quality samples of the Ta-doped bronze is much
more difficult. The chemical homogeneity and mechani-
cal quality of the Ta-doped bronze are painfully sensitive
to several experimental parameters including the crystal
growth temperature, the electrolytic current, the duration
of the electrolytic growth, the electrode configuration, the
electrode materials, the crucible material, the diffusion
bake temperature and duration, etc.

The dc electrical conductivity of single-crystal chips
was measured with a simple four-point probe circuit.
Current was provided by a Keithley model 225 constant
current source and the signal from the voltage leads was
measured with a Keithley model 181 nanovoltmeter. The
crystal was held in place on a sample holder by two gold- .

plated brass blocks serving as current leads, one of them
spring-loaded. The voltage leads make electrical connec-
tion with the sample through two gold-plated, spring-
loaded needle probes. The contact resistance of a lead
pressed against a metallic sample was typically one or two
A, while the resistance of the metallic sample itself is
around 0.01 Q. With insulating samples, the contact
resistance is a hundred Q or more, while the sample resis-
tance is typically kQ.

Resistance measurements were made at room tempera-
ture, 77 K, 4.2 K, and in the sub-4. 2 K region down to 1.6
K. Low-temperature measurements were made with the
sample immersed directly in the cryogenic fluid.

To avoid self-heating, the sample current was kept suf-
ficiently low that the Joule heating power due to the resis-
tance of the sample and contacts was less than 10 watts.
Self-heating was unlikely, since the sample was immersed
directly in the cryogenic fluid, but, as a check, the sample
resistance was measured with two or more different
currents to ensure that the result was independent of
current.

Upon thermal cycling between room temperature and
1.6 K, the resistance of each sample was reproducible to
within 2%. This 2% drift may be caused by a slight slip-
ping of the voltage contacts on the sample as a result of
thermal stress. Because the single-crystal chips are some-
what irregularly shaped, the absolute value of the conduc-
tivity could only be determined to within about 15%%uo.

III. CONDUCTIVITY IN THE Ta-DOPED BRONZE

Figure 1 shows conductivity as a function of tempera-
ture for a series of samples that span the M-I transition.
Also shown in Fig. 1 is the value of Mott s minimum me-
tallic conductivity, ' o. ;„=Be n,' /A, where the constant
B is taken to have the value 0.05, and n, is the critical un-
compensated donor density.

A few comments about the information given in Fig. 1

are in order. On the basis of the analysis to be discussed
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subsequently, we place the M-I transition at x —y =0.18.
Thus, our sample with x =0.27, y =0.16 (x —y =0.11)
and that of Doumerc et al. with x =0.29, y =0.23,
(x —'y=0. 06) should have o.~O as T~O. However, a
smooth extrapolation of the existing data to lower tem-
perature appears likely to give o &0 at T=O for both
samples. Nevertheless, we regard these samples as insula-
'tors since their low-temperature conductivity is approxi-
mately 5&&10 (flem) ', a value some 6 orders of mag-
nitude below o. ;„. Evidently, some weak temperature-
independent conduction mechanism dominates the
thermally-activated conduction mechanisms at low tem-
perature. Although one can speculate about conduction
by surface states or by very low-mobility polarons, we
have no satisfactory explanation for this anomalous
behavior which has been observed by both experimental
groups.

Figure 2 is a log-log plot of cr versus T for four samples
with compositions near the critical composition for the
M-I transition. Data for samples 2 and 3 of Fig. 2 also
appear in Fig. 1. Samples 1 and 2 are from an early batch
with poor homogeneity in which x varied by 0.01 to 0.02.
Samples 3 and 4 are from a later batch and have better
homogeneity, with variations in x less than 0.005. In all
of the samples, variations in y are less than 0.005. Our
sample analysis techniques could not clearly resolve any
composition differences between samples 1 and 2 (both are
x =0.3S, y—=0. 16) or between sample 3 and 4 (both are
x =0.34, y -=0.16). Note, however, that the low-
temperature conductivity of nominally identical samples

temperature (K)

FIG. 1. Conductivity versus temperature for several samples
of Na Ta~W~ ~03.
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electrons at energy E, and f is the Fermi distribution
function,

1 0 f(E)=
exp[(E EF—)/kT]+ 1

(3)

10

E~ is the Fermi energy. We ignore the small difference
between the Fermi energy and the chemical potential for
T & 0. According to the scaling theory of localiza-
tion, ' ' the zero-temperature dc electrical conductivity
of a barely metallic three-dimensional system obeys the
relation0

o
0

0.(T=O) ~(Ep E, )"—~ (n n—, )", (4)

where E, is the energy of a mobility edge separating local-
ized and extended states in the one-electron density of
states, n is the composition parameter of interest (concen-
tration of uncompensated donors in this case), and n, is
the critical composition. According to the original work
of Abrahams et al. and the later work of McMillan, ' the
critical exponent v is approximately 1. Equation (4) is ex-
pected to be valid throughout a critical regime bounded by
the M Itransition -on one side (where EF E,~, and on ——the
other side by the composition at which o.=—cr;„.

In the context of the scaling theory, crmm is defined as
the value of cr(T =0) obtained from Eq. (1) by setting g
equal to the microscopic length scale, 1/n, ' . Apart
from the somewhat arbitrary numerical coefficient, this
definition is identical to our earlier definition of cr;„.

Qn the basis of Eq. (4), we assume the oz in Eq. (2) is
proportional to (E E, )" in the ran—ge E, &E &Eo, where
Eo is the value of EF at which o(T =0)=o;„We can.
then write

0.1

10 100 1000
temperature (K)

FIG. 2. Conductivity versus temperature for four samples of
Na„Ta~Wl ~03. The lines through the data are fits to the rela-
tionship o(T) ~ Tln(1+e " ). Sample 2 cracked during the
handling before data below 4.2 K could be obtained.

indicates the existence of small, uncontrolled composition
differences among samples from the same batch.

where g, the coherence length, diverges at the M Itransi--
tion. At finite temperatures, several effects come into
play to modify the scaling theory result. Imry7 discusses
two of these effects. (1) Thermal excitation of electrons to
energy levels above the Fermi energy may alter the value
of g', and (2) inelastic scattering may disrupt the T=O K
scaling picture. If the inelastic scattering length, l;„, be-
comes smaller than g, then the scaling-theory picture is
short-circuited and the conductivity increases over the
scaling-theory value.

Our model invokes the thermal excitation mechanism
noted above, but does not include the effects of inelastic
scattering. We shall later give some argument that such
neglect may well be valid for our material, but we note
that this neglect does limit the realm of applicability of
our model.

To describe the temperature dependence of the conduc-
tivity of samples near the transition, we work within the
one-electron approximation and use the Kubo-Greenwood
formula'

(2)

where aE is the contribution to the conductivity from

IV. A MODEL FOR o.( T)

We build upon the scaling theory of localization put
forth by Abrahams, Anderson, Licciardello, and Ramak-
rishnan.

'

In that theory, the macroscopic dc conductivity
of a barely metallic sample at T=0 K may be written" as

2

o ( T=0)= (0.1)

o(T) cc Tln(l+e ~" ), (6)

where A=E, —Ez. As the temperature increases, we ex-
pect this behavior to continue until kT =ED —EF at
which point values of crE near cr;„c notri btue significant-
ly to the integral and o(T) approaches o;„. The lines
through the data in Fig. 2 are fits to Eq. (6), with b. as a
free parameter.

In addition to its ability to reproduce the temperature

Note that the term Bf/BE cuts off the integral within a
few kT of EF. Thus, for E, close to EF, and at low
enough temperatures, only the energy range E, &E &Eo
contributes to the integral. In setting the lower limit of
integration at E„we are assuming that the conductivity
due to hopping is negligible compared to that due to car-
riers in extended states.

Suppose now that we have a sample for which EF E„——
tQat is, one with the critical composition for the M-I
transition. In this case, Eq. (5) yields o(T) cc T . Consid-
er sample 3 of Fig. 2. A fit of the data for sample 3 to an
equation of the form 0(T)=AT yields a=0.99+0.01.
Our model allows one to conclude that sample 3 sits ex-
tremely close to the transition and that the critical ex-
ponent v is 1.0.

With v= 1, evaluation of the integral in Eq. (5) yields
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2
o.( T &0)=(0.1), l;„«g' .

in
(7)

dependence of sample 3, the most interesting result of our
model is its 'ability to give naturally the form of o(T).for
sample 4, a sample with the same nominal composition as
sample 3, but apparently lying just on the insulating side
of the transition. Data taken on a third sample from the
same, high-quality batch that produced samples 3 and 4
gave results nearly identical to those for sample 3. The
conductivity of this third sample closely followed
o(T) CC T with a=0.96+0.02.

The fit to the sparse data for sample 2 shows that the
data for that sample are consistent with the model, but
the fit is otherwise not very revealing. Unfortunately, this
sample cracked during handling before data below 4.2 K
could be obtained. Data for sample 1, farther from the
transition and known to be less homogeneous in composi-
tion than 3 and 4, are not well fit by our model.

It is worth repeating that Eq. (5) is valid only within a
rather narrow composition range centered about the criti-
cal composition. Deep on the insulating side of the transi-
tion (for instance, the x =0.27, y =0.16 sample in Fig. 1),
we expect hopping conduction to dominate the conduction
due to carriers thermally activated to extended states. On
the metal side of the transition the assumptions behind
Eq. (S) break down for o & c7;„.

We wish to emphasize the following points. This
model predicts that o.(T) ~ T" for a sample with the criti-
cal composition, so that one can extract the conductivity
exponent v from measurements on a single well-chosen
sample. For our system, v= 1, which is in agreement with
the predictions of Abrahams et al. and McMillan. Final-
ly, the exquisite sensitivity of cr(T) to 5 at low tempera-
tures allows one to precisely locate the critical composi-
tion without the need for extremely low-temperature (mK)
measurements.

On rather general grounds, one might expect other tem-
perature dependent contributions to 0.(T) not considered
in our model to appear in the higher temperature regime
of Fig. 2. We cannot, of course, rule out the possibility
that the apparently continuous slope of unity for sample 3
results from a combination of the effects of g(T) at low
temperature and some other contribution at higher tem-
peratures. However, in considering such a possibility, one
needs to remember, that o. ~ o. ;„for all the data of Fig. 2.
Thus any other scattering mechanisms which might affect
cr(T) must be treated in the diffusion, or strong-scattering,
regime.

The analysis of Fig. 2 identifies the composition of
sample 3 as critical, thus; (x —y), =0.18+0.01. If one
wished to confirm our value of (x —y), by a more direct
experimental determination, one would need data at lower
temperatures. The study of Si:P by Rosenbaum et al. '

showed the need for mK measurements in order to experi-
mentally determine the zero-temperature condUctivity
unambiguously.

We now turn to the issue of the effect of inelastic
scattering on cr(T). Imry ' has argued that g in Eq. (1)
should be replaced by I;„, the inelastic scattering length,
when the temperature is so high that l;„«g'. Thus,

4th(T)-

C =E
(mobility edge)

FIG. 3. The solid lines display the coherence length g as a
function of electron energy E at T=0 K. At the M-I transi-
tion, EF E, . For T&——0, the thermal coherence length, g,h(T),
is the value of g at the distance -kT from EF. The case
I;„&g,h(T) is shown.

o.( T) =O. le /A'g, h(T) . (8)

For sample 3, the fit of Fig. 2, with b, =0 in Eq. (6), gives
cr(T) =BT, with B =0.3 (0 cm) '/K. Setting
BT=0.le /Rgu, (T) gives

800p K . 2000 A, T=4 K
T 27 A, T=300 K .

We note that the numerical factor in Eq. (8), set at 0.1, is
uncertain by a factor of two or more.

Estimating a value for l;„ in this system is difficult.
We know of no reliable theoretical or experimental deter-
minations of l;„ in systems similar to ours, at or very near
the M-I transition. However, some rough estimates can
be made. Since we are in the regime where o. &o. ;„, we
expect a strong scattering picture to be valid. In a
straightforward random-walk model, we will have

= (r /r &)
~ a = (r uFa )

~ (9)

Near the M Itransitio-n, g is very large so that the condi-
tion l;„«g is satisfied at all but the very lowest tempera-
tures.

We suggest, however, that for T & 0 the relevant length
scale is not the T=O K coherence length, g, but rather a
thermally-averaged coherence length g,q, which is deter-
mined by a suitable average over those one-electron states
within kT of EF (see Fig. 3). Note that both g,h and I;„
are functions of temperature.

We expect that the model we have developed will be
valid when l;„»g,h(T). Gur approach in examining the
validity of that inequality will be to assume our model to
be correct, thus permitting us to determine values for
g,h(T). We then examine what is known about 1;„(T)and
compare the two lengths, thus testing for self-consistency.

In the spirit of our model, we write
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where a is the elastic scattering length, ~;„ is the inelastic
scattering time, and ~,~ is the elastic scattering time. Since
we are in the strong scattering regime, we have taken a to
be one lattice constant and r,&

to have the value a/UF,
where U~ is the Fermi velocity.

We use Eq. (9) to make an estimate for I;„(T)by assum-
ing that the basic inelastic scattering rate (e.g., by pho-
nons) in Na„Ta~W~ ~03 will be similar to that in the un-
compensated material, Na„WO3. At room temperature, a
simple Drude model and a value of 10 (0 cm) ' for the
conductivity of NaWO3 (Ref. 16) give a value for ~;„of
2)&10 ' sec. We derive a value for Uz from the band-
structure calculations' of Kopp, Harmon, and Liu for
NaWO3. (For sample 3, the band is occupied by 0.18 elec-
trons per unit cell and we calculate EF to have the value
0.68 eV.) For the Na bronzes, a =3.8 A. With these
numbers, l;„=20 A. Thus, at room temperature, l;„=g,q.

At low temperature, elastic scattering by the disordered
lattice dominates conduction in the bronzes, and a good,
direct estimate of w;„ is difficult. A comparison of the
value of v;„at room temperature to that for copper gives a
ratio 0.75. For copper, ~;„ is about 2& 10 sec at 4 K.'
In the absence of a more direct measurement, we will as-
sume the temperature dependence of r;„ for the bronzes to
be the same as that for copper. With this assumption, r;„
is about 1.5)&10 sec at 4 K, and Eq. (9) yields a value
of 5300 A for 1;„. Thus, at 4 K, we meet the condition
&;„&g,„,but not by a large factor.

Our estimates of l;„at 300 and 4 K are, at best, rough.
But they suggest that the ratio l;„/g, q changes quite slow-
ly between 4 and 300 K, and that the assumptions of our
model may remain valid over the full temperature range
from 1.6 K to room temperature.

In our disordered material, with electrons subject to
very strong scattering, a possible contribution in inelastic
scattering not present in a clean metal like copper is the
disorder-modified electron-electron scattering investigated
by, e.g., Schmid, ' Altschuler and Aronov, and Abra-
hams et al. ' It is not clear that this theory can be applied
to the bronze system in the diffusion regime where
o. &o.n„. Nevertheless, it seems worthwhile to lay some
of its results against our data.

One can make guesses about the temperature depen-
dence of l;„ if it is determined by the disorder-modified
electron-electron scattering. There seems general agree-
ment that r;„a:(kT/Ez) ~ . For the random walk
model, with 1;„cc(r;„)'~, one would have 1;„ccT
Thus, if a(T) were dominated by the temperature depen-
dence of l;„, Eq. (7) would predict o(T) ~ T . For the
sample 3 data in Fig. 3 at 4.2 K and below, the fit to
v=0.99+0.01 appears to rule out this temperature depen-
dence.

Use of Eq. (9) and a guess that, for the electron-electron
scattering mechanism, we would have ~;„/~,~

=(kT/Ep) ~ give a value of 1200 A for I;„at 4.2 K.
With our value of 2000 A for g'„z at 4.2 K, this rough esti-
mate again gives l;„=g,z.

In the absence of a firm determination of 1;„(T) and
with only limited support from our rough calculations,
the conclusion that I;„»g;q must be regarded as specula-
tive. We look upon the agreement between theory and ex-

periment exhibited for samples 3 and 4 as more substan-
tial evidence for the validity of our model.

As one looks at published data for o.(T) in systems
whose characteristics- might plausibly resemble
Na„Ta~W& ~03, evidence for wide applicability of the
model is scant. Data for polycrystalline Ge& Au„given
by Dodson, Mochel, McMillan, and Dynes are very
similar to ours and seem likely to be well-described by our
model. On the other hand, o(T) measured by the same
workers for amorphous samples for the same material
shows a different temperature dependence.

There remains the question of why a one-electron
model, which ignores electron-electron interactions, ap-
pears to successfully predict o(T) for this system. Carrier
compensation may be the answer. Thomas et al. have
suggested that localization effects may dominate interac-
tion effects in heavily compensated systems. Such sys-
tems have many polarizable scatterers and relatively few
carriers. Given the evidence that the conduction-electron
concentration in metallic Na~TayW& y03 is given by
x —y, this bronze can be regarded as a heavily compensat-
ed system, and it may not be surprising that localization
effects are dominant.

V. COMPARISON WITH THE TRANSITION IN Na„WO3

We now compare the conductivity transition in
Na+ Tay % ] y 03 with that in cutuc Na~ WO3. Conductivi-
ty data for cubic Na„WO3 extend down only to x =0.22.
Thus, we do not see the full evolution of the transition in
the uncompensated bronze. However, a sample in the
tetragonal II crystal structure at x =0.15 was reported to
exhibit semiconducting behavior. And an early analysis
by Lightsey, while resting on a somewhat speculative
basis, suggested that the transition point for the cubic
Na WO3 is x, =0. 16+0.03. Taken all together, there is
considerable evidence that the values of (x —y), for the
two systems, uncompensated and compensated, fall ex-
tremely close to one another. We seem to see again a
feature that has been noted for a classic semiconductor
system, Ge:Sb. Compensation, with its accompanying
strong potential fiuctuations and strong carrier scattering,
does not shift the value of (x —y), .

VI. CONCLUSIONS

Though our data are in good agreement with measure-
ments of Doumerc et al. , ' our analysis and conclusions
are at some variance with the picture presented by Dordor
et al. They appear to consider all samples with
x —y &0.3 as lying on the insulator side of the transition,
and ascribe the tern. perature dependence of o. to various
hopping mechanisms. We place the transition at
x —y =0.18, and believe that the temperature dependence
of o. for samples near the critcal composition represents
thermal activation of electrons which are localized at
T=0 K. Although our model is undoubtedly oversimpli-
fied, it seems to give a natural explanation of the T depen-
dence o. for samples near the transition.
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