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A model of transverse magnetoresistance (MR) in metals due to sample-thickness variations is
presented. It predicts larger magnetoresistance then do previous models. The model is applied to
magnetoresistance data on well annealed, polycrystalline aluminum plates which are wedge shaped,
or which contain surface defects such as steps, grooves, or projections. For wedge-shaped samples
or samples containing a surface step, the model predicts magnetically induced voltages which differ
on opposite sides of the sample, and which are not strictly linear in magnetic field strength B. Both
phenomena occur with the predicted magnitudes. For grooves or projections which extend com-
pletely across the width of the sample, the model predicts a MR which is linear in B (LMR) and
directly proportional to both the groove (projection) depth (height) and the sample width. The data
are found to be in quantitative agreement with prediction. The prediction and observation of a very
large LMR for large surface defects provides at least a partial resolution of a disagreement in the
literature concerning the magnitude of LMR in single-crystal Al samples when B is directed along
the [110] crystallographic axis. Thermal magnetoresistance measurements are shown to be con-
sistent with the electrical measurements. Measurements are also reported on (i) the angular varia-
tion of MR when B is rotated away from the perpendicular to the sample surface; (ii) MR for sur-
face defects which extend only part way across the sample; and (iii) MR for surface defects in unan-
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nealed Al plates.

' I. INTRODUCTION

Linear magnetoresistance (LMR) in simple metals such
as K, Al, and In is a phenomenon which has puzzled
physicists for decades. On very general grounds,' the
magnetoresistance of a homogeneous uncompensated met-
al with no open orbits in k space should saturate with in-
creasing magnetic field to a constant value p;. There is
continuing disagreement over whether the observed LMR
is intrinsic or extrinsic. The most ably defended potential
intrinsic source is Overhauser’s charge-density-wave
model (Ref. 2). Proposed extrinsic sources include
magnetic-field nonuniformity along the sample length,’
dislocations in the sample,* and the presence of volume
defects (voids) in the sample.>~7 Macroscopic voids have
been shown to produce an LMR proportional to their
volume fraction in the sample.®® In carefully prepared
samples, however, this volume fraction is too small to
produce the observed LMR. Although surface defects
were also previously suggested as a source of LMR,® ex-
tension of the volume-void theory of LMR to surface de-
fects yields an LMR too small to explain published data.
Moreover, the volume-void theory of Refs. 5—7 is only
applicable to defects which are small with respect to sam-
ple dimensions, because the change in Hall field can be
neglected in this case. For sample-thickness variations
stretching across the whole width of a sample this approx-
imation is no longer valid.

In a previous letter,'® we showed that surface imperfec-
tions of this latter kind produce a transverse LMR which
is larger than expected from the void theories. We
showed also how these LMR can be understood quantita-
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tively. In this paper, we provide further details of both
our data and our model for surface-defect-induced LMR.
The paper is organized as follows. In Sec. II, we first out-
line the volume-defect theory of LMR as background.
We apply it to surface defects, and demonstrate its inade-
quacy. We then describe our new model and derive the
equations needed to analyze our data. In Sec. III, we
describe our experimental technique and procedures. In
Sec. IV, we present and analyze our data. Section V con-
tains a summary of the most important results, and our
conclusions.

II. THEORY

We are interested in the transverse magnetoresistance
Pxx of a sample whose thickness varies along the direction
of an applied magnetic field B=B,Z. We limit ourselves
to consideration of a homogeneous, uncompensated metal
with no open orbits. In the high-field limit, B=w.7>>1,
the transport equations for such a metal relating the elec-
tric field E to the current density J are

Exzps(']x +BJy) s
Ey=ps(—BJx+Jy) ’ (1)
E,=p;J; .

Here w.=eB /fic is the cyclotron frequency and p; is the
saturation magnetoresistance of the homogeneous metal.
In Egs. (1), E; and J; (i =x,y) are functions of x, y, and
z. As our measure of the LMR we use the dimensionless
Kohler slope S:
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g_L (3B |__1 |3pB)
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where Ry is the high-field Hall constant and p;,8=RyB.

The problem is to solve Egs. (1) with the appropriate
boundary conditions, subject to the constraint that current
is conserved:

V-J=0. (2)

No general solution has been provided for samples of arbi-
trary shape and dimensions, but some limited solutions
have been published.

Stroud and Pan’ used an effective-medium approach to
derive the LMR for elliptical inclusions of characteristic
dimension d in the limits A <<d <<, where A is the elec-
tronic mean free path, and [/ is a typical dimension of the
sample. They found

S =af, (3)

where f is the volume fraction of inclusions, and « is a
constant equal to 0.49 for spherical nonconducting in-
clusions and 1 for long cylindrical voids parallel to the y
axis. They did not calculate S for a long bar of rectangu-
lar cross section. If we use their calculation for the
closest available approximation to our geometry, namely a
half-cylinder at the surface of a sample, we obtain (with
a=1)

amc’L,

T 2doLL, 2

[4

do

£

I =f. 4)

Here L is the length of the sample, L, its width, dj its
thickness, f is again the volume fraction, and c the radius
of the cylinder. This result is independent of sample
width and quadratic in c.

Sampsell and Garland® obtained Eq. (3) by directly in-
tegrating the power dissipated in the vicinity of the voids.

van Gelder’ obtained exactly Egs. (3) and (4) by a pro-
cedure we describe in more detail because of its relevance
to our new model. He began from the inverted form of

Eq. (1):
13 _ B 3
*T (148 x| p(14pY) dy
B 9%, 1 3 (5)
7 op(14B%) 3x  p(14+p%) 3y’
_ 1 1 3¢
% ps 9z’

where E; =8¢/81 (i =x,y,z). Equation (2) then gives
2%
ax 2
Equation (6) was reduced to a two-dimensional problem
by averaging all quantities of interest over y:

J dy I (x.,2)
L, ’

L1148 —J‘i —o0. ©)

(Jy)= (7

so that Eq. (5) remains valid for the averaged quantities
((3¢4)/(3x)), ((34)/(dy)), but Eq. (6) becomes

+
_¢_a;( 2> +(148Y az<¢> [a¢£ay]_ =0. ®
y

Here [3¢/3y]7 is the difference between 8¢/8y on two
opposite sides of a sample.

van Gelder then assumed that the third term on the
right-hand side of Eq. (8) would become negligible as
L,— 0, which then leaves a totally two-dimensional
problem. He also assumed that the averaged Hall field
(3¢ /3y ) was independent of x, and hence equal to the
Hall field at large distances from the inclusion (or surface
defect). This latter assumption was also explicitly made
by Sampsell and Garland.

With these assumptions, van Gelder derived, by means
of an appropriate transformation in the complex plane,
exactly Eq. (4) for a cylindrical groove or projection, and
the approximate equation

C

S~ %71; In |20.7= 3 9)

for a rectangular groove (projection) of depth (height) ¢
and length 2a along the x axis, oriented parallel to the y
axis. For a square (¢ =2a) groove this gives S =af,
where a is a number of order unity which varies slowly
(logarithmically) with magnetic field, and f is the volume
fraction.

The agreement of all these calculations with each other
leads us to believe that all are, in our geometry, effectively
limited to the approximations L,= o, and Hall field in-
dependent of x, as explicitly assumed by van Gelder.

The problem with all three calculations is that they
yield results independent of L,, and thus in fundamental
disagreement with the data we describe below. We

~ discovered the disagreement while using samples with

L,=1.8 mm. Figure 1 compares our experimental LMR
for grooves in the 1.8-mm sample with the predictions of
Egs. (4) and (9), both of which are too small to explain the
data. Since the predictions of Egs. (4) and (9) were de-
rived for samples with L, = «, we tried a wider sample
(Ly,=3.6 mm) to see if the LMR would decrease in mag-
nitude. Instead, they increased! Additional measurements
with a 0.7-mm-wide sample revealed that the LMR were
proportional to L,. This result led us to reformulate the
theory to generate a dependence on L,.

Instead of averaging over y as in Eq. (7), we average
over z. As we will see, for our geometry this leads to a
solvable set of differential equations of two variables
without having to assume that the Hall field is indepen-
dent of position. This latter release of constraint gives
rise to our effect. The averaging is defined as follows:

1 d
) <EI)=:1_ fO El'dZ N

(10)
dJ do= K;
f o jaz = d
Here d is the sample thickness, and i =x,y. Since there is
continuity of current in three dimensions [see Eq. (2)],
there must also be continuity of averaged current in two
dimensions:

1
<Ji>:E
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FIG. 1. Measured experimental LMR (open circles), ex-
pressed in Kohler slope S, of grooves of different depth in sam-
ples of width L,=1.8 mm, compared with the predictions of the
volume fraction theories [Egs. (4) and (9)].

oK, 4 oK,
ox ay
because no current can be lost. This means that a func-
tion F can be found such that K,=0F/dy and

K,=—0F/0x. The transport equations (1) can then be
rewritten as

=0 (11)

aF oF
(E,)= o B3 1
(12)
oF OoF
(Ey)— d _B ay - ax ’

where (E;), (0F/9i), and d depend on x and y. The
problem is again reduced to two dimensions, since {J,)
and (E,) are zero.

In a constant magnetic field the three-dimensional elec-
tric field is rotation free, but this need not be the case for
the two-dimensional averaged field. The rotation of the
averaged field can be rewritten as
VX(EG0) =2y, (By(x,) — 2y, (B (x.0))

d oy
(13)
where y; (i =x,y) is the fractional deviation of the field
E,; at the surface fromi its averaged value within the sam-
ple:

Yi(x’y)=[Ei,(xsy’d)_ <Ei(x’y)>]/<Ei(xay)) . (13a)

Inserting (12) into (13) we get

2 3?2
gF2+af L1 (1+y, ’——+B——}
1 OF 9dF
+d (1+7x) B X oy |70 (14)

For a groove or projection extending completely across
the sample, dd /dy=0, and the last term on the left-hand
side in Eq. (14) is identically zero. It seems unlikely that
¥y will be larger than A, the fractional change in sample
diameter at point x, and it may well be considerably
smaller. If we approximate y, as A, then neglecting it
will make an error in the second term from the right of
Eq. (14) of only A. In our case, this will be less than 11%,
which is the largest A used for quantitative studies. Since
11% is comparable to our typical overall experimental un-
certainty, we neglect y,. This amounts to assuming the
rotation of the averaged field to be zero. With
(3d /9y)/d=0, v, =0, and (3d /3x)/d =1/a we get from
Eq. (14)
OF F 1
a

—_ =0. (15)
Ax? + y?

_B_.__

Interestingly, this is the same equation as Bate and Beer!!
derive for the influence of a conductivity gradient on the
magnetoresistance of semiconductors, with carrier-
concentration gradient taking the place of thickness varia-
tion. In hindsight this is not so surprising since both
thickness variation and carrier-concentration gradients
cause changes in Hall field. A third cause for change in
Hall field is inhomogeneity of the magnetic field. Again
this leads to the same equations and phenomena (see, for
instance, Ref. 3).

Equation (15) can be solved in closed form if a is taken
to be constant, which corresponds to a wedge-shaped sam-
ple of thickness d =dyexp(x /a). The solutions are

oF

o,
dax

K, =
_OF _ exp(By /a)
K=oy =182 GonBL, /20

where I is the total current.

If we choose axes down the middle of the sample, then
what we measure are the voltages V,(+L,/2) at the sides
of the sample (y ==+L,/2) between the positions x=0
and x =L (see Fig. 2). Calculating E, and integrating
from O to L gives

__ IBpsexp(+BL, /2a)
ValtLy /)= 2dosinh(BL, /2a) ~’ an
where
A=[1—exp(—L /a)]=(d,—dy)/d,

is the relative thickness variation of the wedge-shaped
sample (for our sample, 10%). The difference between
these two voltages,

Vi(—L,/2)—Vy(+L,/2)=(Ip,BA)/d, ,
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FIG. 2. Composite sample of width L,, thickness d, and
length between potential leads, L. Shown are a flat part (f), a
wedge-shaped part (w), a part with a projection (p), and a part
with a groove (g). Voltages are measured over pairs of potential
contacts, e.g., A4’ and CC'.

is just equal to the difference in Hall voltage between the
place on the sample having thickness d; and the place
having thickness dy. Our mechanism thus works as fol-
lows: The requirement that the (averaged) field is rotation
free forces differences in Hall voltage caused by thickness
variations to appear along the length of the sample, there-
by producing a large LMR.
Finally, we define

p+=Vi(FL,/2)(doL,/LD) ,

and obtain
exp(+BL, /2a)
p+(wedge)=(p;BL,A/2L) sinh(BL, /2a) (18)
+p_
Bl — (puBL A2 )eoth(BL, 120) (182)

It is gratifying to note that the py from Eq. (18) satisfy
the consistency condition that their average,
p=(p+p_)/2, from Eq. (18a) is just equal to the true
resistivity defined via the power dissipation in the sample.
This is seen by substituting our averaged quantities into
the power integral P= | J-Edv, which then becomes
P= f K-(E)dx dy. Inserting the K and (E) obtained
from Egs. (12) and (16) and computing the integral yields
a p which is equal to the right-hand side of Eq. (18a). The
fact that the true resistivity is equal to the average of the
“resistivities” measured at opposite sides of a sample fol-
lows more generally for both the wedge and other surface
defects from the consideration that the dissipation is equal
to the integrated Poynting vector over the sample surface,
which can be shown to involve only integration over the
surfaces y = —L,/2 and y =L, /2.

We can derive an LMR appropriate to a sharp step by
letting @ —0 in Eq. (18) while holding A constant. This
yields the asymmetric p and p_:

BL,A
p+(step)=psTy+ps : (19)
p_(step)=0+p; , (19a)

where, since the contribution to p. from the step is local-
ized to the region of the step, we have added in the p; due
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to the flat parts of the sample. This extra p; makes no
contribution to the slope of the LMR. The average resis-
tivity for the step, pep=(p.+ +p_)/2, is then

La
2L

It is also possible to find an analytical solution for the
problem of a steep step. Bate, Bell, and Beer'? give a
series solution for the analog problem of a steplike change
in carrier concentration in a semiconductor. However,
this series solution does not work well because of a singu-
larity in the current distribution (see Fig. 3). This current
pattern and the resulting asymmetric resistivities were

psBL,A

Pstep= oL (20)

+ps or Sstep =

‘computed by one of us (Ref. 7) by means of a complex-

function method. The resistivities for both sides of the
sample are

+ L :
éz_=7y 2l -we/ml, @D

L
Ap™ i A 2 w(i)—p(1—
o I 1r[ (3) (1—¢/m)] .
Here L, is the width of the sample, L is the distance be-
tween potential contacts, W is the digamma function, see,
for instance, Ref. 13, and

(21a)

=

—arctan
2
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FIG. 3. Current lines near a steplike variation in sample
thickness, in Hall constant, or in magnetic-field strength. The
length (from — L to + L) over which the current deviates ap-
preciable from a homogeneous current distribution is compar-
able to the width of the sample L,. Panel (a) shows the current
pattern for BA~5, which lies in the middle of our experimental
range. Panel (b) shows the pattern for SA >20,-at which point
the lines converge to within about 1% of the sample width.
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where B=w,7 is the product of cyclotron frequency and
scattering time and A is the previously defined relative
thickness variation.

In Ref. 13 one can find suitable series expansions which
for B(A/2) > 1 give to good accuracy

+ L
207 _ 2 (gr_0.9), 22)
P L ‘
- L
Bo” _Zv (0.9, (222)
P L
and for the average of the two
L
A<B> _r BA—O.9 (23)
P L 2

In these equations we have approximated (4 1n2) /7 by 0.9.
This gives a linear magnetoresistance with a Kohler slope
given again by Eq. (20). So the analytical calculation
differs from the approximate one only by a slight renor-
malization of p;, which does not affect the Kohler slope.
This agreement gives confidence in our solutions and in
our mechanism.

A sample with a groove or a projection is approximated
by two steps of opposite slope bounded by flat pieces.
Placing two such steps in series has the consequence that,
seen over the whole sample, the asymmetry vanishes. The
resistivity is just twice the average contribution of a single
step, plus the p; due to the flat parts of the sample

psBL,A
L

S is thus linearly dependent on A, the relative depth
(height) of the groove (projection), and also on the width
of the sample, Ly, but not on the volume fraction f. For
a sample with L,/L=1, and a single groove of relative
depth A=1%, we find S = 102, which is already larger
than many reported values in the literature
(S — 10—3_10—1). 14,15

In deriving the above equations, we have assumed that
the surface defects are the only source of LMR. In fact,
some LMR is seen even with “flat” samples. In the spirit
of Egs. (21)—(24), such an additional LMR should prob-
ably be added to p, to properly account for the contribu-
tion due to the real flat portions of the sample. In
presenting our data, we have chosen to treat this issue
from the alternative point of view that the LMR due to
flat pieces should be subtracted from the raw data before
comparison with Egs. (19)—(21).

For the wedge, which extends over the entire sample
length between the potential leads, p; is already contained
in Eq. (18) as the limit of p4 as B—0. It is thus less clear
how to include any “additional LMR,” especially in p
and p_ separately. From the physical changes in current
pattern associated with our model, which involves a
bunching up of current lines on one side of the wedge, we
infer that effects of any additional LMR will be magni-
fied on that side of the wedge relative to the other side.
We have thus subtracted from p, and p_ the “flat-
surface LMR” multiplied with the ratio of computed and
average current density in correcting the data for the
wedge to be discussed below.

L,
p(B)= +ps or S =—i—A . (24)

We can also make a similar argument for the LMR due
to “volume-defect theory,” which involves different
current distortions than those in our model. The simplest
assumption to make is that the effects of the two different
types of distortion simply add together. For complete-
ness, we present our data both with and without such
corrections. »

Since our samples have residual resistance ratios
(RRR’s) of 10.000—20.000, corresponding to mean free
paths of electrons in zero magnetic field of A~0.2—0.4
mm, which are comparable to the sizes of our samples
and any grooves or projections, one might wonder wheth-
er an essentially classical and macroscopic model such as
we have developed is appropriate for describing our data.
We believe that it is, for the following reason. A funda-
mental assumption of our analysis is that the averaged
electric fields and current densities of interest are func-
tions only of the local position (x,y). In zero magnetic
field, a long electronic mean free path vitiates this as-
sumption, because the electrons carry with them informa-
tion from their last collision, which occurred a long dis-
tance (A) away. However, in high magnetic field,
w.7>>1, an electron is constrained to a region of order
A/w.7 in the plane perpendicular to the magnetic field.
In our case, fields of 2 to 5 T along the z axis give
@, 7~50—400 for the different sample purities, so that
electrons are constrained to regions of <0.003 mm in the
x-y plane. These distances are much smaller than any di-
mension of our samples. The electrons travel over larger
distances in the z direction, but we do not care about the
details of their motion in this direction, because our model
involves an average over the z-axis properties of the quan-
tities of interest. We thus conclude that our model should
be applicable to our experimental data.

III. EXPERIMENTAL DETAILS

The samples were prepared from high-purity polycrys-
talline Al plates of 2 mm thickness obtained from
Vereinigte Aluminium Werke.!® As received, the Al had
a residual resistance ratio [RRR=R(300 K)/R(4.2 K)] of
~10.000. After annealing at 500°C for a few hours in
vacuum or argon, the RRR increased to ~20.000. Spark
erosion was used to form bars of different widths, L,
with regularly spaced arms for potential contacts on both
sides of the sample. Figure 2 shows a composite sample.
A typical sample was > 5 cm long and divided into five or
ten equal parts by the potential arms. Between some pairs
of arms were machined projections (p) and between some
pairs’ grooves (g). Each sample also contained one or
more flat, untreated regions (f) to serve as controls. To
minimize damage, the grooves or projections were initially
cut using spark erosion. Later, a milling machine was
used to get more uniform grooves with sharper edges. No
significant differences were found between results ob-
tained with the two techniques. Usually, the grooves or
projections extended over the entire width of the sample,
but some tests were made with grooves cut only part way
across. The behavior of the magnetoresistance for steps
(not shown) and wedge-shaped (w) portions of the sample
were also examined.
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Measurements were made on both annealed and unan-
nealed samples, with results which . were qualitatively
similar, but differed in some details as described below.
In the unannealed state, the samples contained large num-
bers of small, randomly oriented grains. After annealing,
there were typically only a few grains between pairs of po-
tential leads. The general agreement between results for
different samples indicates that the detailed grain struc-
ture was not an important factor in the observed LMR.

Conventional four-probe measurements of transverse
LMR were made, usually with the magnetic field B of the
split-coil superconducting solenoid oriented perpendicular
to the plane of the sample arms. In a few cases, the LMR
was measured for the entire angular range from 0° (B per-
pendicular to the plane of the arms) to 90° (B parallel to
the plane of the arms). To test for sensitivity of the LMR
to the exact orientation of the sample, the effect of small
misalignments of the sample normal with respect to the
magnetic field was regularly checked. For defects extend-
ing across the whole width of the sample such misalign-
ments had little effect. We also checked that small dis-
placements of the sample up or down out of the middle of

R(nQ)
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FIG. 4. Measurement of resistance as a function of field for
three grooves of different depth and two flat regions on an an-
nealed 4-mm-wide sample. The numbers shown are values of A.
Upright and inverted triangles indicate results for opposite-field
directions. Solid and open symbols indicate measurements on
opposite sides of the sample (e.g., 44’ and CC’ in Fig. 2,
respectively). The circles which describe data for the flat re-
gions represent averages after field reversal. The two flat pieces
gave results too close together to separate on this graph.

the solenoid had little effect on the data. Larger displace-
ments, which brought the sample to a region of signifi-
cant field inhomogeneity, produced results similar to
those reported by Gostishchev et al.?

The measuring currents were normally chosen to make
the current density through the sample about 0.3 A/mm?,
and occasional checks were made that the data were in-
dependent of the measuring current. We regularly
checked potential differences on both sides of the sample
(e.g., Vyq and Veo in Fig. 3),'7 and except for the
wedge-shaped samples and steps, for which V4 and V¢

. were very different, the two potential differences were al-

ways nearly equal. When a slight difference appeared, the
two values were averaged. The data to be presented were
also the result of reversing both current and field and tak-
ing appropriate averages. Reversing the current rarely led

AR/NAB(NQ/T)
20}
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FIG. 5. Slope of LMR for grooves and projections of dif-
ferent depth (height), on annealed and unannealed samples, di-
vided by the number of grooves (projections) between voltage
contacts. The solid line is the theoretical calculation from Eq.
(24). The solid circles indicate data for a sample containing pro-
jections, in which the projection height was sequentially re-
duced. The pluses and crosses represent data for two annealed
samples containing grooves (pluses) or projections (crosses),
respectively. The open squares represent data for an unannealed
sample containing multiple grooves (the number of grooves is
specified at each symbol), with different depths for each dif-
ferent set of grooves. Two grooves (indicated by asterisks) were
made unusually long (3 mm versus a normal 1 mm) along the x
direction to see whether such extra length would affect the
LMR. None of the data shown in this figure have had the
LMR for flat pieces subtracted. The LMR’s for flat pieces on
each of the samples (except for the solid circles where no flat
piece was measured) are indicated on the ordinate axis at A=0.



to significant asymmetry, and field-reversal asymmetries
were typically less than 10—20%. Voltages were mea-
sured with a sensitivity and noise of about 10~° V using a
Tekelec digital voltmeter,'® the output of which was
displayed on a strip-chart recorder so that noise and
thermal drift could be averaged out where necessary.

Figure 4 shows resistance as a function of field for
three grooves of different depths, and two flat regions, on
an annealed 4-mm-wide sample. This figure illustrates (a)
that above about 2 T the magnetoresistances are linear in
B; (b) that the deeper the groove, the larger the LMR, and
that the background LMR for flat regions are smaller
than the LMR for grooves and nearly the same for dif-
ferent flat regions on a given sample; and (c) that the
differences between V,, and Ve are small for both
grooves and flat regions.

To test whether damage introduced by spark erosion
was the source of our observed LMR, an unannealed sam-
ple was first fabricated with relatively long projections
and then spark-planed down in steps so that the projec-
tions became shorter and shorter. The solid circles in Fig.
5 show that the LMR for this sample decreased approxi-
mately linearly with decreasing projection height. Figure
5 also contains for comparison some data for annealed
samples (pluses and crosses) with grooves instead of pro-
jections, to demonstrate that the LMR’s obtained are con-
sistent with those for the projections. We conclude that
the LMR’s we see are due primarily to the presence of
grooves or projections and not to damage introduced dur-
ing fabrication. Finally, Fig. 5 also contains data for an
unannealed sample (open squares) containing multiple
grooves and grooves which are longer (3 mm) in the x
direction than the typical ones (1 mm). We see that the
LMR’s are approximately proportional to the number of
grooves and independent of groove length. If we subtract
the LMR for flat pieces from each of the samples in Fig.
5, we find that the data for the unannealed sample fall
below those for the annealed samples. We consider this
behavior further in Sec. IV C below.

IV. DATA AND ANALYSES

This section is divided into three parts. In subsection
A, we describe measurements of the Hall voltage, Vy,
which are basic to our model of surface-defect LMR. In
subsection B, we present that portion of our data which
can be quantitatively explained by our model, namely the
LMR for annealed samples which are wedge shaped or
plane parallel with grooves, projections, or steps, all with
the magnetic field directed perpendicular to the plane of
the sample arms. We also describe measurements with
the field parallel to the plane of the arms, and use these
measurements both to demonstrate that the average elec-
tric field in the sample is independent of the strength of
the magnetic field, and to resolve a contradiction in the
literature concerning LMR in single-crystal Al when the
magnetic field is directed along the [110] crystal axis. We
show also that thermal LMR behaves the same as electri-
cal LMR in these parallel and perpendicular geometries.
In subsection C, we describe results which are less well
understood, primarily the angular variation of LMR for
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large projections, LMR in unannealed samples, and LMR
due to grooves or projections which extend only partially
across the sample.

A. The Hall voltage and LMR

As indicated in Sec. II, previous models assumed that
the Hall voltage V), is independent of x, whereas in our

* model it varies inversely with sample thickness d. The ir-

rotationality of the averaged. electric fields causes these
differences in Hall voltage to appear along the current
direction as a LMR. We tested this prediction using a
sample in which the potential leads were in the middle of
portions of the sample having different thicknesses. Fig-
ure 6 compares the differences in the Hall voltage AV,
with the LMR voltages ¥V, appearing across the same
sample, for several different values of A=(d;—dy)/d;.
No corrections or adjustments are made. The approxi-
mate agreement between AV, and V, validates the foun-
dation of our model.

B. Data well described by the model

Our model can be solved exactly for an exponential
wedge, giving Eq. (18). This equation, which we now
show contains no adjustable parameters, predicts that p_
and p_ vary not strictly linear with B and are very dif-
ferent from each other. In Eq. (18), A, Ly, L, and a are
all directly measurable on the sample, and p; and S are re-
lated via p;B=RpyB. It is thus necessary only to deter-
mine p;.

For magnetoresistance in samples of uniform thickness,
there are two field regimes: (a) “low field” (8 << 1), where
p=py, and (b) “high field” (8>>1), where p~p;. For our
wedge in contrast, there are three field regimes: (a) “low
field,” B<<1, where p=(p, +p_)/2=~pg; (b) “intermedi-
ate field,” B>>1>pBL,/2a, where p~p,; and (c) “high
field,” BL, /2a >>1, where p varies linearly with 3. For
our wedge, a=100 mm and L,=1.33 mm, so that at our
lowest field of 1 T we are in the “intermediate-field” re-
gime. We thus take for R, the “saturatjon resistance” of
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FIG. 6. Comparison, for a projection, between the difference
in Hall voltage AV, and the LMR voltage ¥, as a function of
the fractional projection height A=(d,—d,)/d,. Here AV, is
the difference between the Hall voltages measured along the
projection and along a flat portion of the sample, and V, is the
LMR voltage measured across the projection.
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FIG. 7. p/ps data for a wedge-shaped sample, together with
the theoretical prediction of Eq. (18) (solid curve) using
B=44/T, R;=13 nQ, and a=10 cm. The open circles
represent uncorrected data and the solid circles corrected data
(see text).

our sample, the average value of our measurements of R _
and R, at B=1 T, and then convert R; into p; using the
geometric factor of our sample derived from the ratio of
the known room-temperature resistance of our wedge and
the specific resistivity of aluminum. From this p; we ob-
tain f=44/T which was used to calculate the curves of
Fig. 7.

FIG. 8. Asymmetric resistivities and their average for a sin-
gle sharp step, corrected (solid circles) and uncorrected (open
circles) for residual LMR of flat pieces. The solid lines are the
predictions from Egs. (21) and (21a) using S=15.6/T deter-
mined from the RRR for this sample.
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If the characteristic length a of the exponential is large,
then for a sample of length L <<a, Eq. (18) will apply
with good accuracy to a linear wedge, which is easier to
fabricate than an exponential wedge. Figure 7 compares
the prediction of Eq. (18) (solid curves) with data for a
linear, wedge-shaped sample. The open symbols represent
uncorrected data. The solid symbols show the same data
after correction according to the procedure described just
after Eq. (24). The predicted curves are in good agree-
ment with the corrected data and in reasonable agreement
with the uncorrected data.

For a single sharp step, we have the prediction of Egs.
(21) and (21a). Figure 8 shows data for a single step (with
and without flat-piece-LMR subtracted) compared to this
prediction. Again the prediction is verified. 'As expected,
the averaged values for the two sides of the sample yield a
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FIG. 9. Kohler slope S versus thickness variation A for sam-
ples of width 0.7, 1.8, and 3.6 mm. Open symbols are for un-
corrected data. Solid symbols are the data with the residual
LMR of flat control pieces and the LMR due to volume-defect
theory subtracted as discussed in Sec. II. The solid lines are pre-
dictions from Eq. (24).
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LMR of about half that expected for a groove (or projec-
tion) of the same depth (height).

For groove or projection, the high-field prediction is
given by

Ly
S =TA , (25)

where A=(d; —dy)/d,; is the fractional change in thick-
ness due to the groove or projection.

For a single groove (projection) we thus expect S to be
proportional to A for fixed L,. Figure 9 shows S versus
A for three different groove depths in samples of width
0.7, 1.8, and 3.6 mm, respectively. The solid symbols are
data corrected for both the residual magnetoresistance of
flat control pieces and the LMR due to “volume-defect”
theory as described in Sec. II. The open symbols are un-
corrected data. The sizes of the symbols indicate their un-
certainties due to uncertainties in groove depth and shape,
and in the measurements of resistivities and determination
of LMR slope. The straight lines are calculated from Eq.

(25). These lines generally agree better with the corrected

data, but are in reasonable agreement with the uncorrected
data also.
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FIG. 10. Kohler slope S versus sample width L, for three
different groove depths. Open symbols are for uncorrected data.
Solid symbols are the data with the residual LMR of flat control
pieces and the LMR due to volume-defect theory subtracted.
The solid lines are predictions from Eq. (24).

For fixed groove depth, Eq. (24) predicts that .S will be
proportional to the sample width L,. Figure 10 shows S
versus L, for three groove depths. Again, solid symbols
are corrected data and open symbols are uncorrected. The
straight lines are the predictions of Eq. (25). As in Fig. 9,
the lines agree better with the corrected data, but are also
in reasonable agreement with the uncorrected data.

As illustrated in Fig. 5, the observed LMR are essen-
tially the same for projections as for grooves of the same
height (depth), the LMR are independent of groove length
along the sample, and the LMR are approximately linear
in the number of grooves per unit length of the sample.
We thus conclude that our data are in quantitative agree-
ment with Eq. (25), which contains no adjustable parame-
ters.

Up until now, we have examined data for small A, i.e.,
A <119%, which is where we expect Eq. (25) to be valid.
If A is allowed to increase further, then since
A=(d,—dy)/d,, its limiting value is unity. This yields a
limiting value for S of S =L, /L. While we do not expect
this limiting value to be quantitatively accurate, it is still
worthwhile to examine its applicability experimentally.
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FIG. 11. The electrical resistivity pg for a sample plate with
no deliberately introduced defects. B, indicates a field directed
perpendicular to the sample and to the plane of the arms (see
Fig. 2). By indicates a field directed along the arms.
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The easiest way to simulate a large A is merely to rotate
a sample by 90° so that the magnetic field points along the

potential arms rather than perpendicular to the plane of

the arms. This is not quite the same as having long pro-
jections or deep grooves in the proper geometry, since now
the voltage is being measured on arms which point along
the field direction. However, as we will now see, the re-
sults are similar to what is expected for the proper
geometry. )

Figure 11 shows the magnetoresistivity for a sample
containing no deliberately introduced surface defects, with
the field oriented both in and perpendicular to the plane
of the arms. With the field perpendicular to the plane of
the arms we see only the small LMR appropriate to a flat
sample. With the field along the arms, however, we see a
much larger LMR, with a value of S about half of L, /L,
the upper bound indicated above. The magnitude of this
LMR is about the same on the two sides of the sample
and also approximately symmetric under field and current
reversal.

To see whether or not the behavior shown in Fig. 11
was associated solely with electrical magnetoresistivity,
the thermal magnetoresistivity py,(B) was measured on a
sample of the same shape,!® prepared from the same Al
plate as the one used for Fig. 11. Data for parallel and
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FIG. 12. Thermal resistivity py, under conditions similar to
those in Fig. 11.
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perpendicular fields are shown in Fig. 12. For parallel
fields, where the effect is large, it is possible to calculate
the Wiedemann-Franz ratio, (1/T)[pg(B)/pw(B)], using
the two linear slopes. Its value of (2.2+0.2)x10~%
(V/K)? is in good agreement with the Lorenz number
2441078 (V/K)2.

We take this consistency check, plus the fact that S for
the electrical LMR is comparable to the upper bound of
Eq. (25), as additional evidence for the basic validity of
our model. We can also use this geometry, and these re-
sults, to study further the fundamental physics underlying
surface LMR.

It is easily demonstrated that the average electric field
throughout the entire sample should be independent of the
magnitude of the magnetic field B, provided that p; is it-
self independent of B. We begin with the first of Egs. (1),

E, =p;(J,+BJ,) . (1)
If we average this equation over the entire sample volume,
we find

<Ex>=ps<Jx> ’ (26)
since (J, ) =0. Because we maintain {J, ) constant as we
increase the magnetic field, Eq. (26) predicts that (E, )
will be independent of magnetic-field strength B. This re-
sult is not only valid for B perpendicular to the plane of
the sample arms (where indeed we observe a nearly con-
stant p, with S~1073 in well-annealed samples with no
deliberately introduced surface defects), but also for B
parallel to the arms (where we observe a huge LMR with
S >107!). From Eq. (26) we must infer for B parallel to
the arms that the large electric fields giving rise to the
huge LMR observed in the body of the sample must be
balanced off by large oppositely directed fields in the
arms.

To search for such a field, we attached potential leads
across one arm of the sample as indicated in the inset of
Fig. 13, and used these leads to measure the potential
differences across this arm as a function of the magnitude
of B. For B directed perpendicular to the plane of the

Vi(nV) Va(nV)
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FIG. 13. Voltage V; (across a sample arm) and ¥V, [between
two different sample arms (see inset)] as functions of magnetic
field strength B. Note that the data for ¥, and ¥V, have oppo-
site signs.
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arms, no potential difference was observed. However, for
B in the plane of the arms, we obtained the results shown
in Fig. 13; the potential difference V| across the single
arm increased linearly with B and was of opposite sign to
the potential ¥V, between two different arms. We mea-
sured V', at four different distances from the body of the
sample, and found that it decreased with increasing dis-
tance from the sample. To estimate the magnitude of the
average negative field in the arms, we drew a smooth
curve through the data for the potentials in the arm for a
fixed B, and then used this curve to roughly integrate the
field in the arm. We found a total field in the arms which
balanced off the positive field in the body of the sample to
within our experimental uncertainty. The data thus con-
firm the expectation that (E, ) for the whole sample is in-
dependent of B.

The data of Fig. 11 also provide a possible resolution of
a controversy in the literature concerning the magnitude
of the LMR in single-crystal Al when B is directed along
the [110] crystal axis. Kesternich, Ullmaier, and Schil-
ling'® reported an unusually large LMR (S =2.4 1072)
for a single crystal of Al when a magnetic field was
oriented along the [110] axis. Their measurements were
made using a four-probe technique with long, thin sam-
ples such as ours. The large LMR’s were very sensitive to
orientation, dropping off rapidly as B was moved away
from [110]. Kesternich, Ullmaier, and Schilling attribut-
ed the large LMR to magnetic breakdown along [110].
Datars and Douglas® attempted to reproduce this large
LMR using a probeless technique on spherical samples,
without success. They found a much smaller enhance-
ment along [110], and concluded that the effect reported
by Kesternich, Ullmaier, and Schilling could not be in-
trinsic to Al. To date, no resolution of this discrepancy
has been proposed.

A possible resolution lies in the shape of the sample
used by Kesternich, Ullmaier, and Schilling. Figure 1 of
Ref. 15 shows that their sample had arms similar to those
of our samples, and that their arms pointed exactly along
the [110] crystal direction. Thus when B was parallel to
[110] it pointed directly along the arms. Moreover, S for
the Kesternich, Ullmaier, and Schilling sample was about
equal to the upper bound predicted by Eq. (25), It thus
seems likely that a substantial portion of the large LMR
they saw for B||[110] was due to a “surface-defect” con-
tribution rather than to magnetic breakdown. The break-
down portion would then be much closer to the smaller
LMR seen by Datars and Douglas, thereby greatly reduc-
ing the discrepancy.

C. Data not well understood

While our model provides a good description of the
LMR when the magnetic field points directly along the
potential arms of the sample, complexities arise regarding
the angular variation of this LMR for very long, symme-
trically located arms. Figure 14 shows results for dif-
ferent samples. For a symmetrical sample with short
arms (arm length ~L, /2), the LMR decreased monotoni-
cally with angle away from its maximum value at 6~90°
(i.e., B parallel to the arms). The maximum S for this

60 90 120
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FIG. 14. Angular variation of transverse LMR for rotation
in a magnetic field for symmetrical samples (having only pairs

. of oppositely placed arms) and asymmetrical samples (having

also unpaired arms). In addition, there are samples with long
arms (4 times longer than the sample width L,) or short arms
(shorter than L,). 6=90° means B directed along arms. The
LMR is expressed in S(L/Lyn), where L is the distance be-
tween voltage contacts, L, is the width of the sample, and 7 is
the number of pairs of opposite arms plus the number of un-
paired arms between voltage contacts with the voltage contacts
themselves counting together as one additional arm. S is.the
electrical or thermal Kohler slope: electric,
S =(1/Ry)(3p/dB), where Ry is the Hall coefficient, and
thermal, S =(1/A4gr.)(0p/3B), where Ag; is the Righi-Leduc
coefficient. Dashed line: Asymmetric sample, long arms, elec-
trical LMR, from Ref. 12. Upright open triangles: Symmetric
sample, long arms, electrical LMR. Inverted open triangles:
Symmetric sample, short arms, electrical LMR. Upright open
triangles: Symmetric sample, long arms, thermal LMR. Open
circles: Asymmetric sample, long arms, electrical LMR. The
lines are only to guide the eyes, they are not the results of any
calculations.

sample was approximately half the maximum predicted
by Eq. (25). Similar behavior was observed in an asym-
metric sample (with unpaired arms) with long arms (arm
length ~3.5L,). On the other hand, a symmetric sample
with long arms (arm length ~3.5L,), displayed an unex-
pected nonmonotonic variation of LMR with angle, which
was also manifest in the thermal magnetoresistance of a
sample of similar shape. It is interesting to note that the
size of the LMR at parallel orientation (90°) is nearly the
same for all four samples; it is thus only the behavior
away from parallel which is “anomalous.”

For comparison, the dashed line shows data for the
sample of Kesternich, Ullmaier, and Schilling.!> Its LMR
at 90° is higher than that of our samples, and drops off
more rapidly with angle away from 90°. Their sample
shapes was intermediate between our symmetric and
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asymmetric samples, with much smaller thickness.

To ascertain how important it is to the LMR that sur-
face defects extend completely across the sample, we
made a few observations on grooves and one projection
which extended only part way across the sample width.
In such a case, the last term on the left-hand side of Eq.
(14) is no longer zero and we may not have a rotation-free
average electric field.

The results can be summarized as follows:

When B was directed perpendicular to the sample sur-
faces the LMR for the partial defects was always consid-
erably smaller than the LMR for a full defect of the same
depth (height).

"The LMR for partial defects was an asymmetric func-
tion of angle as B was rotated away from the perpendicu-
lar to the sample plane (i.e., away from 6=0). The asym-
metry was particularly pronounced for a defect which ex-
tended nearly all the way across the sample width.

Finally, we describe some changes observed in the LMR
of samples upon annealing. The most reproducible result
 was that the LMR for flat portions of a sample always de-
creased upon annealing, typically by 50% or more. This
behavior is consistent with the suggestion made in Sec. II
above that different sources of LMR—here dislocations
and whatever else is present—might be simply additive in
their effect. In contrast, the raw-data LMR’s for grooves
or projections usually increased upon annealing, but some-
times decreased. Such divergent behavior is not what
would be expected for simple additivity. When “net”
LMR’s were calculated by subtracting out the LMR’s for
flat pieces on the same annealed or unannealed sample,
then these “net” LMR’s almost always increased upon an-
nealing. We currently have no explanation for the in-
crease in “net” LMR generally observed upon sample an-
nealing.

V. SUMMARY AND CONCLUSIONS

We have presented here a model of surface-induced
transverse magnetoresistance in metallic plates, and
shown that this model describes quantitatively the magne-
toresistance observed for well-annealed aluminum plates
in the form of wedge-shaped samples, samples with sur-
face steps, and samples with grooves or projections which
extend completely across the sample width. The physical
source of the magnetoresistance lies in the fact that the
averaged electric field in the plates is essentially rotation
free. This forces differences in Hall voltage at places of
different sample thickness to appear along the length of
the sample, thereby generating a large magnetoresistance.
We showed that this magnetoresistance is larger than that
obtained by applying to surface defects the standard
theory of LMR for volume defects. The following obser-
vations are in accord with our model.

(1) Direct measurements of Hall voltage difference be-
tween portions of the sample having different thicknesses
showed that these differences increased linearly with mag-
netic field strength B and were in good agreement with
magnetoresistance voltages measured along the sample
length.

(2) As predicted by our model, the magnetic-field-
induced voltages on opposite sides of both a wedge-shaped

sample and a sample containing a step defect were asym-
metric and not strictly linear in B. They were also in
quantitative agreement with the predicted magnitude.

(3) As predicted by our model, the magnetoresistance
observed with grooves (projections) was linear in B and
also directly proportional to the fractional groove (projec-
tion) depth (height), to the sample width and approxi-
mately to the number of defects per unit length of the
sample. Again the observed magnitudes were in quantita-
tive agreement with prediction.

(4) The effect of large surface defects on magnetoresis-
tance was studied by rotating the sample 90° so that the
magnetic field pointed along the sample arms. In such a
case both a very large linear electric magnetoresistance
and a very large linear thermal magnetoresistance was ob-
served. These two magnetoresistances were related by the
Wiedemann-Franz law and were within a factor of 2 of
the large-defect limit predicted by our model.

Additional observations were made which are beyond
the scope of our model and are not yet completely under-
stood.

(1) When the magnetic field was rotated from the direc-
tion parallel to the sample arms toward the direction per-
pendicular to the arms, the magnetoresistance (electrical
and thermal) for symmetrically shaped samples with long
arms reached maximum values at intermediate angles.

(2) The magnetoresistance observed with grooves (pro-
jections) extending only part way across the sample were
generally smaller than those for grooves (projections) of
the same depth (height) extending all the way across, and
were sometimes a highly asymmetric function of angle
when the magnetic field was rotated.

(3) The magnetoresistance observed with grooves (pro-
jections) in unannealed samples was usually smaller than
those in equivalent annealed samples, and showed larger
variations under similar conditions.

We conclude that our model provides a very good
description of those magnetoresistance observations to
which it is applicable, especially data for grooves (projec-
tions) of fractional depth (height) A extending completely
across a sample. For a sample of width L, and length be-
tween potential leads, L, the model predicts a dimension-
less Kohler slope for the linear magnetoresistance of

L
S=—2A.
A

This means that for L,~L, a single groove or projection
with A~1073 will produce S~10~3, which is comparable
to the smallest LMR reported in the literature for simple
metals such as aluminum. Surface defects thus are likely
to have played a significant role in many reported obser-
vations of linear magnetoresistance in simple metals.
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