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We derive new, simplified formulas for the scattering of l =1 spherical waves from central poten-
tials, as a basis for discussing curved-wave-front corrections to single-scattering plane-wave models
for angle-resolved photoemission extended fine structure and extended x-ray-absorption fine struc-
ture. A differential form for the expansion pf the screened spherical wave replaces the usual
Gaunt-integral form to facilitate the summation over equivalent magnetic sublevels in the scattered
wave. Spherical-wave scattering factors are defined and interpreted as corrections to the plane-wave
scattering factor. We argue and demonstrate by example that the remarkable success of plane-wave
models does not result from reaching the spherical-wave asymptotic limit; instead, successive
partial-wave corrections cancel for backscattering at high energy. The new scattering formulas al-
low curved-wave-front numerical calculations to be performed with little more effort than with
plane-wave formulas.

I. INTRODUCTION

Understanding the motion of unbound electrons in
solids is an interesting problem with important implica-
tions for surface structure determination methods based
on electron scattering. The energy range from 20 to 200
eV has been studied extensively as a basis for the analysis
of low-energy electron diffraction (LEED) data more
recent work in the energy range 50—1000 eV has been in-
spired by the explosive growth in the number of extended
x-ray-absorption fine structure (EXAFS) measurements.
In the case of LEED, the incident electron plane wave is
simply described, but it excites every atom in the surface
region, leading to a complex scattering problem; in the
case of EXAFS only a single chemical element is excited
by the x-ray beam, but the entire x-ray absorption process
must be understood and the observed modulations corre-
spond to a special multiple-scattering event. Thus we
suggest that an even more recent technique, angle-
resolved photoemission extended fine structure
(ARPEFS), may be a more straightforward measurement
for further understanding of electron scattering in the
50—1000-eV range. ARPEFS measures partial cross-
section oscillations of photoelectrons: only electrons from
a single chemical element are measured and a 4' angular
integration is not necessary. This paper investigates one
aspect of the theory of electron scattering in solids, the
role of curved-wave corrections to the plane-wave single-
scattering of ( ls) photoelectrons.

A more practical motivation for this work is the in-
teresting discrepancy between ARPEFS measurements
and simple scattering theory results for the
c (2 X 2)S/Ni(100) system. Experimentally, a relatively
simple Fourier transform spectrum led to the conclusion
that only nearest-neighbor and backscattering non-
neighboring atoms contributed substantially to the ob-
served spectrum. In other words, the number of impor-
tant scattering atoms was small, permitting a simple inter-

pretation of the Fourier spectrum. This conclusion has
been recently challenged by Bullock, Fadley, and Orders
on the basis of single-scattering, plane-wave theoretical
calculations. They demonstrated that a great many ion
cores should contribute to the theoretical curve under
these and certain other approximations and hence no sim-
ple assignment of the Fourier peaks should be possible.
Unfortunately, the reproduction of the experimental oscil-
lations by these theoretical calculations is very poor, and
we are led to question the conclusions drawn from them.

To settle this issue, an improved theoretical calculation
capable of matching the measured curves within experi-
mental accuracy seems in order; if we know that the sum
of the calculated scattering events is correct, then we can
compare the relative intensity of these events with more
confidence. The plane-wave single-scattering calculations
may be improved by the following:

(i) a more accurate atomiclike photoemission wave
function (unscattered, direct wave);

(ii) curved-wave corrections;
(iii) multiple scattering;
(iv) improved elastic scattering phase shifts; and
(v) more accurate inelastic damping.

These improvements are somewhat entwined, but in this
paper we will concentrate on a single issue: When are
curved-wave (also called spherical-wave) corrections im-
portant?

We will examine only the simplest case of spherical-
wave scattering: single scattering of photoelectrons excit-
ed from a (ls) core level. We derive new formulas for
this scattering in Sec. II, applicable to both ARPEFS and
EXAFS experiments. These formulas facilitate a qualita-
tive discussion of curved-wave corrections which is
presented in Sec. III. In Sec. IV we evaluate individual
terms in these formulas for the example of a Ni atom po-
tential. Our discussion in Sec. V centers on possible gen-
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eralizations to higher angular momenta. Finally, we ad-
dress the impact our results might have on calculation of
extended fine structure.

II. CURVED-WAVE SCATTERING
OF I =1 PHOTOELECTRONS

Our scattering system consists of a photoemitting atom
and an array of nonoverlapping ion-core potentials.
Zeroth-order calculation of the photoemission partial
cross section would ignore the ion core array and only
consider the atomiclike photoabsorption. Corrections
caused by scattering from the ion-core potentials gives the
ARPEFS oscillations. Since we are only concerned with
the oscillations, the details of zeroth-order calculation are
not relevant: we need only know the zeroth-order wave
function. %'ith dipole selection rules, polarized light, a
( ls) core-level initial state, and complete metallic screen-
ing the zeroth-order wave function is proportional to

qo(r)=ih~(k&)Yio(r) .

Here h~(kr) is the spherical Hankel function of the first
kinds [we will omit the usual superscript (1) as in h~' (kr)
and we will not use spherical Hankel functions of the
second kind], Y~ (r) is the spherical harmonic evaluated
at the angles given by the unit vector r in the direction of
r, and k is the electron's wave number far from the pho-
toemitter. Notice that we have selected the polarization
vector of the light for our z axis to simplify the zeroth-
order wave-function description. The first-order correc-
tions to this wave function are generated by including
scattered waves emanating from each nearby ion core.
The partial-wave method for calculating these scattered
waves has three steps:

e'"'= g (2l+ 1)i'j~(kr)P&(cos8~),
1=0

to expand the photoelectron wave around the scattering
center:

1/2
3 ika co

Po(r) = cos8„+(2l +1)i'j~(kr')
4 "k, ,

&&Pi(cos8~ ) .

Here j~(kr) is the incoming spherical Bessel function,
P~(cos8) is the Legendre polynomial, and r'=r —a. The
scattering angle, 0„, is defined as the angle between the
propagation vector for the incident plane wave, ka, and
the outgoing wave direction r'.

To construct the scattered wave, we multiply each in-
coming partial wave by

T((k) = —,
' (e ' —1)=i(sin5()e (6)

where 6~(k) is the partial-wave phase shift. Summing the
new outgoing wave gives

1/2
3 e lka

cosO„
4~ "ikaP,(r') =

curvature with this approximation, we replace the Hankel
function by its asymptotic limit,

gka

i'h((ka) —.
ika

and apply the well known Bauer formula,

(i} expand the incident wave as aq angular momentum
series about the ion-core position;

(ii) multiply each partial wave in this series by a (com-
plex) scattering amplitude (which also shifts the wave
phase);

(iii) sum the nonzero partial waves to give the full scat-
tered wave.

It is the first step which distinguishes plane-wave from
spherical-wave scattering.

A. Plane waves

As a basis for our discussion of the curved-wave effects
we repeat the derivation of the plane-wave ARPEFS
model first presented by Lee, but following more closely
the method used by Lee and Pendry' in their derivation
of the EXAFS formula.

In a plane-wave approximation, the photoelectron
wave is represented near the scattering center by the value
of the wave at the center, times a plane wave:

1/2

go(r) =ih, (ka) (cos8„)e'"'-', (2)4~

max

X g (2l + 1)TI(k)i 'hl(kr')P((cos8„) .
I=O

The sum of l may be stopped at l „when all higher par-
tial waves have negligible amplitude,

I
T~(k)

I
-0,

I &/ „.At the angle-resolved detector, located along R,
we may replace the outgoing spherical waves by their
asymptotic limit. Then a scattering factor is defined by

max

f,R(k) = g (21 +1)T&(k)PI(cos8,R) (g)ik I

to give the scattered wave at the detector as
1/2

elk (
R—a

) etka

ikR ag, (R) =

qo(R) = 3
4~

' 1/2 kRel
COSO~R .

~kR
(10)

The factor exp(ik
I

R —a
I

) corrects for the different ori-
gin of the scattered wave and for

I

R
I

)& I
a

I

we have
I
R—a

I

—
I

R
I

—
I
a

I
cos8.R.

The direct wave at the detector is

where 0„is the angle between the electric vector c and the
bond vector a. Since we have already ignored wave-front

and we calculate the ARPEFS oscillations due to a single
atom as
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(4o+1tl. * fo+1t.
Wo4o

2
~ faR ~

COSOaa
cos[ka (1—cosO,R)+Q,R],a cos6 R

where f~(k) =
~
f~ ~

exp(i/~). This formula has been
used to analyze experimental ARPEFS data in Ref. 6.

B. Spherical waves

For spherical waves, the angular momentum expansion
in its usual form is much more complex:"

i 'hl(kr)P! (cosO)e'
m m—l 0 EB

a +ay ho(kr), (13)
az

is applied to the origin-shift addition theorem for ho(kr):

derived most readily from Nozawa's original paper'
which describes expansions of "Helmholt's solid harmon-
ics,"his term for the product of spherical Bessel functions
and spherical harmonics, which we will call "spherical
waves. " Nozawa demonstrated that the origin-shift addi-
tion theorem results when raising the operator for
Helmholtz's solid harmonics, '

lh 1(kr) Ylo(r) g Glol"m" 1 Jl"(k" ) Yl" "(r )
hp(kr) = g (21 + 1 )1 ljl('kr')1 hl(ka')Pl(cosO „)

l=0
(14)

Glol"m" g 4lri hl («)'Y!'m'(a
l', m'

X IYlo(k) Y!'m'(k) Yl*m-(k)dk,

(12)

where r'+a=r. This formula is the basis for Lee and
Pendry's curved-wave EXAFS formula. ' To make phys-
ical arguments about the nature of curved-wave correc-
tions to the plane-wave formula, we need a simpler form
for this expansion, which we will refer to as an origin-
shift addition theorem.

An alternative expansion for spherical waves may be
I

ih1(kr)P1(cosO) = —— ho(kr)
l 8
k Bz

(15)

and the origin-shift addition theorem becomes'

Here Pl '( ik 'BI—Bz) is the operator obtained by using
( —ik '8/Bz) as the argument of the mth derivative of
the Legendre polynomial of order l. As we shall see, this
differential form for the expansion eliminates the need for
magnetic quantum numbers for the outgoing scattered
wave and 1eaves explicit the angle dependence hidden
within Glml-m- above.

For our particular case the raising operator formula is

oo

ih1(kr)P1(cosO) = g (21 + 1)i jl-(kr')ho(ka)
l"=0

~dl" (ka)X d1(ka)P1(cosO„)dl (ka)Pl-(cosO, R ) —icosO„Pl-(cosO„)

cosO„—cosO«cosO~ BP! (Cos8„1
i —" "

d, -(ka)
ka a(cosO., )

We have introduced dl (ka) to represent the polynomial
part of the spherical Hankel function:

ika
1' hp(«)= . dl («)=ho(«)dl («) . (17)

ika

Note that for large ka))l"(1"+1), dl-(ka)=1. 0, and
that dl(ka) may be calculated by recursion: dl+1
=dl 1 dl(21 + 1)lik—a

As before, the scattered wave may be calculated by
multiplying each incoming partial-wave amplitude by
Tl(k) to generate an outgoing partial wave; each outgoing
wave may be replaced by its asymptotic limit when the
amplitude is calculated at the detector, position R.

We invent a generalized scattering factor based on our
origin-shift formula as

d"dl-(ka) 8 Pl (cosO,R)am, ~ 21 +1 T

(18)

and the scattered wave is then

— g,(R)=
1/2

eik ~

R—a
~

eika

ikR a

X d1(ka)(cosO„)f,R —i (cosO„)f,'R

faR(cosOaR —cosO«cosOaR)
L 01

ka
(19)

If we label the factor within the large parentheses
E,ph

——~E
~
exp(iP, ph), we parallel the plane-wave con-

struction of X(k) to find

X(k)=2 cos[ka(1 —cosO,R)+p,ph] ./
Fsph /

a cosO, R
(20)

Clearly, mph determines both the amplitude and phase of
the oscillations we will measure. As ka becomes large,
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p ~fakcos8« (21)

Thus by studying F,ph compared to f,~cos8«we can
learn when curved wave corrections will influence the sin-
gle scattering of photoelectrons.

An alternative derivation for this formula is outlined in

the factors f,'R and f,R(ka) fall to zero, d~(ka) becomes
1.0, f,R tends to f,R, and we have

Appendix A.
The same method may also be applied to calculation of

oscillations in the total absorption cross section, the ex-
tended x-ray absorption fine structure (EXAFS). Here the
scattered wave must be projected back onto the direct
wave at the absorbing atom: the oscillations are an in-
terference at the photoemitter. The derivation for (ls)
core levels and polarized light is given in Appendix B. If
we call

2IRxI
Mp~(ka)E, h ——. g '(2l" +1)TI-(k)(—1)' cos 8„d)(ka)d(-(ka) i—

ik I =p B(ka)
d~ (ka)

s~n ca
ka

l(l+1)
2

(22)

then we compare E,ph to cos 8„f,R(~) to examine
curved-wave corrections for EXAFS.

We might proceed directly to numerical applications of
these formulas, but the qualitative success of the plane-
wave approximation suggests that some insight into elec-
tron scattering may be gained by examining the individual
terms in these spherical-wave formulas compared to re-
sults from a plane-wave model. We take up this topic in
the next section.

III. NATURE OF THE CURVED-WAVE
CORRECTIONS

dt(ka) = 1 — + . . —1.0 .l(l+1)
2ika

(23)

Thus we must first discuss the size of l(l+1)/(2ika).
Notice that the angular momentum in this formula is the

In this section we examine the formulas derived in the
preceding section for the exact single scattering of l =1
spherical waves. We know that the plane-wave scattering
model is substantially correct so we concentrate on differ-
ences caused by allowing for wave-front curvature. We
begin this section with a brief examination of the
mathematical reduction of the spherical-wave formulas to
their plane-wave limit. This provides one method for
studying curved-wave effects, but to be more specific we
might inquire about the importance of the fundamental
spherical nature of the waves which is independent of an-
gular momentum embodied in exp(ikr)/ikr ompared
to additional curved-wave corrections due to the particu-
lar incident angular momentum. We will demonstrate
that each term in the differential form, Eq. (19), corre-
sponds to specific curved-wave corrections. The first
term gives the basic correction common to all angular mo-
menta, the second term corrects for additional radial
structure specific to the incident angular momentum,
while the third term corresponds to additional angular
character specific to angular momentum.

Our curved-wave formulas approach the plane-wave re-
sults whenever the spherical Hankel functions can be re-
placed by their asymptotic limits [Eq. (3)]. In our nota-
tion this is equivalent to replacing the polynomial part of
the spherical Hankel function, d~(ka) by 1.0 in our for-
mulas:

scattered-wave angular momentum, not the dipole selec-
tion rule momentum from the photoabsorption.

The contribution of each partial wave to the final scat-
tered wave is dictated by the partial-wave amplitude [Eq.
(6)]. For every wave number, k, there will be some angu-
lar momentum l „beyond which all partial-wave ampli-
tudes may be neglected. With some criterion for this cut-
off we can define an equivalent range, rp, for the scatter-
ing potential:

l,„(l,„+1)—(kro) (24)

In other words, the largest significant partial wave climbs
in proportion to k. The asymptotic criterion then reads

kI p 7 p
(25)

1 ~p

2 a
(26)

0
We expect ro' to be =1 A and for ja~ equal to the
nearest-neighbor distance, ro/2a=0. 2. Under these as-
sumptions the curved-wave effects are not too small; we
turn to study the curved-wave formulas for ARPEFS and
EXAFS.

For photoelectric scattering we have

E,ph
——d

& (ka)(cos8«)f~ —i (cos8„)f,'R
p] cosO~R cosO~~cosO~R

&f'.R—
ka

The first term,

(27)

for the last significant partial wave. By this analysis we
conclude that the spherical Hankel function can be re-
placed by its limit only for large a »ro; higher energy ac-
tually leads us away from the limit. Of course, as the
number of partial waves increases, the impact of the larg-
est angular momentum on the value of the scattering fac-
tor decreases. To properly assess this effect we should
consider in detail the weight of each partial wave, but for
a crude estimate assume equal weights. Then the contri-
bution of the largest angular momentum decreases rough-
ly like (1/1,„), giving an asymptotic criterion for the
sum as
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d1(ka)(cosH„ )f,R
—— 1+

ka

cosO„
ik

—i(cosH„ )f,'R =
—l cosI9~~

ik

max

X g (2l +1)TI(k)dI(ka)PI(COSH, R)
1=0

(28)

max ad, (ka)
X g (2l +1)T,(k)

1=0

XPI (cosH~R), (29)

is the only one which survives in the asymptotic limit,
ka » l(i+1). By examining the origin-shift addition
theorem for ho(kr) [Eq. (14)] we can show that this first
term corresponds to the single scattering of an l =0 wave
(the f,R factor) multiplied by the l =1 wave components
[the dI(ka)cosH„part]. The scattering factor f,R differs
from the plane-wave counterpart f,R only by including a
weighting on partial waves, dI(ka), dependent on ka.
Since

ho(ka) =exp(ika)/ika,

we can see that this weighting corrects the plane-wave
scattering factor for the variation in the spherical wave
over the finite size of the ion-core potential due to
(1/ika).

The second term,

contains the derivative of the polynomial part of the
spherical Hankel function. The expansion of d1 in Eq.
(23) gives the leading term in the derivative as

BdI(ka) 1 l(l + 1)
B(ka) ika 2ika

(30)

Since ka —10 in the ARPEFS energy range we can antici-
pate this spherical-wave correction being much smaller
than the difference between f,R and f,R. the factor
l(l+1)/2ika represents the leading correction to the
plane wave form and f,R is smaller by 1/ka. This term
is literally the radial variation of f,R.. It corrects the s-

- wave origin shift, given by f,R, for the variation in
h1(ka) over the potential not already contained in f,R.

The third term,

(cosHqR —cosHq~cosH~R) ™x aP, (COSH.„)
(cosH, R —cosH„cosHgR)f gR

———I' . y (2l +1)TI(k)dI(ka)ca a a (ka) ik) B COSH~R
(31)

contains both an unusual angular factor and a derivative
with respect to coso,R. This term accounts for the varia-
tion in the spherical-wave amplitude laterally across the
width of the potential. We can use spherical trigonometry
to rewrite this term in an instructive fashion. If we place
three unit vectors in the directions of c, the polarization
vector R, the emission vector, and a, the bond vector, at a
common origin, then the vector tips will define a spherical
triangle on a unit sphere with sides O,R, 0„,and O,R. Ob-

serving this triangle along the vector a we see that

cosH, R —cosH„cosH, R
——sinH„sinH, RcosP„R, (32)

where Q„R is the dihedral angle between E and R through
a. Since the associated Legendre polynomials are defined

d PI(COSH)
PI (cosH)=sin 9,0&m &l, (33)

d (cosH)

we can write

(cosHER —cosHE~cosH~) OI slnHq~cosH~~R PI'(COSH, R )f,R
—— . (2l +1)TI(k)dI(ka)

ka I=o Eka
(34)

Thus this correction to the plane-wave form reaches its
maximum when the scattering potential is located in the
nodal plane (cos9„=0;sin9„=1) of the outgoing spheri-
cal wave. The maximum size of PI'(COSH, R) is (l+1)/2
but all of the partial waves do not reach this maximum
for the same angle. Nevertheless we can roughly say that
this third term will peak near O,R-20, giving a curved-
wave correction approximately r0/2a smaller than the
first term. .

To recap our assignment of the terms in the differential
spherical-wave formula to specific curved-wave correc-
tions, we associate the first term (containing f,R ) with the
fundamental, angular-momentum-independent nature of
the incident wave, the second term (containing f,'R ) with
radial corrections dependent on angular momentum, and

the third term (containing f,R) with angular corrections
dependent on angular momentum. From this assignment,
we can expect significant curved-wave corrections to the
single-scattering ARPEFS formula when .the following
occurs:

(i) the scattering potential is near a node in the incident
wave angular distribution;

(ii) the scattering angle is near 0' (forward scattering);

(iii) the scattering factor is near resonance.

We now consider these cases in more detail.
When the center of a scattering potential lies in a nodal

surface of the incident wave, the plane-wave model, Eq.
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(11), predicts no scattering. For 1 =1 incident waves, this
geometry means I9„=90' and cos0„=0'. Thus only the
third term of the differential formula is nonzero and thus
this third term represents the entire curved-wave correc-
tion for this geometry. It is interesting to note that the
usual experimental geometries for ARPEFS prevent this
third term from producing its maximum effect. To max-
imize the measured photocurrent, the electron detector in
the direction R is usually placed nearly parallel to
a (8,~-0'). If an atom has 8„-90' so that sin8„-1,
then the scattering angle, O,z, must also be -90' for the
scattered wave to enter the detector: for this experimental
geometry the condition (8„-90,8,~-20') will never be
satisfied.

Just the opposite must be true for the unusual experi-
mental geometry adopted by Sinkovic et al. in a recent
azimuthal photoelectron diffraction experiment. ' They
selected 0,~——72 and measured electrons emitted 10'
from the surface; many of the important forward scatter-
ing atoms would have sin8„& 0.5, cosP„~——1, and
0~-20'. Thus their observation that plane-wave calcula-
tions gave poor agreement with experiment may reflect
the neglected variation in wave amplitude across the
scattering potential rather than multiple-scattering effects.

When the scattering angle is near 0' we can get large
curved-wave corrections strictly from the difference be-
tween the first term containing f,R and the plane-wave
limit. To demonstrate this we expand d~(ka) according to
Eq. (23), and subtract the asymptotic plane-wave part:

max

(f~ —f,"R"')= . Q(21+1)T((k)
tk) 2ika

X+((cos8 ~) . (35)

The maximum difference will occur for forward scatter-
ing since P~(1)=1 and all the partial-wave corrections
add up. Conversely the minimum curved-wave correc-
tions should be expected for backscattering since
P~( —1)=(—1)' and successive partial waves tend to can-
cel. This overall description should be most accurate for
higher energies where the partial-wave amplitudes, T~(k),
have little structure.

When the full-scattering factor approaches zero near a
generalized Ramsauer-Townsend resonance' we can ex-
pect the third case for large curved-wave corrections. For
special values of electron wave vector, k, and scattering
angle, 0,~, the partial-wave sum will be zero due to exact
cancellation of all partial-wave components. The particu-
lar pair of values (k, 8,~) at which the scattering factor
becomes zero will differ between the plane-wave and
spherical-wave models as they weight the individual par-
tial waves differently. Thus analysis of scattering reso-
nance data with a plane-wave model will give incorrect
scattering angles and the observed resonance energy posi-
tion will not be correctly given by plane-wave calcula-
tions. While the first two circumstances leading curved-
wave effects discussed above involve only one or another
of the terms in the formula, the resonance calculation will
depend in detail on all three terms.

Curved-wave corrections to the EXAFS formula are
directly analogous to the corrections for photoelectron
diffraction. Since the "detector" for EXAFS is the pho-
toemitting atom, the curved-wave effects are squared: our
detector is not asymptotically far from the scattering
atom. The first term of the spherical-wave scattering fac-
tor

g max

g (2i + 1)T((k)( —1)'
ik

2
Bd((ka)

X d, (ka)d((ka) i—
8 ka

(36)

has the same angular dependence as the plane-wave
model. This term contains both the basic radial correc-
tion for I /i ka the —first factor inside the large
parentheses —and the radial derivative correction. As dis-
cussed above, the radial derivative factor is usually much
smaller than the s-wave origin-shift.

The second term of the EXAFS spherical-wave ampli-
tude factor has the opposite angular dependence compared
to a plane-wave model:

r 2
Sjn2g max dI(ka)g (2i + 1)Tl(k)( —1)'

ik ka
1 (1+1)

2
(37)

This term corrects for variation in the incident wave am-
plitude across the potential, primarily due to the node in
the p-wave angular distribution. Thus for atoms along
the nodal plane perpendicular to the electric vector, this
term represents the error made by neglecting the angular
structure in the photoelectron wave.

Typically EXAFS analysis is not concerned with rela-
tive scattering amplitude of individual atoms. Most of
the measurable signal comes from nearest-neighbor atoms,
all of which contribute oscillations of the same frequency.
The overall EXAFS amplitude is not simply given by the
magnitude of the scattering amplitude' ' and hence the
spherical-wave corrections to the magnitude are of little
consequence. Rather it is the phase of the scattering fac-
tor that is central to the EXAFS analysis and high pre-
cision should require spherical-wave correction; the
weight of the individual partial waves in the scattering
factor sum will otherwise be incorrect. Of course, practi-
cal EXAFS analysis does not rely on the accuracy of the
theoretical factor: empirical phase shifts are nearly al-
ways derived from known model compounds.

An important EXAFS technique which does rely on
relative scattering amplitudes is the polarization depen-
dence employed to determine structures on surfaces.
Here the overall amplitude for nearest neighbors is mea-
sured for several orientations of the polarization vector
with respect to the crystalline sample axis. The results are
usually fitted to the angular distribution predicted by a
plane-wave model —cos 0„—and ignores spherical-wave
effects. We would expect the largest curved-wave correc-
tion when ka is small, i.e., low Z elements having short
bond lengths and in the lower-energy region, and when we
need accurate angular distribution calculations for small
cos 0~~.

Looking back at the EXAFS formula we also find some
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insight into the success of the plane-wave model. The
leading correction to the plane-wave amplitude is

T

E, hsph fplane(

cos 0„

9
X10

Ni atom, k=5A.

—0.09

0.06

g (21 + 1)TI(k)( —1)' (38)

This term is just twice the correction for backscattering
ARPEFS, and, as we argued above, the successive terms
tend to cancel.

3
- 0 g

0-

0.03

IV. CURVED-WAVE CORRECTIONS
TO THE SCATTERING' FROM Ni ATOMS

0.03 0.00
Now we turn to some specific examples of curved-wave

effects in the scattering of electrons from Ni atoms. We
will begin by examining the angle dependence of the
scattering factors at 5 A ' (95 eV) and at 10 A ' (381
eV), followed by their k and r dependences. For each case
we will compare f,R to the plane-wave limit, f,R. As the
last example we calculate the effect of curved-wave
corrections to the polarization dependence in surface
EXAFS. In all these examples we take

~

a
~

=2.23 A.
Figure 1 compares the amplitudes of f,R and f,R for

scattering angles from 0 to 180' at a wave number of
5 A ' [see Eq. (28)]. The general trend confirms our
qualitative discussion in the preceding section: the largest
corrections are in the forward-scattering directions. Fig-
ure 2 gives the amplitude of f,'R [Eq. (29)]; note the
dramatic reduction in magnitude. The angular structure
off,'R is rather similar to f,R.

The angular spherical wave correction, Eq. (31), is plot-
ted in Fig. 3 as

~

sinO, R f,R ~

to emphasize the fact that
this correction is zero for forward (H,R

——0') and exactly
backscattering (O,R ——180'). The overall scale is 20%%uo of

Ni atom, k=GA.
I f

FIG. 2. Radial derivative scattering factor amplitude,
~ f,'a ~

in A for Ni atom potential at k=5 A ' (95 eV). Format
described in Fig. 1. Note the scale of this figure is» th of Fig.
1.

the scale in Fig. 7, but recall that two additional angle
factors, sin9„and cosg«R, reduce this correction unless
the scattering geometry is special.

We have constructed Figs. 4, 5, and 6 to parallel Figs.
1, 2, and 3, respectively, except k =10 A ' for these new
figures. All three comparisons demonstrate that the
curved-wave corrections are not much smaller at this
higher energy, but the cancellation of successive angular
momenta due to P~(cos8) =(—1) is much more effective.
Thus all the large scattering angle (0&90') amplitudes are
quite accurate (5%) in the plane-wave model, while the
amplitude for scattering through 32' is too high by more
than a factor of 2.

We can also compare the scattering factor phase by
plotting the argument of the complex ratio f,R/+, R,
i.e., their phase difference, as in Fig. 7. For k=5 A
the phase difference is roughly +0.5 rad; note that the
two angles where the'phase difference is not near +0.5

1.8-

1.2-

—1.8

1.2
0.36-

Ni atom, k=SA.
I I - 0.36

—0.24

0.6-
O g

0.6
0 4

0.12- 0.12

0.6 0.0

40 80 120 160
Scattering Angle

(degrees) 40 80 120 160
Scattering Angle

(degrees)
0

FIG. 1. Scattering factor amplitude in A for Ni atom poten-
tial at k =5 A ' (95 eV). Solid line is

~ f~ ~, the I =0
spherical-wave scattering factor; dashed line, plane-wave limit
2ka»l(l+1}. Right-hand panel gives Cartesian plots of fac-
tor magnitude versus scattering angle, 0~ in degrees; left-hand
panel is a polar plot with 0~——0' running up the figure.

0.12 0.00
FIG-. 3. Angular derivative scattering factor amplitude

0

~ f~ ~

times sine of the scattering angle, 8,&, in A for Ni poten-
tial at k=5 A ' (95 eV). Format described in Fig. 1. This
scattering factor cannot contribute in near forward or near
backscattering directions.
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1.8-
I

Ni atom, k=10K
lI I I

l
l

—1.8 0.36-
Ni atom, k=10+ '

I I I - 0.36

1.2- —1.2 0.24- - 0.24

0.6-

0.0- I I

40 80 120 160
Scat tering Angle

(degrees)

0.6 0.12-
C4

0.00-

0.12 0.00

40 80 120 160
Scat tering Angle

(degrees)

- 0.12

0.6
FIG. 4. Identical to Fig. 1, except k=10 A ' (381 eV).

Note the improved accuracy of the plane-wave limit for back-
scattering angles. The figure has the same scale as Fig. 1 to em-

phasize backscattering angles.

rad correspond to scattering angles with small scattering
amplitudes, see Fig. 1. The curve for k=, 10 A ' has the
same behavior although the shift is about half as large.

The k dependence of these scattering factors is illustrat-
ed for OR ——173' in Fig. 8, OR ——0 in Fig. 9, and
O,R ——127' in Fig. 10. The backscattering geometry, Fig.
8, is the most important one for ARPEFS and, fortunate-
ly, the plane-wave model is rather accurate. As we noted
above, the angular curved-wave correction is eliminated
by sinO, &-0 for backscattering, and Fig. 8 shows that
f~ is very much smaller than f,R. Thus f,R by itself
characterizes the backscattering of l =1 waves. Notice
also that the plane-wave amplitude error approaches a
constant not equal to zero, for large k. This is explained
in the same manner as the EXAFS discussion in the
preceding section.

The greatest curved-wave corrections occur in the for-
ward directions; Fig. 9 gives the example of O,R

——O'. The
plane-wave amplitude is roughly 0.2 A too small over
the entire range in k. Without the alternating sign of

PI( —1) characteristic of backscattering, we see no ap-
proach to the plane-wave limit at large k. Again f,R is
very small, at least a factor of 20 below f,R,

' f,R cannot
contribute to forward scattering as long as O,R& —10.
The phase difference (not plotted) between f,R and f~~R"'

is -0.7 rad.
Finally, we consider scattering through 127, the posi-

tion of a generalized Ramsauer-Townsend resonance in
Ni. The resonance is a crossing of the origin in the com-
plex plane by the complete scattering factor. The reso-
nance position in energy and angle depends crucially on
the cancellation of many partial waves and hence cannot
be correctly predicted with a plane-wave calculation. Fig-
ure 10 displays the scattering factors for 8~ ——127'. The
factors

~ f,R ~

and f~R"'
~

are reasonably close except in
the resonance region near 8 A '. The angular curved-
wave correction is now significant, especially since it con-
spires with f,R to make the overall scattering amplitude

1.0
Ni at, orn

I I

FICx. 6. Identical to Fig. 3, except for k=10 A ' (381 eV).
Note that shift of the main peak to lower angles; its amplitude is
similar to the amplitude of the main peak at k =5 A ', but the
correction for backscattering is very much smaller now.

Ni atom, k=1QA ' hP hase angle

9
X10

- 0.09
(t5
W 0.5

3 sm

O g
g$

0- I
R

40 80 120 160
Scat tering Angle

(degrees)

- 0.06

—0.03

CC

0.0
hQ

05

I I I I

40 80 120 160
Scattering Angle (degrees)

0.03 0.00

FICJ. 5. Identical to Fig. 2 except for k = 10 A ' (381 eV).

FIG. 7. Difference in phase (in rad) between spherical 'and
plane-wave models versus scattering angle 0~ in degrees, for

0
scattering from Ni atom potentials at k =5 A
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1.0
Ni Atom, 8,R=173
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Ni Atom, 8,R= 127
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FIG. 8. Scattering factor amplitudes in A versus electron
0

wave number (A ') for near backscattering (0~——173') from
Ni atom potentials. Solid-line, basic spherical scattering factor
f~,' circles, plane-wave limit scattering factor f~; triangles, ra-
dial derivative scattering factor fg. The plane-wave factor is
rather close to the spherical wave f a and the other spherical-
wave corrections are very small at all energies; notice also that
plane-wave error approaches a nonzero constant.

O

zero at k=7. 5 A '. (f,R has not been plotted; it is very
small for O,R ——127'.) The difference between exact
single-scattering and plane-wave calculations is more
dramatic in the phase of the scattering factor. Calcula-
tions done for values of ka corresponding to recent exper-
imental measurements' are shown in Fig. 11. The phase
jump at resonance is not correctly placed in angle or ener-

gy in the plane-wave limit.
To estimate the distance

~

a
~

beyond which we can

0

FIG. 10. Scattering factor amplitudes in A versus electron
0

wave number (A ') for scattering through 0~——127', the posi-
tion of a generalized Ramsauer-Townsend resonance. Solid line,
basic spherical-wave factor f~, circles, plane-wave limit f~"',
crosses, angular derivative f,R. The radial derivative is negligi-
ble at this angle for all energies.

safely use the plane-wave formula, we plot in Fig. 12 the
radius at which

~ f,R —f~R"'
~

&0.06 A, for two ener-
gies, k=5 A ' and k=10 A '. This criterion for the
allowable error in scattering factor was chosen to be
—10%%uo of the backscattering (O,R ——180') amplitude for
Ni. We see from this figure that plane-wave calculations
are never adequate by this criterion for forward scattering
at any energy or any practical radius. For angles greater
than 45', most scattering atoms within 10 A of the pho-
toemitter would require curved-wave corrections in the
lower-energy region, while perhaps only the nearest neigh-

Ni Atom, 8 =Q c(ZX2) S/Ni(100) —[100]
I I I 1 I

I I

8 10 12
Electron Wave number (A )

0

0
FIG. 9. Scattering factor amplitude in A versus electron

wave number (A ') for forward scattering (g~ ——0 ). Solid
line, basic spherical scattering factor f~,' circles, plane-wave
limit scattering factor f~, triangles, radial derivative scattering
factor f~. Note the nearly constant plane-wave error; the radi-
al derivative correction becomes almost 10% at low energies.

6 7 8 9 10 11
Wave number (A )

FIG. 11. Phase shifts for scattering from Ni. The dashed
line shows the phase-shift function PJ. calculated with plane-
wave theory for 0= 127 . The dotted line is the phase shift from
the experimental curve. The zero crossing jump in phase occurs
too high in wave number in the plane-wave limit. Solid lines are
curved-wave calculations of the phase shift function for the in-

dicated scattering angles.
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Ni atom
I I

tion dependence technique relies only on the assumption
that the oscillations are proportional to cos 8„, curved-
wave corrections to the calculated amplitude ratios are en-
tirely insignificant.

V. DISCUSSION

o 15-

0~ 10-

0.5
Ni Atom EXAFS

0.4
ISO

plane

0.3

0.2

0.1

0.0 I I

6 8 10 12
Electron Wave number (A )

FIG. 13. Scattering factors for (1s) EXAFS. Solid line is
f'", the curved-wave scattering amplitude defined by Eq. {Bl1).
Line with circles is the plane-wave limit which has a similar
shape to f"'. Line with triangles is f'", Eq. (B12) multiplied by
a factor of 50.

m 5-

65 I I I I

40 80 120 160
Scattering Angle (degrees)

FIG. 12. Radius for acceptable results from plane-wave cal-
0

culations versus bond angle for k =5 A ' (solid line) and
k=10 A ' (line with circles). The radii were selected so that
all distances greater than the plotted lines have

I f5 —f~~"'
I
«.06 A.

0

bors require these extra calculations for k = 10 A
To discuss an example calculation for the curved-wave

EXAFS formula, we adopt the second form for g(k)
given in Appendix B, E . (B13). Figure 13 compares f"'
to its asymptotic limit fg"'(~) and to f'". We see a close
analogy between f"' for EXAFS and f,R for ARPEFS,
but the curved-wave corrections are larger for EXAFS
(compare Fig. 8) since the "detector" is not asymptotically
far from the scattering atom. Once again the large k re-
gion approaches a nonzero constant plane-wave error.
Perhaps most interesting,

~

f'"
~

is seen to be nearly 2 or-
ders of magnitude smaller than

~

f"'~ in this energy
range. Thus, at least for Ni atoms, the standard EXAFS
formula with f"' replacing f~R"'(m. ) would give 1% accu-
rate curved-wave results. Furthermore, since the polariza-

We have derived new formulas and given examples for
the curved-wave scattering of l = 1 spherical waves.
What can we expect for more general spherical waves?
We offer some qualitative ideas in this section.

We envision two important cases: (i) photoabsorption
by p, d, and f core levels giving spherical waves with
higher angular momenta and magnetic sublevel occupa-
tions; and (ii) multiple scattering preceded either by pho-
toelectron scattering or plane-wave scattering typical for
the LEED experiment. Both of these problems can be ap-
proached by the method we use here for I = 1 waves.
That is, the origin-shift addition theorem summed over
magnetic sublevels can be differentiated to higher and
higher order. The resulting expressions will be formidable
so we will be content with estimates for now.

First we consider higher I waves populated by photo-
emission. For core orbital initial states with p, d, or f or-
bital angular momentum, two partial waves with l+1 will
be created. Each partial wave may be treated by the
method of Sec. II. We should always get a first term such
as di(ka) Yi (a)f,R, the amplitude of the I spherical wave
times the scattering factor for /=0 waves. This is the
only curved-wave factor which survives the asymptotic
limit and hence will always be the most important. Our
discussion for l =1 virtually ignores d1(ka) as being close
to 1.0, but for higher angular momenta this factor may be
important. Otherwise, this first term will follow the
trends discussed in the preceding section.

We should also always get curved-wave corrections due
to differences between the (1/ikr) dependence of ho(kr)
and the angular-momentum-dependent radial wave char-
acter through the potential region —corrections analogous
to f,'R. For higher angular momenta, the difference be-.
tween the radial character of the incident spherical wave
and the radial character of ho(ka) already included in the
first term will increase. We might conclude from our Ni
example calculations that these radial variations are negli-
gible for l =1 waves; for some higher I we will be forced
to include this term.

For all l, the radial variations should be less than the
angular variations simply because spherical waves (except
1 =0) have stronger angle dependence. Thus curved-wave
corrections analogous to f,R will be increasingly impor-
tant for higher angular momenta. These angular correc-
tions are always greatest near nodes in the incoming wave,
where the wave amplitude is changing most rapidly. The
nodal regions have the least amplitude and the finite ex-
tent of the potential is averaging opposite phase waves
across the nodal surface, smoothing out the nodal struc-
ture. Hence, on the average, even these angular correc-
tions will not be large. The phrase "on the average" is
connected with the additional angular vectors such as
sin8«sinO, RcosP„R which multiply the curved-wave an-

gular correction.
In addition to more significant curved-wave corrections
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of the same type as the l = j. wave, higher angular mo-
menta waves should also have corrections corresponding
to higher-order derivatives. Thus the second derivatives
of the incoming wave across the extent of the potential
will become important for some high l. Actual calcula-
tions are necessary to determine how important these
corrections will be.

This leads us to the second important case, multiple
scattering. While photoabsorption can populate only
dipole-allowed angular momenta, an outgoing scattered
wave contains all angular momenta up to l,„-kr0. To
apply the method of this paper to the exact multiple
scattering of spherical waves would —as a practical
matter —require automation of the derivative calculations,
a dubious improvement over the Gaunt-integral summa-
tion formula, Eq. (12). On the other hand, the outgoing
scattered wave is no more than a spherical wave with an
angular dependence and phase determined by scattering
rather than by photoabsorption. Thus, approximate mul-
tiple scattering could be calculated by starting with f,R
times the single-scattered wave amplitude at the second
scattering center and adding curved-wave corrections by
numerical differentiation of the single-scattered wave
function.

VI. CONCLUSION

To summarize our work we have accomplished the fol-
lowing:

(i) derived new curved-wave formulas for single scatter-
ing of (1s) core-level photoelectrons, appropriate for
ARPEFS and EXAFS experiments;

(ii) interpreted the individual scattering factors in this
formula as different types of curved-wave corrections, al-
lowing some guidelines to be devised to predict which
scattering problems require curved-wave formulas;

(iii) given some idea of the size of these factors for Ni
atom scattering; and

(iv) discussed the possible generalization to higher an-
gular momenta core levels.

The significance of these results is partly formal and
partly practical. The remarkable accuracy of the plane-
wave model has been widely recognized, ' ' but often at-

FIG. 14. Schematic semiclassical orbits for an attractive po-
tential. If the circle represents the effective radius of a screened
nuclear charge, then particles with large impact parameters will
sample only the weak outer region of the potential and scatter
through small (forward) angles. Particles with small impact pa-
rameters orbit the strong nuclear attraction and exit at large
(backscattering) angles. The connection to wave scattering is
made through b =l/k where b is the impact parameter: large l
partial waves contribute to forward scattering and small l waves
dominate for backscattering.

E

tributed to the asymptotic limit of the spherical wave.
Our new formulas more clearly demonstrate the origin of
this convenience: the improved cancellation of partial
waves at large k. Thus the accuracy of the plane-wave
model does not improve for large k in forward scattering
directions. , This point may also be made by a semiclassi-
cal argument. As Fig. 14 illustrates, forward scattering
corresponds to large classical impact parameters; back-
scattering corresponds to low impact parameters that or-
bit the strong attractive center region of the potential.
The wave-front curvature corrections are thus much
larger for forward scattering directions which sample the
extreme edges of the potential.

On the practical side, our new curved-wave formulas
are scarcely more complicated than the plane-wave ver-
sions. Some advantage may also be made of the different
angle dependences of each scattering factor, to minimize
numerical computations. Hopefully, our qualitative dis-
cussion and numerical example will serve as some guide to
estimate when curved-wave effects may be important. Fi-
nally, we have demonstrated that curved-wave EXAFS
calculations can be quite accurate with only a minor
modification of the plane-wave formula, a result which
extends the recent work of Schaich and of Gurman
et al. '4

Unfortunately, it is also clear from our results that
curved-wave effects cannot explain the difference between
ARPEFS experiments and the single-scattering plane-
wave calculations of Bullock, Fadley, and Orders. The
curved-wave corrections are typically -20%%uo and only
that large in the forward directions. Thus while we have
reduced the computational barrier to using curved-wave
calculation for ARPEFS, we can also conclude that the
major discrepancies between theory and experiment are
not due to curved-wave corrections at least for single
backscattering.

We can characterize the disagreement between model
calculations and ARPEFS measurements by noting that
scatterings from nearest neighbors and backscatterings
from non-nearest neighbors appear to be much more dom-
inant than predicted theoretically. Wave-front curvature
increases scattering for some angles, decreases it for oth-
ers, and generally has less effect for backscattering.
Therefore, while curved-wave formulas may be important
for accurate calculation, there are larger errors elsewhere
in the theory. Multiple scattering must be part of the
answer: as Fig. 4 illustrates, forward scattering is large in
the ARPEFS energy range and should not be neglected.
Our results here predict that this forward scattering can-
not be calculated within the plane-wave formulation.
There may also be errors in the inelastic scattering and
thermal averaging. We must investigate these questions
in further work.
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APPENDIX A: ALTERNATE DERIVATION FOR DIFFERENTIAL FORM
OF ORIGIN-SHIFT ADDITION THEOREM

We may arrive at the results of Sec. II by an entirely different route. We will use a series of well-known formulas con-
veniently tabulated in Pendry, ' his Appendix A.

We begin with the origin-shift addition theorem for ( I,m) =(1,0), Eq. (12). Using the definition of Yip and the recur-
SiOn relatiOn far Ylm, We find

I'
Glpl ,m", "4'g ' I hl'(ka) Y!m '(a')

l', m'

3+

0 A.

Yl (K)Yl-+ i (K)d QK

1/2
0

AI Yl (K)Yl 1 -(K)dQK (Al)

In other words, since Yip is proportional to cos(9), the product Yip Yl*» becomes the recursion relation for Yl ~ -. The
factor

(l+m)(l —m)
(2l + 1)(2l —1)

' 1/2

is related to the ratios of the normalizing coefficients of spherical harmonics. The remaining integrals in 6ip I- are
the orthonormality conditions for spherical harmonics:

YI' '(K) Yl"+1 m" (K)d+K ~l' I"+1~

and the sum on 1',m' simplifies to
1/2

3 0 ~ I"+ 1 0 Ill A
Gip, l"m" 41r[~l+1, -I —hl +1(ka) Yl"+ i, m "(a)+41", m "I hl i(—ka~ ) Yl i, m""—(a)]m

(A3)

(A4)
L

The factor inside the square brackets is the result of a differential operation on i' hl-(ka) Yl*' ~ . Rewriting Nozawa's'
Eq. (3.8) in terms of normalized spherical harmonics shows that

4—l o 0 0 .~!! 1 A

k Bz
i hl (ka) Yl m-(a) =[~I-+1 m-I "I-+1(ka)Yl +1 m(a)+A! I- h-l- 1(ka) Yl i, m" (a)1 .

Thus
' 1/2

tor, the dipole selection rules reduce Schaich's Eq. (3) for
the x-ray-absorption coefficient to

610l"m"
g )fc

4m. —— i hl (ka)YI (a)
k az p, =A 41m[M 01(i

++I�)

] . (Bl)

1 8 1 8 sin8„
ka BO„

1 3 cos0,R —coso„cosO,R=cosO„—"k Ba ka a(case

(A6) Our (i+Xi) corresponds to Schaich's Xii. We are in-
terested only in the oscillations, Xi,'we refer to Schaich
for the radial matrix elements Mpi and constants in A4.
Transcribing Schaich's Eq. (5) into our notation gives

Xi(k)= g g [e (i)GI ~ ip( —ka)( i)—l5)

a (~0) l",m"

i5)x Tl ( k )6 10!i m - (k a )( —I')e ]
(A7)

The addition theorem for spherical harmonics then leads
to the results in Eq. (19). We can avoid the derivative
operation altogether by applying the recursion formulas
for hl- and YI -, but this approach is tedious.

APPENDIX 8: APPLICATIQN TQ EXAFS

We apply the approach of Sec. II to the spherical-wave
single-scattering extended x-ray absorption fine structure.
Schaich and Carman et aI. recently derived simpli-
fied, exact EXAFS formulas for cubic or polycrystalline
environments. Here we consider only ( ls) core-level exci-
tation and linearly polarized light, but we allow a general
environment. With the z axis along the polarization vec-

m"
Gl" "ip( —ka) =( —1) Gipl ( —ka) (B3)

This is a consequence of the conjugation property of
spherical harmonics.

With the differential forms for the origin-shift addition
theorem coefficients, we have

(B2)

i5
The factor e ' is the absorber atom phase shift which

cancels in the photoelectron diffraction experiment and
hence was dropped from the formulas of Sec. II.

To apply the differential form from Appendix A, note
that
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y, (k)= g . 3e
' 'g

Etta(~0) .

1 a
ik Bz'

g[4rti' ht-(ka')Yt -(a')( i—)TI (k)i h1 (ka)Y1*- -(a)j
~k az

(84)

The primes distinguish outgoing and backscattered waves until the derivatives are complete. The addition theorem for
spherical harmonics simplifies this expression, and we employ our separation of spherical waves into asymptotic
and polynomial parts to write

X&(k)= —g 3e 'g (2l+1), ho(ka')dI (ka') — ho(ka)dt(ka)Pt-(cosO )
2i 5'l 1 1 a

( 0) Ell ik Bz' ik Bz

where cosO«will ultimately be —1. The first derivative becomes

1 a cosO„BdI (ka)
ho(ka)d1 (ka)P~ (cosO ) =ho(ka) d~(ka)dt (ka)cosO«P~ (cosO )+ P) (cosO )

ik Bz ik B(a)

(85)

(cosO„—cosO„cosO«) BPt(cosO«)
dI-(ka)

ika 8 cosO«)
(86)

The first term in this expression is a consequence of the derivative as a lifting operator. After the second derivative we
may set a'=a, P1(cosO ) =( —1)', and cosO„—cosO„cosO =0. ~e also need the value of de(x)/dx for x =( —1); it
is equal to ( —1)'+'l(l + 1)/2. Thus we have

e 2ika ] max Bdt(ka)
X)(k)= —g 3e '

2 . g (2l+1)TI(k)( —1)' cos O„d)(ka)dt(ka) i-
a(+0) ka Lk

E p 8 ka

[d (ka))21(i+1)
(ka)

(87)

This form most clearly displays the origin of the curved-
wave corrections, but to compare to the work of Schaich,
note that

)

IRX
f'"(rr)= . g (2l+1)T((k)( —1)'

ikE

l+1 2 l
X E+$+ (811)

Bd1(ka) l=d1 &(ka) dI(ka) . d—~(ka)—
ik B(a) ika

(Bg)

which —together with the recursion relation for d1(ka)—
shows that

1 Bd~(ka) l+1 . l
d&(ka)d&(ka)+ . = dr+)+ik 8 a 2l+1 2l+1

(89)

f'"(vr)= g (2l+1)Tt(k)( —1)I dt (ka)
k, ,

(812)
to write

e 2lkQ

g(k)=Im —g 3
2

e ' (f" +f'")cos 8„, (~0) ka

an

sin Oq~
2

(813)

l+1 l
+1 1+i 2l+1 E —1

2

l +1 2 l 2 l(l +1)
2l 1

d1 + ) +
2l + 1

d1 ) +
k ~ dt . (810)

Then we can define

The square of this factor may be reduced with the help of
the square of the recursion relation for dE to give

In an isotropic or cubic environment, 2cos O„=sin 0„
and the anisotropic scattering factor cancels out to give
the same formula derived by Schaich and by Gurman
et al. Notice that our result demonstrates that the sim-
plification achieved by these authors is not a consequence
of symmetry —the general formula is scarcely more com-
plicated than the high symmetry version —but rather is a
result of summing over the equivalent magnetic sublevels
of the scattered wave.
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