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Phase diagrams of the random-field Potts model in three dimensions
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We develop and perform 1/q expansions for the q-state Potts model in a random field. The expansion
parameter is z = 1/q'~3 in three dimensions, and we calculate to O(z'2) using the Pade method for resum-

mation. A phase diagram is constructed and a transition into an ordered state is found. For q ~ 3 the
transition is of first order, and for q =2 (Ising model) we find the location of the tricritical point.

Much attention has been given recently to the properties
of the random-field Ising model (RFIM). Interest has been
high both from the theoretical and experimental points of
view. ' From the theoretical side one would like to be able
to calculate the critical behavior and the' lower critical
dimension of this model. Field-theoretic arguments based
on perturbation theory and ~ expansion about six dimen-
sions, supported by arguments based on supersymmetry
predicted a reduction in the effective dimensionality of the
RFIM by two, as a result of the quenched random field.
Hence, pushing the arguments to their extreme the lower
critical dimension dI of the RFIM ought to be three (since
dr= 1 for the pure system). On the other hand, a beautiful
intuitive domain argument by Imry and Ma4 predicted
dI=2. Support for the validity of the latter argument has
been accumulated in recent years, ' and possible flaws of the
field-theoretical arguments were pointed out. Recently, a
proof has been given to the existence of ferromagnetic
long-range order in the model at d = 3 and zero temperature
( T = 0).7 This proof, if extended to finite T will determine
dI conclusively. Various Monte Carlo calculations also sup-
port the assertion of dI = 2. Several high-temperature
series analyses of the susceptibility have also been per-
formed recently. ' From an experimental point of view,
realizations of the RFIM occur as diluted antiferromagnets
in a constant field, " or possibly as gel solutions in binary
mixtures. ' In the experiments dj seems to be above three,
but a very plausible explanation for these results has been
proposed recently. '3 The claim is that as a result of strong
pinning of the interfaces by the random field, as one
quenches the temperature from above, it takes the system
an extremely long time to display long-range order. Thus,
Villain' distinguishes between the "dynamical" lower criti-
cal dimension (LCD), which is four, and the static LCD,
which is two.

Recently, there has also been interest in the random-field
Potts model (RFPM). '~" In this model each spin variable
can take q values. For q=2 the RFPM coincides with the
RFIM. The phase diagram of the RFPM has been calculat-
ed in mean-field theory and the transition is found to be of
first order for all q ~ 3 ~ Fluctuations in the real model are
capable of modifying the order of the transition, and it has
been conjectured'4 that in low dimensions q, (the value
below which the transition is of second order) is larger for
the RFPM compared to a pure Potts model. Thus it was
speculated that in three dimensions for some range of the
random field, the transition for q =3 is of second order. As
will be discussed below, our results do not support this con- e R= 1+q~f with b=0 (4)

jecture.
In this work we extend the technique of the 1/q expan-

sion in the Lagrangian fomulation to the RFPM. The
Lagrangian 1/q expansion has been developed by Ginsparg,
Goldschmidt, and Zuber' and extended by one of us to the
Potts model in an applied field. " The Hamiltonian 1/q ex-
pansion developed by Kogut' is not directly applicable to
the RFPM since the field is random along all dimensions,
including the "time. " The 1/q method has been shown to
yield accurate phase diagrams and is very precise in deter-
mining the latent heat across the transition and in evaluat-
ing q, .' ' The expansion parameter in the Lagrangian ver-
sion is z = I/q'~d in d dimensions, and in particular z = q
in three dimensions. One has to scale properly the tempera-
ture and the random field with q in order to achieve a well-
behaved 1/q expansion, i.e. , that a finite number of dia-
grams contribute at each order in z.

The effective Hamiltonian describing the RFPM is given
by

P~=~=P—J s~, ~,. +hR $s~. .. (1)
(v I

where p=1/kT and hR=pHR, where HR is the magnitude
of the random field. In (1) A. ; and r; are (complex) qth or-
der roots of unity at site i. The A. 's represent the spin vari-
ables and ~; are the random-field variables. 5 is a Kroneck-
er delta function and the sum (ji) runs over nearest neigh-
bors. J is the nearest-neighbor coupling which we will set
equal to one. Equation (1) corresponds to a discrete RF
distribution. The case of a flat distribution will be discussed
briefly below. The free energy of the RFPM is given by

—P +(P, h R ) = —P —g ln Q —g exp ( —PP ), (2)1 1 1

~ sites q q sites q A. .
I I

where 5 is the number of sites. The average over the ran-
dom field (RF) is taken at the end since it is a quenched
disorder. As mentioned above, it is necessary for the large

q expansion to scale the coupling coristants with q. Thus we
introduce rescaled temperature and RF variables u and f.
In Refs. 16 and 17 it was shown that the correct scaling of
the temperature for the pure model is

eR=1+ qt~4

where v is a parameter of order unity and d is the number
of spatial dimensions. As we argue below, the correct scal-
ing of the RF is

32 1876 1985 The American Physical Society



32 PHASE DIAGRAMS OF THE RANDOM-FIELD FOTTS MODEL. . . 1877

i.e. , there is no q dependence here and the parameter f is
defined only for convenience of the calculation. To see this
we describe the method of constructing the 1/q expansion.
The 1/q expansion consists of a rearrangement of the high-

and low-temperature series, respectively, to include terms to
a given order in z(=—q' ). Each order in z contains terms
to all orders in P and hR. In the high-temperature region
one writes Eq. (2) in the form

f r

—PF = —Q —gin (1 ~ q
—t~ —'&i+)s~(I+ q~ 'f)s Q— —gg I+& g Z, (Z,.)y,'(ZJ) g 1+& g y, (Z,.)y„'(,.)S sites q ~. sites q A, . (ij)

with

~= ""'- a= f"'
1+~z~-' ' 1+fqb

In Eq. (5) S is the number of sites and X„r=1, . . . ,q —1

are the nontrivial characters of Zq: X, (X) = X'. These char-
acters satisfy

—gy„(Z) x, (Z) =5, +. . . +, p (mod q)
1

and contributions to (5) can be described as closed graphs
on the lattice. Nonvanishing graphs containing RF contri-
butions must contain two or more vertices at the same site,
which occur after the logarithm in (5) is performed. An ex-
ample for such a graph is depicted in Fig. 1. This graph has
a weight proportional to (q —1)(AB')2—q' for large q,
with s=4b —~. More generally, if considering a graph
with L links, S sites, and Sq field vertices, and this graph
occurs k times at the same location, its contribution is of or-
der q' with

s = k (L~/d + bSI, —S ) —Sl, + 1

In the case Sq = 5 and for large diagrams satisfying
L —dS we find s= (kb —1)S +1 so one must choose
b & 1/k in order to tame the q dependence of large graphs.
Since k is arbitrary we must choose b = 0.

To construct the 1/q expansion for the free energy at low
temperatures we expand about a ferromagnetic ground state
for which all A. ; = 1. The existence of a ferromagnetic
ground state is justified a posteriori by the fact that we find
(in d = 3) that for certain range of temperature and random
field the free energy of this state is lower than the free en-
ergy of the paramagnetic phase as computed from Eq. (5).
The ferromagnetic region is stable as we include higher and
higher orders in the 1/q expansion and perform a Pade
analysis. This finding is in agreement with the current be-
lief, discussed at the outset, that d=3 is above the lower
critical dimension of the RFPM.

Corrections to the free energy come from perturbing the
state with all A. ; =1 with more and more spin flips. The dia-
grams consist of flipped spins at certain sites together with
frustrated links attached to these sites. Special care must be
given to "excluded volume" diagrams because of the
quenching procedure. The free energy in the ferromagnetic
region is given by

PFtt= —Q —g—ln s exp PSd+ hg g 5, , t 1+ g —g exp PL + h g (5—„, , —&, , )
1 1 1 1

~ sites q (G je IG) q ~j~t j~ {G)
J

(9)

where (G} is the set of points belonging to the graph G.
When calculating Ft and Ftt from Eqs. (5) and (9) we

substitute expressions (3) and (4) for P and then collect
terms in powers of z. Wc have calculated I'~ and Fg ln
three dimensions for a simple cubic lattice up to order
z'~( =1/q4). Up to this order random-field contributions to
Ft enter only through the term ln(1+z3f) =z3f+
since the lowest-order RF diagram contributing to Ft (Fig.
1) occurs only at 0 (z"). The RF contribution to Fu starts
at O(z3), and in this case all diagrams contain RF depen-
dence. The phase boundary is obtained by equating the
values of FI and F~l, and the latent heat is obtained by tak-

M'

0

0

V'

FIG. l. A free-energy diagram contributing to FI, consisting of
one link and two RF sites (denoted by & ), each repeating itself at
ihe same site.

I

ing the derivative with respect to temperature of the differ-
ence F~ —F~~ at the phase boundary. For q =~ the phase
boundary is a straight line of constant T = T, (q = ~) in the
Hs-T plane. However, when 1/q corrections are incorporat-
ed and a Pade analysis is performed the following things
happen.

(1) The transition temperature T, is shifted from i.s
q = ~ value and it becomes also dependent on the RF
strength. More specifically, thc phase boundary curves to-
wards low temperatures as H~ increases.

(2) The latent heat across the transition is reduced com-
pared with q = ~ and for q = 2 and weak RF the transition
becomes second order.

(3) The latent heat across the transition is a slightly in
creasing function of H~ starting from 0& =0 with a tenden-
cy to increase more rapidly for higher values of H~. For
q = 3 and higher, the transition is always first order in the
range of HR for which our analysis is valid (see below), and
there is no apparent tendency for the latent heat to decrease
beyond that range. For q=2 there is a tricritical point in
the Hz-T plane. A tricritica1 point has been predicted in
mean-field theory for the case of a discrete RF distribu-
tion, and our analysis indicates that such a point exists even
in the presence of fluctuations.

(4) We cannot obtain the whole FXz Tphase boundary-
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FIG. 2. (a) The phase boundary for the q =2 RFPM as obtained
from different Fade approximants and from mean-field theory. The
location of the tricritical point is indicated with crossbars (Ref. 21)
for different approximants and also indicated on the mean-field
curve. At this point the transition changes from second order for
weak RF to first order for stronger RF. (b) The phase boundary
for q = 3. (c) The phase boundary for q =6.

since f= exp(PH&) —1 cannot become too big, otherwise
the coefficients of the z expansion become too large and the
Pade analysis breaks down. It is thus expected, and verified
by comparing the agreement among different Pade approxi-
mants, that the expansion is valid up to a ~alue f—q,
which implies PHs —lnq. This means that the phase boun-
dary can be obtained only for T & cHR/Inq, c being some
constant. This is the area to the right of a diagonal line in
the H~-T plane. We practically determine the region of
validity by following the phase boundary till different ap-
proximants start to disperse.

We provide now some details of the analysis. The phase
boundary is given by an expression of the form
u= g/I;(f)z'. The coefficients 3; are determined by plug-

ging this series into F~ —F~~ and demanding that the result
vanishes order by order in z. We used an algebraic manipu-
lation program (REDUcE) to manipulate the series. The
coefficients A;(f) include terms to all orders in the RF Hg.
In fact they include all orders in f since terms like 1/(1+ f)
and ln(1+ f) appear in the coefficients. Details of the coef-
ficients wi11 be presented elsewhere.

Here we display the results of different Pade approxi-
mants in Figs. 2(a), 2(b), and 2(c) for q =2, 3, 6, respec-
tively. ' We also display on the same figures the mean-field
phase boundary. ' ' We consider the approximation valid
up to the point where the different Pade approximants start
to disperse. We see that fluctuations have the effect of
reducing the size of the ferromagnetic region, and this ten-
dency decreases with increasing q. In order to estimate the
latent heat 5 across the transition we did not use a straight-
forward Pade analysis of the series but we first made the as-
sumption that as q q„b, —a(z, —z) with o. & 0. This
assumption gives the best fit to the data for zero RF.' For
0~~0, cr may depend on the RF but our analysis shows
that it is almost independent of H~ for a large range of RF
and its value is approximately 1.6, varying only slightly
among various Pade approximants. We then calculated the
series for 6'~'6 and only then carried out the Pade analysis.
For q =3 and above the transition is always first order.
[We find that q, (d= 3) remains —2.6 for weak RF and de-
creases for stronger Hs. ] For q=2 we find a tricritical
point for HR/J=1. 8+0.2 and T/J=1. 6+0.2. This is in
excellent agreement with the estimated value H~/J =1.8 by
Rasmussen etal. , using a Monte Carlo renormalization-
group technique for the RFIM.

We also carried out a 1/q analysis for the case of a uni-
formly distributed random fields whose magnitude varies
between 0 and H (flat distribution). For q=3 and above
the transition is still first order for the range of validity of
the analysis. For q =2 the latent heat appears to vanish for
all values of the RF in the range of validity; thus, a tricriti-
cal point, if existing in this case, might occur only for0) 2.4, which is the limit of validity of the calculation; but
a more accurate investigation is necessary.

Investigation of the two-dimensional RFPM is now in
progress and results will be reported elsewhere.

To conclude, we have used the 1/q expansion method to
obtain the phase boundary and latent heat of the RFPM.
The method is powerful enough to extrapolate to low values
of q and to obtain answers to many interesting questions
about the RFPM.

This work was supported by the National Science Founda-
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