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The spinor operator in the two-dimensional Ising model can be readily generalized to other self-dual
models as the product of the order parameter and its dual image, the disorder operator. Recently, the ex-
ponent of this and other operators in the g-state Potts model received renewed attention, as the theory of
conformal invariance produces complete lists of critical exponents for some of these models. In this paper
we calculate the critical and tricritical indices of the spinor operator in the two-dimensional g-state Potts
model, via a well-known mapping into a solid-on-solid model. Our results give a physical identification for

the exponents predicted by the conformal theory.

The two-dimensional g-state Potts model has played the
role of a testing ground for many theories and calculations
in the field of phase transitions. This is due in part to the
fact that this model is one of the simplest generalizations' of
the Ising model, and also to some intriguing relations with
other models,>? resulting in some exactly known properties
of the phase transition.* Approximate calculations of the
critical behavior became sufficiently accurate to inspire some
conjectures to the true values of the thermal® and magnetic®
exponents, both of the critical and tricritical’ points. It did
not take much time before these conjectures were under-
stood and demonstrated to be indeed exact.®!! The theory
behind this understanding was based on an equivalence
between the Potts model and a special kind of solid-on-solid
(SOS) model.>*!2  According to renormalization group
(RG) theories, SOS models viewed on asymptotically large
scales, are equivalent to Gaussian models in the presence of
what has become known as spin-wave fields.!> Since the
critical behavior of the Gaussian model is understood in
great detail, these equivalences led not only to confirma-
tions of the conjectures of the thermal and magnetic ex-
ponents, but also to further predictions of other critical ex-
ponents.!*

All exponents thus obtained correspond precisely to
values recently produced by a completely different approach,
the so-called conformal theory. In this theory one extends
the global invariance for spatial scaling and rotation in a
critical system to a local invariance for arbitrary conformal
transformations. It has been stressed by Belavin, Polyakov,
and Zamolodchikov!® that in particular in two dimensions
the possible critical exponents of a model are greatly re-
duced by the adoption of conformal invariance. In fact, it
has been shown (with the extra assumption of reflection
positivity of the correlation functions) that all exponents of
a given model can be expressed in terms of a single (ration-
al valued) parameter C called the central charge, which is
specified by the model under consideration. The list of ex-
ponents produced!® in this way does indeed contain all ex-
ponents known so far for the critical and tricritical points of
the two- and three-state Potts models. However, many oth-
er exponents are predicted for which there exists as yet no
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physical identification.'®!” Physical operators considered up
till now were restricted to scalar operators i.e., operators for
which the correlation function does not depend on orienta-
tion. In this Rapid Communication it is shown that the list
of identifications can be completed by incorporating opera-
tors that behave like spinors under rotation.

Spinor operators (also called parafermions) have an in-
terest in their own right both in statistical physics and field
theory.!® A spinor operator is defined in general as a prod-
uct of the order parameter and its dual image the disorder
operator. The most well-known example is the spinor
operator in the Ising model, which is directly related to the
Fermion operators that diagonalize the transfer matrix for
this model.'” Correlation functions built from spinors are
characterized by two indices; one is the usual anomalous
dimension x describing the transformation properties under
rescaling, the other index / represents the behavior under
rotations like the angular quantum number. In the case of
the Ising model the spinor indices are given'® by x =/ =+,
also for p-state clock models the spinor indices are known!®
for p > 4. In this paper we compute the spinor exponents
for the critical and tricritical g-state Potts model using the
asymptotic equivalence to the Gaussian model. We find
that a conjecture of Dotsenko!’ for the case ¢ =3 proves to
be wrong.

The transformation of the Potts model to the random
cluster expansion or Whitney polynomial,>*2° though well
known, is reviewed here because some of the steps in the
derivation are useful in discussing the spinor operator. The
partition sum of the g-state Potts model is defined as usual,

V4 Ez exp 2 Js(tj,tk)
t

(k)

=3 I1 [1+us(s,80] . )

t (k)

The first sum is over all variables ¢, each assuming ¢ values
0,1,...,g—1, and the sum in the exponent is over all
nearest-neighbor edges of the lattice. The expression can be
simply rewritten as given, with # =exp(J) — 1. The product
can be expanded as a sum over graphs by placing bonds ar-
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bitrarily on some edges of the lattice, representing the
ud(4,n) term. Each term in the graphical sum can be
readily summed over ¢, by noting that spins’ connected by
bonds must assume the same value. The result is the Whit-
ney polynomial

Z=3ubq, ¢))
: G

where the sum is over all possible graphs consisting of
bonds placed arbitrarily on the lattice edges, b is the number
of such bonds, and c is the number of clusters of connected
sites, into which these bonds partition the lattice. Figure 1
shows a typical example of a graph in this sum. Duality can
be conveniently demonstrated -in this graphical language.
Each graph of the sum in Eq. (2) can be turned into a graph
of the dual model by placing a bond on all and only those
edges of the dual lattice that are not cut by a bond on the
original lattice. It can be shown that this mapping between
graphs is isomorphic, and that the dual model is again a
Potts model. The spin-spin correlation function

(8i5m) E<exp 2—;’—'(tz—tm)]> 3)
is up to a factor Z equal to a sum like Eq. (2) with the re-
striction that only those terms occur for which the sites /
and m are contained in the same cluster. In all other terms
the variables # and #, are freely summed over, so that those
terms do not contribute to Eq. (3).

In order to introduce the spinor operators we first consid-
er the correlation function of disorder operators located at
two faces of the lattice (sites of the dual lattice) A and u.
The disorder correlation function can be defined as
Glo(M)o(u)l=2Z'/Z, where Z' denotes the partition sum
of a Potts model with a Hamiltonian modified in the follow-
ing way. Choose a path between A\ and u, along the edges
of the dual lattice visiting no edge more than once (see Fig.
1). Select all the edges (j,k) (of the original lattice) that
are crossed by this path, such that the site j is to the left of
the traveler from A to u. On these edges the & function of
Eq. (1) is altered according to

3(h,0) — 8(4+ 1,5 4)

where the addition is modulo ¢. Thus, the Hamiltonian

FIG. 1. Graphical representation of a Potts configuration. Dots
are sites of the original lattice, crosses are the sites of the dual lat-
tice. Heavy straight lines indicate the spins that are connected by
the graph. The broken line is the domain wall between A and pu.
The polygon decomposition of the graph is drawn light.

favors unequal spins on either side of this path, which we
accordingly refer to as domain wall. It is a direct conse-
quence of the symmetry of the Potts Hamiltonian that the
correlation function defined in this way only depends on the
points A and u but not on the shape of the wall joining
them. It is well known'>?2! that the disorder operator de-
fined in this way is the dual image of the spin operator of
Eq. (3). Therefore, graphs that contribute to the disorder
correlation are precisely those graphs for which the dual has
A and p on the same cluster.

Of special interest here are those correlation functions,
which contain both spin and disorder operators, in particular
their dependence on the relative position of these operators.
Consider for instance the correlation function

G(rp, - )=(s(r)a(p)---) , )
where o stands for a disorder operator, and r and p are po-
sitions in the plane. In the scaling limit these positions can
be varied continuously. Now consider the dependence of G
on r. Where r crosses the domain wall, which is issued
from p, G must have a cut, and abruptly change phase by
exp(2mi/q). If r travels to the other side by circling p, G
changes phase continuously. Thus, if it were not for the
cut, G would pick up a phase factor exp(2wi/q) for each
time that r goes around p. Hence, the rotational symmetry
of the plane and the internal symmetry of the spin, are
jointly represented in this type of correlation function.

The spinor operator is defined as the product of a spin
operator-on a site and a disorder operator on an adjacent
face. When one spinor circles another, the corresponding
correlation function gains a phase factor of exp(4wi/q),
since in the process both spins must cross the domain wall
once, each contributing a factor exp(2mi/q). It is straight-
forward to verify that the diagrams that contribute to the
two-point spinor correlation function are obtained by the
following rules: (i) both spins at / and m are on the same
cluster, (ii) both disorder operators at A and u are on the
same cluster of the dual diagram, and (iii) each diagram car-
ries a phase exp(2win/q) where n is the number of (orient-
ed) intersections with the domain wall of a path from / to m
along the cluster. [The path exists by rule (i), » is unique
by rule (ii).] The phase of the diagram in Fig. 1 for exam-
ple, is exp(2wi/q). It is clear that these phase factors are
responsible for the rotational behavior of the correlation
function. Before we continue to calculate the spinor ex-
ponents we notice that there is, in fact, a whole family of
spinor operators. The disorder operator may be changed by
replacing ¢t +1 in Eq. (4) by ¢ +n or by any permutation P
of t=0,...,qg—1. At the same time the order parameter
is replaced by exp(2mikt/q) or by a function f(¢) that
induces a unitary representation of P, ie., f[P()]
=exp(2wip)f(t), where p is some rational number of
which the denominator is the order of one of the cyclic per-
mutations, into which P can be decomposed. The phase fac-
tor picked up as the corresponding spinors circle one anoth-
er is then exp(4mip). We will henceforth label the spinor
operators by this index p.

Many critical exponents of the g-state Potts model have
been calculated using an equivalence between this model at
its critical point and a special kind of SOS model. To com-
pute the spinor exponent here we use the same technique.
Rather than rederive the entire process we will simply state
the few facts we need here, and refer the reader to the
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literature® %1422 for details. The first step is to use an alter-

native representation of the graphs of Eq. (2): the polygon
decomposition of the surrounding lattice.> The sites as well
as the faces of the original lattice correspond to faces of the
surrounding lattice, and the edges of the original lattice are
the sites of the surrounding lattice. In order to keep track
of the difference between the original and the dual lattice,
we have shaded the faces corresponding to the dual sites.
For brevity it is convenient to refer to the shaded region as
water (lake), and to the unshaded regions as land (island).
Figure 1 shows the polygon decomposition corresponding to
the original graph. The rule is simply that each vertex of
the surrounding lattice is cut open to allow the bond, either
on the original or on the dual lattice, to go through uninter-
sected. An orientation is assigned to these polygons after
which they can be interpreted as steps (of */2) in the
configuration of a SOS model. The only contribution of a
SOS configuratiuvon to the Boltzmann weight comes from
the corners in the domain walls. If one follows a domain
wall keeping the higher level to the left, a turn to the left
contributes a factor exp(ywi/8) and a turn to the right
exp(—ymi/8), where /g =2cos(ay/2). Since each
domain wall closes upon itself without crossing, the total
winding number is * 1, contributing a net phase factor of
exp( xymi/2). At times we refer to the polygons as shore-
lines of lakes inside islands, and islands inside lakes.

Here we need to inspect the diagrams that contribute to
the spinor correlation function. Since the spinor operator is
a product of adjacent spin and disorder operators, based on
land and water, respectively, it is convenient to consider the
spinor operator as sitting right on the shoreline, as in Fig. 2.
The only diagrams that contribute are those in which the
two spins are located in the same island, and the two disor-
der operators in the same lake. This is only possible if the
two spinors are located on the very same shoreline (see Fig.
2). This restriction can be formulated in the SOS language,
by imposing that the spinors correspond to screw disloca-
tions or vortices with opposite charges. The two sections
into which the spinors partition the shoreline together con-
stitute the domain wall of this screw dislocation. The mag-
netic charge m or vorticity measured in multiples of 2, is
thus my,,= i%. The arbitrariness in the definition of
height in the SOS model in the presence of the screw dislo-
cation can be lifted if one assumes that the Potts domain

(a)

° - = - o
r (b)

FIG. 2. Examples of diagrams (in a continuum description) that
contribute to the spinor correlation function. Note that in (b) any
path from rto r’ has to cut either the domain wall (broken line) or
the SOS walls yielding a height difference = between r
and r'.
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wall between p and p’ serves as a domain wall in the SOS
model also (with sign ¥4 ). .

This prescription selects all graphs that we need according
to rules (i) and (ii). Next we have to take care of the prop-
er phase, rule (iii). Consider the diagram that results from
Fig. 2(a) by rotating one of the spinors about its own
center. The weight of the diagram in the SOS model
changes by a phase factor, due to the fact that the two sec-
tions of the domain wall contribute oppositely to the wind-
ing number. This is illustrated in Fig. 2(b). Each full turn
contributes a factor exp(ymi) to the weight of the domain
wall that connects the spinors. But since the rotation au-
tomatically lifts or depresses the SOS height at the site of
the spin by 7 (see Fig. 2), the phase factor can be compen-
sated for by a spin wave with charge —y. For this purpose
the same spin-wave charge is necessary on both of the spi-
nors. However, we know that according to rule (iii) a spi-
nor does indeed gain a phase factor as it is turned around,
namely, the factor exp(2wpi). This can be accomplished by
an additional spin wave of charge =+ 2p, resulting in a total
electric charge of e; ;= —y *2p. For a discussion of the
apparent violation of charge neutrality induced by this pro-
cedure the reader is referred to Ref. 11, where a similar sit-
uation is met in the context of the magnetic exponent.
Note that electric charges in this SOS model are defined!!
only modulo 2, implying that p should be defined modulo 1,
the lowest value yields the leading exponent, higher values
should be considered as corrections to scaling. The critical
exponents governing the scaling and rotation behavior of
the spinor correlation function x, and /,, respectively, then
follow from the general form??

1
Xp = —Eelez——xmlmz ’
©)
lp=—%(€1m2+€2m1) ,

where x is the coupling constant of the Coulomb gas, or
Gaussian model, which for the Potts model is given by
x =2—y. It follows that

2
p—1
x,=1+ pra

b=p . @)

The value of /, implies indeed that the two-point correlation
function picks up a phase factor of exp(4pwi) when one
spinor circles the other.

Table I lists the possible values of the spinor exponents
with p < 1, for the two-, three-, and four-state Potts critical
and tricritical points, as given by Eq. (7). In order to com-
pare these values with the results of the conformal theory
one should notice that the exponents (denoted by A and A)
presented in this theory refer to a complex notation and re-
flect the z and z dependence of the correlation functions,
respectively. The spinor exponents in our notation are
found as x=A+A and /=A—A. Both conformal ex-
ponents are for a given model (or central charge) deter-
mined by a coordination number (k,m) in the so-called con-
formal grid. For the central charge C=1—-6/n(n—1)
these exponents are given by

dn(n—DAgm=Ink—(n—1ml*-1 , (8)

with 1=k <n-—1 and 1=m < n. From the results of
Friedan, Qiu, and Shenker!’ it seems a reasonable guess
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TABLE 1. The values of the spinor exponents for the Potts critical and tricritical transition.
q x xy2 A A xy3 A A xy3 A A xys A A xys A A
3 1 1
2 3 7 7 0
crit
5 1 21 1 v 2 L 2 2
3 3 20 40 40 15 5 15 3 3 0
4 2 3 2 L 3 4 1 13 2 L 17 25 2 25 4 b
g 16 16 9 9 9 18 36 36 32 64 64 32 64 64
3 1 19 S 33 1310 1 16 3 L
3 28 56 56 21 21 7 21 7 21
tricrit
5 7 1
2 7 T 5 10

\

that the exponent of the Potts energy is given by 2A, (n)
for the critical point and by 2A,,,(#n) for the tricritical point.
It follows that the relation between the central charge and
the number of states of the Potts model can be conveniently
expressed as n=2/(2—x) for the critical point (yielding
n=4,6,00 for ¢ =2,3,4), and n =x/(x —2) for the tricriti-
cal point (yielding n =35, 7 for q =2, 3), respectively. With
this correspondence we can compare our spinor exponents
against the results of conformal invariance. We find that all
exponents of Table I occur among the exponents allowed by
Eq. (8) for the appropriate value of n. Some care must be
taken with the four-state model. As in this case n — oo it is
not hard to show that all squares of rational numbers are al-
lowed by Eq. (8) (take both k and m proportional with n),
in agreement with Table 1.

The precise way in which the various spinor operators are
represented in the conformal grid is rather intriguing. Con-
sider the spinor operator ¢, with p=+ for the Ising

model. It can be represented as
2= 01(2)0,,3(Z) , )

where the indices refer to lattice points of the conformal

grid. Due to the essential degeneracy of the exponents in
the conformal grid an alternative representation is

Y12=01,3(2)0,1(Z) . (10)

Turning to the three-state model we find that both
representations still correspond to spinors but now to dif-
ferent ones namely, ¢y/3, respectively, ;3. The same pat-
tern is found for the tricritical models. Dotsenko!” assumed
in his conjecture for the spinor exponents for the three-state
model that ;3 could be represented by an operator product
depending only on z. We see that this only happens to oc-
cur for the spinor 3 (O, is the identity) in accordance
with the fact that A= %— does, but A= % does not belong to
the exponents allowed by the conformal grid.

Note added in proof. We observe that for n =4, 6 all pairs
Agm Wwith Ay, +> form spinor exponents, and likewise for
n=35,7 the combinations Ay, with Ag4y,. Some of the
corresponding spinor operators have p > 1. Therefore, all
exponents predicted by the conformal theory except the
magnetic Ising exponents are members of one or two spinor
pairs.
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