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Universality classes for critical wetting
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The systematics of the wetting transition at solid-gas interfaces in systems interacting with inverse-
power-law potentials is investigated. The correct form of the effective Hamiltonian for I, the interface-
substrate separation, is determined, and it is shown that for a given type of continuous wetting transition
(e.g. , critical wetting) there are three regimes of critical behavior, depending on the spatial dimension d.
New results for the critical exponents in the intermediate regime are also presented.

The nature of the various types of wetting transitions for
a given form of interaction potential is still somewhat con-
troversial. ' In particular, the systematics of these transi-
tions for inverse-power-law potentials is still an open
question. ' In this Rapid Communication we investi-
gate this problem for coarse-grained order-parameter in-
teraction potentials of the general form w(r) —r t~+ i as
I ~, with o. & 1 where d is the spatial dimension. After
establishing the existence of stable mean-field (MF) profiles
for a-) 1 we determine the correct form of the effective
Hamiltonian for l, the interface-substrate separation. It is
then shown that there is a sequence of upper critical dimen-
sions (UCD) in the problem and that for a given type of
critical or multicritical transition three distinct types of
behavior are possible, depending on the spatial dimension d.
Denoting the jth UCD by d~, j=0, 1, . . . , we show that
for the potential V(l) given in (3b) below, d,. is the spatial
dimension where the operator I ' +J ' is marginal. In
particular, for the critical wetting transition we find that (i)
MF theory is correct for d & dt, '3 (ii) for di & d & do fluc-
tuations are strong enough to renormalize the exponents
but there is no shift of the MF wetting temperature, and
(iii) for do & d the wetting temperature is renormalized and
all wetting transitions (including those described by MF
theory to be first order) are continuous and belong to the
same universality class. A similar sequencing occurs for all
multicritical transitions. New results for the critical ex-
ponents in the intermediate dimension interval described in
(ii) above are also derived and it is argued that for all
d ~ 3, q, the anomalous dimension of the interface degree
of freedom I is zero. Finally, these effects are illustrated by
exact results for d=2.

The model we consider is described by the free-energy
functional

F(@I= 7' J Jr, y(r) w(r —r')y(r')

+ JI [U(@(r))+ h(r)@(r) —p@(r)]

The order parameter $ is generally the density. w is the in-

teraction potential, h an external (substrate) potential
(derived from an interaction potential with the same asymp-
totics as w), p, the chemical potential, and U(P) the refer-
ence system free-energy density in the van der Waals pic-
ture. ' This model describes not only wetting at a solid sur-
face but also wetting in binary mixtures to the extent it can
be described by a single order-parameter model. For the
usual wetting geometries the solutions of interest vary only
in one direction, here taken to be z. These solutions inter-
polate between two or more bulk phases. In particular, we
want to establish the range of potentials for which (1) has
stable MF solutions which fulfill this condition.

Consider first an infinite system at two-phase coexistence
(h =0 and p, = p, ,). Taking the Fourier transform of (1) we
have

O' F(@,)
da a=1

so that F(P, ) will be a minimum only for o & 1. Stable
MF solutions of finite energy cannot exist'6 for o. ~ 1.

In order to go beyond MF theory it is necessary to deter-
mine the spectrum of fluctuations about the MF profile

u2(q)4 — + U(4) ET(4') + EpI4) (2)

where the q=0 part of the Fourier transform of w(r) has
been included in U(@) so that, to leading order,
uz(q) = j„q"+ with a=min(2, o.) (Ref. 14) for o.a2.
For o-= 2 there is an additional logarithmic correction term
q'IlnqI in u2(q). q is the d-dimensional momentum conju-
gate to r and j is positive so that the kinetic part E r t@I is
non-negative. Assume that P, (z) is an extremal solution of
(2) describing a free interface between two coexisting
phases at some arbitrary position zo and define
Q, (z) =$, (z/a) where a is a positive parameter. In order
that @,(z) be a classical minimum of (2), F(P, ) must be
stationary and O' F/da'i& & 0 for a = 1. Performing a&a

change of variables we find that F(@,) = a' ET(p, )
+ aEU(@,)." It follows that
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@,(z).2'7'8 This leads to the eigenvalue problem

(3a)

to leading order, where cr is the surface tension of the free
interface.

Recent MF results for inverse-power potentials indicate
that, ' ' for large l,

V( i) = ap/ i p+ a 1/ i '+ a2/ I 2+ + b p, l (3b)

where ro=o- —l and r+]= r +1 for i «0. Ap, =p, ,—p,
measures the distance from coexistence. Critical wetting oc-
curs for Ap, =0, a] & 0, ao& 0 as ao 0; ao thus plays
the role of the reduced temperature. First-order wetting oc-
curs if a~, or the coefficient of a higher-order term, is nega-
tive and ao is positive. Higher-order multicritical transitions
can occur if, for example, a2) 0, a~=0, and ao&0 as
ap 0 (a tricritical transition). A tetracritical transition
occurs for a3) 0, a2= a~=0, and ao 0, etc. '

Near the critical wetting transition the interface free-

energy density has the scaling form'9 2p I', = t '0(/) p/t ),
For V(i) given in (3b) the MF approximation yields
2 —n, =a and 5=1+a. where t= lapl. Near the tricritical
point'9'p F,= t *0(a1/t ', /3, p,/t ) where 2 —a,
=

2 (1+a-), 51= 2, and 5= —,
' (a. +2) in the MF approxi-

mation.
Consider now the effect of fluctuations. %e start by re-

viewing the arguments leading to a generalized Ginzburg
criterion for the UCD for the model described by (3a) and
(3b). Expand V(!) about the MF value of (i) =—(i)p. A

52F
p)

11 (p iz ) = e P (piz) y

C.

where p is the (d —1)-dimensional spatial coordinate per-
pendicular to z.

Let p be the momentum conjugate to p and q= (p, k).
Taking the Fourier transform in p, we obtain the eigenvalue
problem

rj„J,exp [ik(z —z') ] (k'+ p') 'v) (z')
z

+ U"(y, (z) )7) (z) = e,v) (z)

where 4'(p, z) = e'v vq(z). For p = 0 this eigenvalue prob-
lem has a ground-state eigenfunction

2)(z) =2)(z) = y,'(z)/If/, 'll

where
' 1/2

ff y,'ff = „[@,'(z)]2

with eigenvalue ~~=0= 0.'8 It follows that

j qk[(k2+p2)m/2 km]q

Since qk=p is finite we find ev —p'+ O(p'+ ) for a ) 1,
i.e., the allowed range of a-. The kinetic part of the effec-
tive Hamiltonian for the interface degree of freedom i(p) is
therefore not affected by the long-range nature of the
forces. The potential part is affected, ho~ever, and is in
fact given by the local MF free-energy density of a rigid in-
terface located at height l. 2' The effective Hamiltonian is
thus

perturbation expansion for I'2)(p =0), the two-point vertex
function at zero momentum, then yields

I (» (()) = g
—2= g

—2+ ctg3 —d(i)—

to leading order, where c is a constant, gp the MF correla-
tion length, and gp

d the infrared divergence of
the relevant diagram. MF theory is valid if

(i) p . Using the index j to number the vari-
ous types of transitions (j=1 critical, j=2 tricritical, etc.),
this implies that the UCD for transition j is
d/= [3(a.+ j) —1)/(a+ j+ I). d/ is the spatial dimension
where the operator l '+' is marginal.

There is a simple way of understanding the Ginzburg cri-
terion. The mean-square width of the interfacial region
is ([i—(i) ]2) = G(0) where G(p) = (i(0) i(p)) —(i)'.
Below the wetting transition, for finite (, $2L—= G(0) —g
(since q=0 in MF theory). ' Requiring (i) =(L implies

p, =
2 (d —3)v, which is just the hyperscaling relation. This

scaling relation is fulfilled by the MF exponents for transi-
tion j at d/. 5 For d ) d, , MF theory implies (i) ) gL at
transition j. In the case of wetting at a solid-gas interface
this means that the mean distance of the interface from the
substrate is greater than the rms width of the interface so
that fluctuations cannot influence the transition. Below d~

the opposite is the case. Fluctuations are responsible for
driving the wetting transition: (i) is determined by the rms
size of interface fluctuations.

Before discussing corrections to MF behavior, it is impor-
tant to note that for all d~3, g, the anomalous dimension
of i, should be zero. 2' ' Define g(p) = ([i(p) —i(0) ] )
= 2[G (0) —G (p) ]. Capillary-wave theory indicates that
above the transition g(p) —p3 d for d (3 and g(p) —lnp
for d=3.22 The general scaling form for G(p) below the
transition is G(p) =$3 d "C1(p/g). However, this expres-
sion is compatible with the capillary-wave picture above T„
only if q =0. In this case, g(p) —g' [I —C1(p/$) ].
Analyticity at small p/g implies 4(x) —1+x+ for
x 0 so that g(p) —p3 d for d ( 3 and g(p) —lnp for
d=3, in agreement with capillary-wave theory. This result
together with standard scaling laws then implies
p,/g = (d —3)/(d+ I) so that p, —(g/L) 1' +' and
(i) —(by, )(~ 3)/(d+') at all continuous transitions j when
d & d&. The 4-q dependence is universal.

It turns out that it is rather easy to obtain the critical ex-
ponents for all multicritica1 transitions j in the dimension in-
terval d, ~ & d & d, . The important vertices are those ob-
tained from the term api +' in (3b). The vertex with i
legs is proportional to t/(i) '+', where t= lapl. A typical
contribution of a graph with V vertices, I interna1 lines, and
L loops to I . (0) is

(2l —L (d —1) (4)
g V. (n —1+i)

(i) '

where V& is the number of vertices with i legs and
') the infrared divergence of the diagram. Since all

graphs are infrared divergent for d & 3, the superficial
divergence $2/ L(d ') of the graph utilized in (4) is, in fact,
the true divergence. Self-consistency requires that (4) be
proportional to g

2 for all graphs. Utilizing the topological
relations L = I —V+1 and g, iV; =2+ 2I (for I' ' ) as well
as the scaling relation P, = ~(d —3)v, this implies

t(d-1 g(3 —d) (a —1)/2
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F, —exp( —r ' ), (i) —xe(pr' )

a. & 3, transition ar finite ao= ao,

ns 2
2 —o, , =2, 6=3,

3

At the tricritical transition we find the following:

2 & a- & 1, transition at a~=0,

2 2 0 32 o'g=
3 CF 3 0 3 Q

2 —os 2
3

cr = 2 borderline case, transirion at finite at ——,aq',

so that u = 2/ [1+d —a(3-—d) ]. A similar calculation
shows that v/6~=2/[2(d —1) —a-(3 —d)] at the tricritical
point. The relation for I holds for critical wetting in the
dimension interval dp & d & d~ and for the tricritical transi-
tion for d~ & d & d2. The relation for 4~ is correct for
d~ & d & d2. In these dimension intervals there is no shift
in the MF values of the critical coupling constants. The
generalization to higher-order transitions is straightforward.

As d d~+, A~ 0. Similarly, as d dp+, v ~. For
d & d~, l is an irrelevant operator and the position of the
tricritical point shifts to finite a~. Similarly, for
d & dp, l +' is irrelevant and the wetting transition occurs
at finite ap. This is verified explicitly for d=2 below. Note
that dp is the same UCD found by Lipowsky at the complete
wetting transition, i.e., above T„as coexistence is ap-
proached. 5

We have not been able to obtain the exponents for gen-
eral d for the multicritical transition j for d & dj ~. Howev-
er, results for d =2 reported below lead to the following pic-
ture: For d & d, ~ the critical exponents of all continuous
transitions of order greater than or equal to j are the same.
Furthermore, for d & dp all transitions become continuous
and belong to the same universality class, even those
described by MF theory to be first order.

These predictions can be readily tested for d=2 using
transfer matrix methods. 2 The results of such a calculation
are summarized here for the critical wetting transition:

2 & a & 1, transition at ap=0;

2 —o;s = cr, ~ = cr + 1

3 & a. & 2, transition at ap=0,

2 3 2 o! 2as=
3 —o. 3 —cr 5 3

a. =3, borderline case, transition at finite ao= ao,

These results are in complete agreement with the general
predictions discussed above.

As already mentioned, for d & dp we also expect there to
be no first-order wetting transition. For d & dp, l' is a
relevant operator and fluctuations are not strong enough to
change the character of the transition as long as ap is finite.
If l' is irrelevant we have already seen that fluctuations
change the phase diagram dramatically and shift the position
of the wetting transition to finite ap. ap=0 is an infrared
stable fixed point in this case and the presence of a barrier
in V(i) vanishing at least as fast as l' should not affect
the critical behavior. This is readily confirmed for d=2,
where the problem reduces to a quantum-mechanical one.
Given V(i), the interfacial free-energy density is —E in the
thermodynamic limit, where E is the lowest eigenvalue of
the Schrodinger equation:

d'W —V(i)e= —E~ .
dl2

In this approach, (i) is the ground-state expectation value
of I. By definition, a bound state is one with finite (1).
Consider now V(l) aoi' for large I, with ao&0. The
detailed behavior of Vfor small l is unimportant as long as
it has attractive ( V & 0) components and is bounded from
below. Clearly, if E & 0 (E & 0) then (i) is finite (infin-
ite). If for E=0 (i) is finite, we have a first-order transi-
tion to infinite (i). On the other hand, the transition is
continuous if (i) diverges with E 0

Denoting the depth of the potential minimum by V, de-
fine t —

~
V —V'~ where E(V')=0. Since the width of

the minimum is finite, it is easily seen that —E —t as
t 0+. To determine the order of the transition we may
ask how (i) diverges with t '. Here, we report only the
results which are most easily characterized by the ex-
ponent q in (l) —t ~. For a. & 3 the transition is continu-
ous with q=1. For a. & 3 the transition is first order; i.e.,
q=0. The borderline case o-=3 displays richer structure,
with q = 1 for ap & 4, an amplitude dependent

q = (1+4ao)' 2 —3 for ~ & ao & 2 and q = 0 (but with

divergent higher moments) for ao& 2. At the end points,
where q =0 or 1, there are additional lnt terms. The transi-
tion remains first order if l' is a relevant operator but be-
comes continuous if I' is irrelevant. Furthermore, the
critical singularity in this case is the same as for short-range
forces, in agreement with the general predictions discussed
above.

After completing this work we received a paper by Fisher
and Huse in which the critical wetting transition for long-
range interactions was analyzed using a functional
renormalization-group approach. Their results agree with
ours.

2 —a, =2, +, —«p[ —(&a~) ' 'j for ao=0

a & 2, transition at finite at = at",

2 —os 22 —n =2 a)=1 a=3g f s r g 3
~
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