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Using an ab initio pseudopotential approach, the pressure dependence of the electron-phonon interaction
parameter A and the phonon frequencies for metallic hexagonal phases of silicon is calculated. With chang-
ing pressure A\ is found to go first through a minimum and then reach its maximum value near the phase
transition from simple hexagonal (sh) to hexagonal close packed (hcp). At this point the superconducting
transition temperature T, is expected to be above 10 K. In the hcp phase Si is predicted to be supercon-

ducting with 7, in the same range as in the sh phase.

In recent papers’"? we have presented theoretical and ex-
perimental results on superconductivity in the B-tin and
simple hexagonal (sh) phases of silicon. The sh phase was
found to be superconducting with a 7T, of 8.2 K at press-
sures in the neighborhood of 15 GPa. At higher pressures,
both the theoretical and experimental results gave a de-
crease of 7, with pressure up to 25 GPa. Using the same
theoretical methods we have extended this calculation to
pressures beyond 25 GPa and computed the pressure depen-
dence of the phonon frequencies and the electron-phonon
interaction constants in the sh structure. We also study
these quantities in the hexagonal-close-packed (hcp) struc-
ture. With increasing pressure A\ in the sh phase is found to
go through a minimum at around 25 GPa and then increase
again giving rise to a higher 7, close to the sh-to-hcp struc-
tural transition.

The approach used allows an ab initio calculation of the
electronic wave functions, the phonon frequencies®? wg,,
and the contribution to the electron-phonon coupling®*
M(qv) of a frozen phonon of wave vector q and branch v.
Here we present calculations of the density of states (DOS)
at the Fermi level, wg, and A(qv) along the [001] direction
for different pressures. For the sh structure, four points
have been chosen along this direction in the following way:
q=a[00g ], where a= 7, ¥, %, and 1, and a=1 for the
hcp structure. From the results for this direction we obtain
A by using a spherical approximation to the full Brillouin
zone (BZ) averaging of the A(q)’s,
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where gpz is the radius of a sphere with the same volume
Qg7 as the BZ. The A(q)’s are given by
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where N (Er) is the density of states per atom and per spin
at the Fermi level® Er. The double brackets represent a
Fermi-surface average* on k and k’ of the square of the
electron-phonon matrix elements® g(nk,n’k’, qv) which are
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defined as

h—QBZ

112
e, ] 3(k—k'—q)

glnk,n'k,qv) = [

x (Wl Tulpl) ®

where M is the atomic mass, €g, is the unit polarization vec-
tor of the phonon qv, and ¢ and lpg,k, are the electron

Bloch wave functions for states k and k' in bands » and n’,
respectively, for the undistorted crystal. The quantity Vv is
the total self-consistent change in the crystal potential per
unit displacement caused by a phonon distortion. In our
calculations this quantity is replaced by the difference*
between the self-consistent potentials (within the local density
pseudopotential formalism’) of a crystal distorted by a
frozen phonon, and an appropriate potential for the undis-
torted crystal.

In the sh structure, supercells of two, three, four, and six
atoms are used for a=1, %, +, and 5, respectively. The
use of identical supercells for both distorted and undistorted
crystals* maps back k’+ q to k, eliminating the & function in
Eq. (3). However, the limitation of this method is that the
phonon wave vector @ must be commensurate with the lat-
tice; that is, nq=G, where » is an integer number and G is
a reciprocal-lattice vector. The calculation is done with 75 k
points in the irreducible BZ (IBZ) for the sh structure and
70 k points in the hcp IBZ. The hcp BZ is approximately
half that of the sh. To ensure good convergence of the
Fermi-surface average in Eq. (2) we use a Gaussian
broadening of the & functions in the average expression.*

The pressure dependence is studied by varying the lattice
constant and relating the resulting volume change to the
pressure through Murnaghan’s equation of state.® The crys-
tal structure is determined using the total energy minimiza-
tion method.” The pressure range of the sh phase was cal-
culated®® to be from 12 to 41 GPa. The lower boundary is
slightly below the experimental range of 13.2-16.0 GPa
given by Hu and Spain!® and the jump in 7, at 13.5 GPa
found by Chang et al? Hu and Spain also give an upper
boundary of 34.0-42.0 GPa for the sh phase. In addition an
unknown Si-VI phase has been reported!®!! in this pressure
range but it is suggested that it might be a mixture of the sh
and hcp phases.?
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The results for DOS, wgq,, and A(qv) at different pres-
sures are given in Table I for the sh structure. In Fig. 1 the
spherically averaged \’s using Eq. (1) are plotted as func-
tions of pressure. One can see that the phonon frequencies
of the longitudinal modes increase with pressure for all the
points considered along the [001] direction. At 12.7 GPa
the frequency of the zone-boundary phonon for the longitu-
dinal mode is lower than the value at a= % However, as
the pressure gets larger the zone-edge frequency increases
more rapidly than the q=(0,0,2¢m./3) phonon. So the
overall effect on A for the pressures 18 and 21 GPa is a de-
crease, since the longitudinal modes are more important

TABLE 1. Calculated A(qv) and A(Q) at = aqu,y as a function

of pressure for the sh phase. Pressure (P), N(0), and w(qv) are

in units of GPa, states/Ry per atom per spin, 1013 rad/sec, respec-
tively.

Longitudinal Transverse
P NO) o ol@g) rg) ol@) i) i
127 252 % 48 023 1.7 031 085
3 69 016 2.1 0.14 044
2 8.2 0.15 2.4 009 033
1 70 023 2.5 005  0.33
180 249 %+ 49 022 1.6 035 092
1 7.2 0.16 2.1 0.16  0.48
% 85 014 24 0.10  0.34
1 79 018 2.4 006 030
210 248 50 022 1.6 036 094
3 72 016 2.1 0.16  0.48
% 8.7 0.14 24 0.10  0.34
1 85 0.6 2.4 006 0.8
366 242 & 5.2 0.23 1.6 039 101
3 79 016 2.1 025  0.66
2 92 012 2.3 0.17 046
1 104 012 2.1 013 038
400 242 54 023 1.6 045 1.3
1 8.2 0.15 21 027 0.69
2 9.3 0.13 2.3 017 047
1 105 012 1.9 0.18 048
410 242 % 5.6 0.22 1.6 0.54 130
. 8.2 0.15 2.1 029 073
2 9.3 0.14 2.2 021  0.56
1 109 012 1.8 022 056
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FIG. 1. Pressure dependence of A for the sh phase.

than the transverse at these pressures and the zone-
boundary phonon plays a dominant role in the averaging of
the A(q)’s. This result is consistent with the decreasing
behavior of T, observed by Chang et al.?

For this pressure range, the transverse modes yield a
small A(qv) and the transverse phonon frequencies are ei-
ther constant (a=-§— and %—) or decreasing with pressure
(a=% and 1). In contrast, the corresponding transverse
electron-phonon matrix elements continuously increase. So,
the net result is a large enhancement of the transverse-
mode contribution to A as the pressure increases. At higher
pressures, above 25 GPa, this pressure-sensitive soft mode
reverses the overall decreasing trend of A, which should
then have a minimum around 25-26 GPa. Since the densi-
ty of states at the Fermi level does not show a significant
variation with pressure, we do not expect w* to change
drastically. Thus we predict that T, should also increase and
reach its maximum near the phase transition from sh to
hcp. If we use the same value of w* and a phonon spec-
trum cutoff as in Ref. 1 in the McMillan equation,!? we ex-
pect T, to be above 10 K at around 40 GPa for this phase.

In Table II the results for the hcp structure are given.
This phase is described by two atoms per unit cell, so the
BZ cell is approximately twice as small as that of sh and we
expect the phonon at the zone boundary of the hcp struc-
ture to be comparable to the one at a =4 for the sh struc-
ture. Indeed, this is what we find: The longitudinal-mode
frequency is 6.9% 10" rad/sec in hcp at a pressure of 42
GPa and 8.2x 10" for &=+ in the sh structure at 41 GPa;
the transverse-mode frequency is 2.4x 1013 at 42 GPa for
hcp and 2.1x10" at 41 GPa for sh. Moreover, for hcp,
A(q) is only slightly lower at the zone boundary than the
corresponding one at a=% for the sh structure near this

pressure (0.54 for hep and 0.73 for sh at o= -}). Hence we
conclude that the electron-phonon couplings for correspond-
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TABLE II. Calculated A(qv) and Ag at Qu,y as a function of pres-
sure for the hcp phase.

P N(0) v w(qv) rav) Aq)
42.0 2.06 LOA 6.9 0.09 .
TOA 2.4 0.09 0.54
46.5 2.02 LOA 7.2 0.09
TOA 2.5 0.09 0.54
63.0 2.00 LOA 19 0.08
TOA 2.9 0.08 0.48

ing modes are not substantially affected by the phase transi-
tion from sh to hcp. The DOS at Er is similar in both
structures; so we also expect hcp silicon to be superconduct-
ing with a T, higher than 10 K. We note that, for the
points we have calculated, the pressure dependence of A
seems to follow the usual behavior of decreasing due to the
hardening of the phonon frequencies. Both the longitudinal
and the transverse modes show an increase in frequency
with pressure.

Units are the same as those in Table I.

In summary, the pressure dependence of the electron-
phonon coupling parameter A in sh structure is governed by
two competing effects, the hardening of the [001] longitudi-
nal phonons, which dominate at low pressures, and the
softening of the [001] transverse phonons, which, combined
with the increase of the electron-phonon matrix elements,
become more important as the pressure increases. In the
hcp phase our calculations do not show any peculiar
behavior of A with pressure and 7, should decrease with in-
creasing pressure. The superconducting transition tempera-
ture at the structural transition should be the highest, and
we do not expect the occurrence of a possible mixed phase!!
to reduce 7, below 10 K, since both the sh and the hcp
phases are found to have strong electron-phonon couplings.
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