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Small normal-metal loop coupled to an electron reservoir
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A conceptually simple approach is proposed to introduce dissipation into a normal-metal loop penetrated
by a flux. The loop is coupled via a single current lead to an electron reservoir. Scattering processes in the
loop are elastic. Inelastic processes occur only in the reservoir and are the source of dissipation. We inves-
tigate the effect of this reservoir on the persistent currents in the loop and the absorption of power in the
presence of' a sinusoidally modulated flux.

Flux sensitive effects with period 40= bc/e have been the
subject of several recent theoretical and experimental inves-
tigations. References 1 and 2 treated a closed ring without
leads and found persistent currents with period 4O in pres-
ence of a time-independent flux and an oscillating current if
the flux is increased linearly with time. References 3-5
considered such a loop connected to two current leads and
pointed out that Aharonov-Bohm —like interference effects
lead to oscillations in the magnetoconductance with period
40. These oscillations have been observed in Au rings.

This paper examines the mode1 in Fig. 1. A loop of nor-
mal metal penetrated by a flux is connected to a single wire,
which in turn connects to a reservoir. The reservoir emits
carriers with the Fermi distribution

f (E) = [exp(E —EF)/kT+ 1]

into the lead and absorbs carriers coming from the lead ir-
respective of their energy. In the reservoir the carriers are
scattered inelastically and there is, therefore, no phase rela-
tionship between carriers absorbed by the reservoir and car-
riers emitted by the reservoir. Carriers emitted by the
reservoir travel along the lead to the junction with the loop,
where they are reflected or else enter the loop. In the loop
all scattering processes are elastic. After some time a carrier
in the loop will eventually escape through the junction into
the lead and reach the reservoir. Thus, the coupling of the
loop to the reservoir gives rise to electron states in the loop
with a finite lifetime.

In this model we have a complete spatial separation
between elastic processes in the loop and the inelastic
processes in the reservoir. Such a spatial separation is
characteristic of Landauer's discussion of the resistance of
an obstacle in an otherwise perfect wire. Inelastic processes
are essential to obtain a resistance, but owing to the spatial
separation the conductance can be expressed in terms of

elastic scattering properties of the sample alone.
Our first objective is to study the persistent currents in

the loop of Fig. 1. For simplicity we take both the lead and
the loop to be strictly one-dimensional ideal 'wires. Elastic
scattering arises only from the junction between the lead
and the loop. The junction is described by an S matrix
which yields the amplitudes n' = (o.', p', y') of the outgoing
waves in terms of the incoming waves cx= (n, p, y). Here,
we chose for the 5 matrix

(g + b ) t/2 1/2'

b

a

with a = —,
' (41 —2e —1), b =

2 (41 —2e+1). e is a cou-

pling parameter. e = ~ is the maximum coupling. For
e = 0, the loop and the lead are decoupled; we have an ideal
closed loop described by the Hamiltonian

H = (1/2m)(p —eA/c)', (2)

subject to periodic boundary conditions. The vector poten-
tial A is related to the flux by A =4/L, where L is the cir-
cumference of the loop. The spectrum of such a perfect
loop~ is shown in Fig. 2. (Additional scattering in the loop
opens gaps' ' at 4=0 and 4= +&50/2. ) To each flux ip

there corresponds a ladder of states E„(4). To find the
wave functions for «0, we have to match a solution of Eq.
(2) to the wave function in the lead with the help of Eq.
(1). For particles emitted by the reservoir with energy
E =/i2k2/2m, the wave function in the loop is of the forms

e2iay/L(Aerky+ ge &ky) (3)

where 8= m4&/@p and y is the coordinate along the loop. At
y =0, Eq. (3) determines the amplitudes p and p' and at
y = L the amplitudes y and y' (see Fig. 1). The wave func-
tion in the lead which describes carriers emitted from the
reservoir and carriers traveling towards the reservoir is

~1/2 (e iAx + g —ikx ) (4)

RES.

FIG. 1. Loop coupled via an ideal conductor to a dissipative elec-
tron reservoir.

We can take the junction to be at x =0 and Eq. (4) deter-
mines n and o. '. The normalization factor is determined in
the following way: In a small energy interval dE the cur-
rent injected by the reservoir into the lead is dj;„
= eu(dn/dE) f (E)dE. Here, dn/dE =1/2rrtu is the densi-
ty of states in the perfect wire, u=tk/m. The wave given
in Eq. (4) yields the correct incident current if we put
M= ef (E)dE/2'/iu.
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FIG. 2. Electron energies of the decoupled loop as a function of
Aux. The ideal loop is represented by full lines, the loop with addi-
tional elastic scattering by broken lines.
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Using Eqs. (3), (4), and (1) we calculate the coefficients
A, 8, and C. In the lead we find no net current flow,
)C) = 1. The current in the loop in the energy interval dE
is dj =u()A )

—)B) ). The total circulating current is ob-
tained by integrating over the energy and this yields

0.6 "
D

0.5

0.4" ~+++

0.3

J dE f (E )g (E, 8) sing sin28
0

Here, we have introduced the abbreviation @= kL = L
x (2mE/t~) t~~. The function g (E, 8) is given by

g (E, 8) = a/[b'(cosp —cos28)'+ a' sin'@] (6)

dn/dk = (I/2n )g (E, 8) [1—cos(28) cosp] (7)

In the weak-coupling limit, for a flux away from the center
and the boundary of the Brillouin zone (Fig. 2), Eq. (7) can
be approximated by a sum of Lorentzians 2I ~/err
x )[E—E„(8)1~+1'~], where E„(8) is the energy of an
eigenstate of the uncoupled loop and I „=a[E. aE„(8)]t~' is
the width of the energy level. 1 „ is, therefore, proportional
to the coupling parameter and also proportional to the velo-

Figure 3(a) shows the persistent currents, Eq. (5), for dif-
ferent coupling parameters ~ at T = 0 as a function of flux
for the Fermi energies E~=m'(2n+ I)'Ea. Here, we have
expressed EF, which we treat as a parameter, in units of
Ea=f~/2mL~, which sets the energy scale of Fig. 2. The ra-
tio j/ja, where ja= euF/L, with up the Fermi velocity, is in-
dependent of n [The same .is true for E~=m (2n) Ea. ]
With increasing coupling strength e the maximum amplitude
of the persistent currents decreases. This is due to the
broadening of the energy states in the loop. The density of
particles in the loop in an energy interval dE is dn
= )A )'+ )8)'. Using this expression our calculation yields a
density of states in the loop given by
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FIG, 3. Presistent currents in the loop in units jo=em+/L. (a)
For T =0 as a function of flux 8= rr4/&pa. (b) Temperature depen-

dence of the maximum amplitude for e =
&

(+ ) and ~ ]g ( ).1 1

g2/2mL2

city u=tk„ /m of the carriers in the nth eigenstate. As a is
increased the levels broaden further. Near 8 = 0 and
8= + m/2 the behavior of the density of states is not as
simple and will be discussed elsewhere. Figure 3(b) shows
the decrease of the persistent currents with increasing tem-
perature for two different coupling strengths. In this model
calculation the Fermi energy is EF ——2Sm Eo, i.e., at T=0
five states are occupied. For small temperature the currents
decrease proportional to T .

Dissipation of power occurs if we consider a time-
dependent flux. Reference 2 considered a flux 4- —cUt
and showed that the Josephson currents induced by the vol-
tage U have a dc component due to inelastic scattering.
Here, we consider the simpler case of a small sinusoidal flux
superimposed on a time-independent flux,
+ 4q cos (a&t ), and calculate the dissipated power. This
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Vo = (0 /2m ) (2'/L ) (@2/@0)'

The sinusoidal modulation of the flux gives rise to side
bands at the frequencies (E/t) +co and (E/t) —ru. To ob-
tain the wave function" for our system (Fig. 1), we take
within the loop a superposition of the two solutions, Eq.
(8), for each of the three energies E,E +tro. The solution
in the lead consists of a wave incident at the energy E and
reflected waves at the three energies E and E +t~. The
junction Eq. (1) connects the solutions in the loop and the
lead at each instant of time. We can, therefore, use Eq. (1)
for each frequency component separately. For E/t, the cal-
culation is the same as for the case of a static flux. The
matching at E/t + co determines the probability R + (E) that
an electron incident with energy E is reflected back to the
reservoir with energy E + = E + tee. We find

4 V, (EE+ )"'
R + (E)=, , g (E, e)g (E +to), g)

h cia

r t

4 —4+ . , 4+4+x sin 28 sin sin (9)

problem was brought to our attention by Shiren and Imry.
Consider Eq. (2) with a vector potential A = [4i
+42cos(cur ) j/L and extended along the whole y axis. To
first order in 42 /4&o the time-dependent Eq. (2) has the
solution'

p( + k g) e2ioy/Le+ikye —iEt/0

x [1 + 2(EVo /h co ) ' ' sin(cur ) + O ( Vo) 1, (8)

with 8 = m@t /4o, E =k k /2m, and

where P+ = k+L = L (2mE+/5 )' and g (E, 8) is given by
Eq. (6). The numerator of Eq. (9) is correct to order e2

only. For E & tea, R (E) is zero.
The current in the lead now has a component oscillating

with the modulation frequency eo . The time-average
current, however, is zero and we can use Eq. (9) to find the
probability Ro(E) that electrons are reflected from the loop
with their energy unchanged. Current conservation' yields
Ro(E) =1—R+(E) —R (E). To calculate the dissipated
power, we consider the energy flow in the lead. We have a
time-averaged energy stream into the reservoir given by

dW = (E+R+ +E R —+E-Ro E)(dj;„/e) (10)

Vo= (t /2m ) (27r/L ) (e2/&&o)

Since we are considering the time-average energy flow we
relate 42 to the time-average voltage U2 = I/2 (&b2 /c )2«p2

and thus Vo= 2Eoe2U2/k2co with Eo=f /2mL2 We can.
now characterize the absorption of power by a voltage-
independent coefficient n(co) = W/U2. Using Eq. (10) and
noticing that Eq. (9) has the symmetry R (E)
= R + (E tee), w—e find

Here, dj;„ is the current injected by the reservoir in an ener-
gy interval dE. Using the expression for R Q derived above,
we find dW=hco(R+ —R )(dj;„/e). To obtain the total
energy flow 8 we have to integrate this expression over all
energies. Next, we relate the dissipated power 8' to the
voltage induced in the loop: U = —(1/c )d4&/dt
= (42/c )co sin&et. The reAection probabilities R + are pro-
portional to

i 1

a(cu) = J dE[f (E) f (E +tee)]-e2 f+ oo 8Eo(EEp) i . 2 . 2 Q
—@+ 2 @+$~

2 i[rA- 0 M
g (E, 8)g (E +t~, 0) sin (28) sin sin22, 2

On purpose, we avoid calling u a conductance, even though
it has that dimension. The low-frequency limit of a is not
the conductance of a closed loop in the presence of a linear-
ly increasing flux (i.e., the conductance due to a time-
independent voltage) studied in Ref. 2. In this case, the
carriers are driven through the whole "Brillouin zone" of
Fig. 2. In contrast, Eq. (11) describes only small excursions
of the carriers away for the states E„(@t). Furthermore, n
is also unrelated to the conductance of carriers through a
loop connected to two current leads. 3 6 Equation (11) is

simply a measure of the power absorbed in the presence of
a microwave field. ' Power is dissipated in the loop due to
two processes: For large modulation frequencies we have
transitions between the broadened energy levels E (4) of
Fig. 2; for small modulation frequencies, Eq. (11) describes
transitions within the broadened energy levels E (4). It is
these i ntraband transitions which dominate the low-
frequency behavior. Figure 4 shows the low-frequency limit
of a as a function of flux for e = —,6 ~ The Fermi energy is

EF =
4

m. Eo and intersects the level E3(H) of the decoupled

loop (Fig. 2) at 8= + m/4. The coupling to the reservoir
gives rise to a width I"3 = (7n/32)Eo of this level. The tem-
perature in Fig. 4 is k T = EQ = I 3 ~ The absorption of power
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FIG. 4. Low-frequency limit of the absorption of power charac-
terized by o. (eo ), Eq. (11), due to transitions within a single
broadened energy level of the loop as a function of flux.
cxQ 128e /mt.
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is thus due to transitions within this single broadened ener-
gy level. Equation (11) contains a wealth of other interest-
ing information which wi11 be discussed elsewhere.

To summarize, we have proposed a conceptually simple

approach to introduce dissipative effects into a small meta1-
lic loop and have shown its usefulness by presenting a
model calculation. The concept introduced here can be ex-
tended and refined in many ways.
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