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Superconductivity of Bl-MoN films annealed under high pressure
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(Received 28 January 1985)

B1-phase MoN films, prepared by sputtering, are annealed under a pressure of 6 GPa at temperatures
between 600 and 1100 C for 8 h. The B1-phase MoN is converted mainly to hexagonal-phase and partly to
tetragonal-phase Mo2N when annealed at temperatures above 750'C. A residual phase was observed only
at an annealing temperature of 600'C. The T„(the onset of T,) of 1000'C-annealed films was 14.9 K;
this is the maximum value found in the literature for the Mo-N system.

MoN with 81-type structure has been predicted to have a
higher superconducting transition temperature (T, ) than
NbN. ' 81-MoN does not appear in the equilibrium phase
diagram of the Mo-N system. This and the high density of
antibonding states make it difficult to synthesize a perfect
crystal of 81-MoN.

Recently some workers have succeeded in preparing Bl-
MoN films by sputter-deposition techniques. The ob-
served T„(the onset of T, ) of the Bl-MoN films, 12.5 K,
however, is not as high as the predicted values 20—29 K.
This has been explained by the occurrence of nitrogen va-
cancies and nitrogen defects at the interstitial sites. 5 We
have attempted to improve the quality of the 81-MoN crys-
tal by high-pressure annealing. It was thought that the
nonequilibrium Bl-phase MoN would be stabilized and that
N vacancies would be filled by interstitial N atoms under
high pressure, because the density of the 81-MoN is larger
than that of the equilibrium hexagonal MoN. 2
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As shown in this paper, this assumption proved to be in-
correct. We observed for the first time conversion from
Bl-MoN to hexagonal-phase MoN by high-pressure (6
GPa) annealing. As a result we could get pure hexagonal-
phase MoN with the highest T„ for the Mo-N system
without mixing impurities.

The original 81-MoN samples were prepared by dc mag-
netron sputtering using a cup-shaped Mo target in a
nitrogen-gas atmosphere. The MoN films were deposited
on sapphire substrates with a size of 5 x 5 x 2 mm at a tem-
perature of 550'C with a thickness of 7 JM, m.

The MoN films mainly contained 81-phase MoN and a
small amount of another unidentified phase as shown in
Fig. 1 (a). The lattice parameter of the Bl phase was 4.214
A. From x-ray photoelectron-spectroscopic measurements
the composition of the films was MoN~ 2, and the electronic
structure of the films was 81 type. ' The T, of the films
was below 4.2 K, as judged by resistance measurements.
We selected low-T, films as starting materials in order to
observe an increase in T, more easily.

High-pressure annealing was carried out using a belt-type
apparatus. The MoN sample was covered by a sapphire
plate and embedded in a pressure-transmitting medium of
sodium-chloride powder. A graphite tube surrounding the
sodium-chloride powder was used as a heater. The pressure
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FIG. 1. (a) X-ray diffractometer traces for a starting material,
and pressure-annealed films at various temperatures: (b) 1100'C,
(c) 1000'C, (d) 900'C, (e) 750'C, and (f) 600 C,

FIG. 2. (a) Electric resistance vs temperature for the starting ma-
terial, and pressure-annealed films at temperatures of (b) 1100'C,
(c) 1000'C, (d) 900 C, (e) 750 C, and (f) 600'C.
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TABLE I. Characteristics of pressure-annealed B1-MoN films.

Pressure
(GPa)

Temp
(C) Phase

Lattice constant
of hex. -MoN (A)

a C

Co C

(K)
Tce

(K)
AT
(K)

60
60
60
60
60

600
750
900

1000
1100

B1, hex. , tet.
hex.
hex. , tet.
hex.
hex.

5.735
5.721
5.726
5.726
5.710

5.640
5.647
5.613
5.608
5.606

11.8
12.7
14.9
14.1

11.3
11.7
14.5
13.8

11.3
11.3
14.3
13.7

0.5
1.4
0.6
0.4

was first raised to 6 GPa, and then an ac current was passed
through the heater. The annealing temperature was varied
from 600 to 1100 C in the different runs. After annealing
for 8 h, the sample was quenched to ambient conditions.

Figure 1 shows x-ray diffractometer traces taken with
CuKot radiation for five samples annealed at different tem-
peratures and an as-received sample. Above 750 C anneal-
ing temperature (Fig. 1, curves b —e), the 81 phase is com-
pletely converted, mainly to hexagonal-phase MoN and
partly to tetragonal-phase Mo2N. The lattice consants of
hexagonal-phase MoN vary, depending upon annealing con-
ditions. Maximum lattice constants are obtained at 1000'C
(c). A residual 81 phase is observed only at 600'C (f).
The quality of the 81 crystal was not improved but wor-
sened after the annealing. Even at 600'C part of the 81
phase was converted to hexagonal MoN and tetragonal-
Mo2N phases.

The T, values were measured resistively by a four-probe
technique using a calibrated Ge-resistance-thermometer
within a maximum experimental error of 0.1 K. Electri-
cal resistance versus temperature curves are shown in Fig.
2. The highest T, was obtained in the 1000'C-annealed
sample. T„, T„T„(the end of T,), and AT (transition
width) are listed in Table 1 with crystal phases and lattice
constants of hexagonal MoN for each sample. T„and T„
are defined as the 1% and 99% points of the resistance tran-
sition.

The T„of 14.9 K in the 1000'C-annealed sample is the
maximum value in the literature for the Mo-N system.
Though the hexagonal-phase MoN phase with 14.8 K in T,
has been synthesized under 4 GPa pressure at the tempera-
ture of 1000'C by Vanderberg and Matthias, their T, value
is assumed to correspond to the present T„, for historical
reasons. Moreover, their sample was not purely MoN, be-
cause it was synthesized from a mixture of MoS and BN in
equal amounts by high-pressure annealing. B and S must
have been in their samples in abundance.

On the other hand, the present MoN sample originated
from pure Mo-N material, and moreover, the sample con-
sists of almost a single phase of the hexagonal MoN as
determined for x-ray measurements. All MoN samples ex-
cept that annealed at 1000'C have a tendency to increase in
electrical resistance with decreasing temperature. The ten-
dency is clearest in the as-received 81-MoN sample. The
tendency became stronger when the N concentration in the
81-MoN„phase increased.

This phenomenon could be caused by Anderson localiza-
tion8 owing to such disorders as N vacancies and N intersti-
tial defects or Mo vacancies and N clusters around the Mo
vacancies. Such disorder is thought to remain locally even
in the pressure-annealed samples except for that annealed at
1000'C. The density of states at the Fermi level [N(EF)1
of 81-MoN is 1.3-1.5 times larger than that of hexagonal
MoN from the x-ray photoelectron-spectroscopic measure-
ment. 5 From this result we can estimate T, of a high-
quality 81-MoN crystal as 20—28 K by using McMillan's for-
mula9 and the present T, value of hexagonal MoN. In this
estimation we assumed that the Debye temperature, effec-
tive Coulomb repulsion, phonon density of states, and
electron-phonon matrix element, in fact, all parameters ex-
cept the N(EF) term in McMillan's formula, are the same
in both 81-phase and hexagonal-phase MoN. This assump-
tion would be an underestimation of T, for 81-MoN, be-
cause we neglected the effect of the soft phonon usually ex-
isting in the 81 phase and the increase of the Debye tem-
perature with the transition from hexagonal to 81 phase.

The present pressure annealing did not succeed in retain-
ing the 81-phase MoN. The present work, however, is im-
portant in revealing the existence of the pure hexagonal-
phase MoN with high T, and the need of a pressure higher
than 6 GPa to obtain the nonequilibrium 81-phase MoN.

The authors wish to thank K. Ootsuka and H. Nakamura
for the preparation of the 81-MoN films.
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