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Critical dynamics of the kinetic Ising model on the fractal Koch curves
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The critical slowing down of the kinetic Glauber-Ising model on different fractal geometries with
quasilinear lattices is studied. The classes of fractals which are examined are the nonbranching
Koch curves and the branching Koch curves. The relaxation of two different perturbations from
equilibrium is examined. The dynamic critical exponent is calculated for these lattices using an ex-
act renormalization-group transformation. The value z =1/v+Df is found for both fractals.

I. INTRODUCTION

Recently, a systematic study of critical phenomena in
systems which have a fractal geometry' has been carried
out. There are a number of incentives for this growing
interest in the critical behavior of spin system on fractals.
One of them is the realization that there are physical sys-
tems in which the extensive properties are scaled accord-
ing to a noninteger power law of the geometric linear
length scale. ' This fractal dimensionality was found to
be essential in the determination of the behavior of the
system. Among these systems one can find the diluted
magnetic systems, which exhibit such fractal nature at the
vicinity of the percolation threshold. ' '"

Another motivation is that systems with noninteger
dimensionality have been used for a long time in the study
of critical phenomena. The dimensionality of a system
near its critical point is one of the few parameters which
are utilized to classify the critical behavior in the ap-
propriate universality class. ' For more than a decade, a
formal analytic continuation of the dimensionality was
used to study the effect of the dimensionality on critical
behavior. ' ' Underlying this analytic continuation
there is a noninteger, unphysical Euclidean space which is
translationally invariant and thus differs from the stan-
dard fractals. ' Therefore, it was quite natural to study the
idea of universality in the framework of fractals, which
have noninteger dimensionality and are real geometric ob-
jects. Moreover, different fractals which have the same
dimensionality can belong to different universality classes.
This is a result of the fact that unlike the usual Euclidean
space, the fractals are not translationally invariant, and
the dimensionality alone is not sufficient to determine the
infiuence of the geometry on the universality class.

There is one more, almost trivial incentive for the study
of critical phenomena on fractals. There are some families
of fractals which are quite simple to analyze using stan-
dard methods. For some of them, one can even obtain
exact results which describe their critical behavior. '

Thus, even if their physical origin is a little obscured,
fractals are still intriguing.

Most of the literature that deals with the critical (mag-
netic) behavior on fractals is restricted to the study of the
behavior of the systems at equilibrium. In a series of pa-
pers, the statics of different families of fractals have

been studied, and their relation to physical systems has
been discussed. ' ' " However, there are only a few
studies of the kinetic spin model on the fractals. Harris
and Stinchcombe' generalized the study of the one-
dimensional (1D) kinetic Ising model' ' to fractals, as
well as to other lattices. However, this approach, which
had previously been used to study 2D systems by Suzuki
et al. and by Droz and co-workers, ' was shown in Ref.
22 to be at most a bad approximation to the conventional
theory. ' A different approach was carried out by
Luscombe. ' He calculated a lower bound for the
dynamic exponent of the Sierpinski gasket, and obtained
the exact dynamic exponent of the nonbranching Koch
curves. Another approach to the study of the dynamics
of random fractals had been presented by Hanley. We
shall discuss it in a separate paper, together with our
study of the Sierpinski gasket.

In a previous paper we reported a preliminary study
of the critical dynamics of magnetic Ising spins' system
on some fractals. We used the real-space time-dependent
renormalization-group (TDRG) approach, ' which has
been found to be very convenient for the study of the crit-
ical slowing down of the kinetic Ising model on lattices
with low dimensionality. In the following we describe the
application of this technique to the study of Koch
curves, ' both the nonbranching and the branching. These
fractals have a common feature resulting from their
quasi-1D nature. In a separate paper the dynamics of the
Sierpinski gasket and the Sierpinski carpet will be dis-
cussed.

The fractals that we are studying are nonrandom and
have defined geometrical shapes. They are constructed by
an iterative procedure in which each part of the object (a
segment in our case) is replaced by a more complex shape
(the generator of the fractal). Examples of some fractals
are given in Fig. 1. Contrary to other hierarchical
models, ' each stage of the iteration is described by a re-
scaling of the length by a factor of b. In the iteration the
number of the segments in the lattice, X', increases to X
by a factor

D

which defines the fractal dimensionality Df.
The fractals which are studied in the present paper have
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FIG. 1. Three stages in the construction of fractals. The generator of the fractal appears in the first line. The second and the
third lines correspond to the second and third stages of iteration. Different fractals are placed in different columns: (a) A NBKC
with Df ——ln4/ln3. (b) A NBKC with Df ——ln6/ln4. (c) A BKC with Df ——ln5/1n3. (d) A BKC with Df ——ln8/ln3.

different Df. However, they all have the topological
dimensionality Dr 1. The valu——e of Dr is determined
by the recursion relation Dz ——Dz'+1, where D~' is the
topological dimensionality of the cutting set which cuts
the original lattice into two separate pieces. The value
Dz. ——1 corresponds to ID curves in Euclidean geometry;
thus, this paper is restricted to the study of quasilinear
fractals.

Another parameter which is used to characterize the to-
pological properties of the fractal is R, the order of rami-
fication. ' R at a point X measures the smallest number of
interactions which have to be cut to separate a part of the
lattice which includes X. The two extreme values of R
obey the inequality, R,„&2R;„—2. We are studying
two families of the Dr 1 fractals ha—v—ing finite R. One is
the nonbranching Koch curves (NBKC), which have
R,„=R;„=2, and thus are wigghng chains [Figs.
1(a)—1(b)]. The second is the branching Koch curves
(BKC) which are inhomogeneous (Rm,„&R;„)but still
have finite R, and are quasilinear in a sense that points
which have R;„=2are spread all over the fractal [Figs.
1(c) and 1(d)]. For more details on the topological proper-
ties of these fractals, and their influence on the statics of
magnetic spin systems located on these fractals, the reader
is referred to Refs. 3—6.

The paper is organized as follows: In Sec. II the kinetic
model is represented, and the TDRG is briefly reviewed.
The NBKC are discussed in Sec. III. A modified model,
which is based on a NBKC to which noniterative bonds
have been added, is discussed in Sec. IV. In Sec. V we
present the dynamics of the BKC. We conclude in Sec.
VI.

K=K g o;crj,
&~,j)

(2.1)

where K is the (minus) NN interaction (over the tempera-
ture and in units of the Boltzmann constant). The spins

{o.; =+1 j are located on the junctions of the Koch curve
lattice, and the sum is taken over all (ij ) NN.

The normalized spins equilibrium probability distribu-
tion is P, ( {cr j ) = ( I /Z )exp[H( {o j )], where Z normalizes
the probability. P, is the infinite time limit of the spins
time-dependent probability distribution P( {cr j;t ):

P, ({crj)= lim P({crj;t) .f~ oc

The time evolution of P is given by a master equation,

(2.2)

P( {o j;t)= LP( {oj;t), —' dt
(2.3)

where ~0 is a bare time scale characterizing the coupling
to a heat bath. For the I.iouville operator L we use an
empirical expression which guarantees the correct equi-
librium limit (2.2). We have chosen a kinetic model which
is a generalization of the Glauber model to D&1: The
system is first brought into a state of constrained equi-
librium. Then at time t =0 the constraint is removed, and
the system relaxes towards the final equilibrium (2.2) via
an interaction with a heat bath. Only one spin is allowed
to fiip at a time, with a transition probability rate
W;({oj). The master equation (2.3) which describes this
procedure is

d N

r0 P({oj;t)= —g (1—p;)W~({o j)P({crj;t)

II. KINETIC MODEL AND THE TIME-DEPENDENT
RENORMALIZATION GROUP

We study the nearest neighbors (NN) Ising spin-half
system, which is described by the Hamiltonian

N—:—gL;P({o.j;t)
N—:—gL;@(h, {crj;t), (2.4)
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L;P, ( Icr j ) =0 . (2.5)

This relation does not determine 8; uniquely. We
use29, 30

W~
——[P,(I oJ~; j, —o;)/P, ( I cTJ~; j,cT; )]'~ (2.6)

To study the critical slowing down, we can limit our-
selves to the relaxation of an infinitely small perturbation
from equilibrium. The form of @ is determined by a trial
and error procedure. The slowest mode, near the critical
point, is a homogeneous one. We include in 4 a set of
operators which constitute an invariant subspaee ' in
the parameter space of the TDRG transformation. The
invariant subspace is the smallest subspace in the parame-
ter space, which has the right symmetry, and where the
master equation can be described before and after the RG
transformation We. study two forms of 4&: The odd, mag-
neticlike perturbation,

where p; is a spin flip operator, p;f( I o I&, j,cT; )

=f( Icrj&; j, —cr;), and @ is the perturbation from equili-
brium N=P(Icrj;t)/P, . The transition probability rate
satisfies a detailed balance which ensures the ergodicity of
the system:

right-hand side of (2.10) results in E, ~L', P, ~P, ', and a
transformation in the invariant subspace,

hd ——Qh . (2.12)

=b6)
(2.13)

where co/A, is the eigenvalue of QA
In some cases (e.g. , in the BKC case), Q and A do not

commute. The system is close to equilibrium, and we look
for the invariant form at the limit of the order n ~ oo of
the RG transformation. The largest eigenvalues co and A,

of the matrices Q and A, respectively, control the scaling
properties as t~ Op. Hence, {2.13) again determines the
dynamic exponent.

In the second stage of the TDRG the invariant form of
the master equation (2.10) is restored by presenting hd
(2.12) in terms of h' (2.11), and the time rescaling
~0' ——b'~0 is performed.

If A and Q commute, and this is the situation with the
NBKC, the eigenvalues of QA ' are the time rescaling
factor. The dynamic exponent for each eigenvalue can be
obtained from the standard RG argument

(h, Io.j )=1+ghq g of,
q

(2.7)
III. NONBRANCHING KOCH CURVES

where q distinguishes between points which have different
R, and the even, energylike perturbation

@ (h, Icrj)=1 +h g o;cTJ .
&i,j &

(2.8)

rp — Tr(~) T(p;cr)P(Icrj;r)
d
dt

1V

= —Tr(~) T(p;o )gL;@(I
o.j;t) . (2.10)

E

The left-hand side is nothing other than the standard
static RG transformation which transforms P into
P'=P(K', h'). In the parameter space (K,h) the RG
transformation is described by the recursion relations

X'=RK, h'=Ah . (2.1 1)

The transformation of P and L„which appear in the
right-hand side of (2.10), is determined via (2.6) by the
static recursion relations (2.11). In the inuariant subspace
of the parameter space, the RG transformation of the

The behavior of the system, which is described near the
critical point by (2.1), (2.4), and (2.6), can be studied using
the TDRG. ' ' The TDRG is composed of two
stages. First, a renormalization of the space by a factor

D
b is carried out. This stage of the RG transformation
is performed using the decimation transformation.
The equation of motion is multiplied by T{p,o ),

N'

T(p, cr)—:Q 5(pj —o.i), (2.9)
j=1

where oj are the spins at the edges of the generator. Then
a trace over the I cr j is performed. Equation (2.4) becomes

y =tanhK; y'= tanhK', (3 1)

the left-hand side of the master equation (2.10) becomes

The NBKC are homogeneous curves with a finite
R =2. The implication of this ramification number is that
the spins are arranged in a chain with nearest-neighbor in-
teractions between them. Thus, as far as the magnetic
properties are concerned, this is a linear 1D chain, and the
Glauber solution is applied to it. The effect of the wig-
gliness is that between two spins which are x apart (x is

Dfthe geometrical distance), there are x f bonds. In the
Glauber solution, the distance is measured in terms of the
number of bonds between the spins. Hence, the correlation
(bonds) length g should be replaced by the real correlation~ 1 /D
length g, g=g f. The time scale, which behaves ac-

2Df
cording to the Glauber solution as r-g, is r-g f. Ex-
pressing this result in terms of the dynamic exponent z
leads-to z =2Df.

Although the dynamic exponent is obtainable from the
Glauber solution, we shall use the TDRG approach to
rederive it. The TDRG gives directly the value z=2Df.
It is interesting to see what the sources are for the dif-
ferent contributions to this expression, and to express
them in a scaling way which also fits the BKC.

The iterative procedure which defines the NBKC is as
follows: The segments of the n order are replaced by the
generator of the fractal, each of which is composed from l
segments of the n+1 order and whose length is reduced
by a factor of b. An example for such a procedure is given
in Fig. 1(b), where b =4 and l =6.

Under the RG we transform the n+1 stage to the n
stage by tracing over the l —1 internal o.k+' of the genera-
tor and thus reduce the number of spins from 1V to N'
[see Eq. (1.1)]. By using the notation
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d g T(p, rr)P( I o I;y, h ) =
dt

P'( I p I;y', h'), (3.2)
dt

where

'=b fh (3.3)

N'

g T(p, a) g h;P, ' o;= —(2'coshK) gh&P' J'pj.
Io) i= I j=1

I.'P',
~M

(3 4)

AM ——cosh K'/cosh K

and the contribution to the normalization of P,
Z'=Z/A, is

A =2' '(coshK)'/coshK' .

The right-hand side of the master equation is the sum
of the terms hP"o.;, where P"=P,W;. Due to the de-
tailed balance (2.5), P" is independent of a;. Thus,
Tr~P,"o.; =0. The only terms which survive are the
P' 'ij~. The o. part of P'J' is the same as in P„except for
the interactions around pj which are missing. The two
generators in P'J' around pj are composed from I —1

segments (instead of l ). The trace over the spins in this
"unfull" generator gives 2' '(coshK) ' instead of the
factor A which is needed in order to retai'n the right nor-
malization. Thus, the right-hand side becomes

gr(p, o)P"'p, o,

P (J)(~M)1/2 2I —1slnhl —I(K+hE)Q —lp pJ j+j

where the (co~)' results from the generator which start-
ed at p; and does not include the o.&. At the fixed point
we reveal the previous time rescale factor,

r

QP
zE ——— ln

~E
lnb=2Df . (3.8)

By comparing (3.8) and (3.6) one can see that in the
NBKC the magnetization and the energy have a critical
slowing down which is characterized by the same dynam-
ic exponent. This result is consistent with the Glauber
solution of the 1D chain.

There are some differences between the Glauber solu-
tion and the information that is obtained using the TDRG
that we would like to mention. The transition rate which
is used here is not the same as the one Glauber used.
With the TDRG which is applied here, one can extend
the result to other transition rates, including the Glauber
transition rate. The Glauber solution is limited to the
one-spin and two-spin time average. Our results can be
extended using ihe, standard RG argument to describe the
slowest time scale in 'more complicated time-dependent
quantities. The discussion of these points is the same as
in the simple 1D case. ' The reader is referred to these
references for a comprehensive discussion of the link with
other kinetic models.

(1+ 2+ 4+. . . + 2(l —1))—1 (3.5) IV. MODIFIED NONBRANCHING KOCH CURVES
At the zero-temperature fixed point y

"= 1 and
co=i '=b . The rescaling factor of the bare time
scale (2.13) is b '=co/A, =b f. Thus,

z~ ——2Df . (3.6)

By reexamining the expression (3.5), one can see that as
T~o it reduces to co=(dy'/dy) '=b '~", where v is the
static exponent of the correlation length. ' Of course,
1/v=D/ for the NBKC. Hence, (3.6) can be rewritten as

z~ ———+Df .1 (3.7)

The RG transformation of a typical term in the right-
hand side of the master equation is

We have studied the relaxation of a perturbation which
near equilibrium does not contain spin operators which
are even under a spin reversal. Thus, the result (3.6) de-
scribes a perturbation caused by a magnetic field, and not
by a changing of the temperature. To study the effect of a
temperaturelike perturbation we introduce the perturba-
tion (2.8). The recursion relation for the interaction K is
as before. The recursion relations for the other parame-
ters are

2 =2 'cosh (K+& )/coshK',

A modified NBKC was introduced by Gefen et al.
Their idea was to decorate a NBKC with noniterative
bonds, and thus to have a fractal with a less trivial rela-
tionship to the 1D problem. However, the decoration
with the noniterated bonds was done only at the last itera-
tion that generates the fractal. These noniterative bonds
disappear in the first RG transformation, leaving a stan-
dard (unmodified) NBKC. Then, new noniterative bonds
were reimplanted artificially under the criterion that after
two repeating RG stages with these noniterative bonds the
free energy will be the same as with the noniterative bonds
which disappeared after the first stage.

Such a procedure is a priori forced to reproduce the
NBKC results. Hence, we decided not to study )his con-
struction, but rather another in which the noniterative
bonds appear in the generator, and thus will exist at any
order of the RG. A similar procedure can be found in
some hierarchical lattices. ' The noniterative interactions
are not affected by the RG transformation, and only the
iterative bonds are transformed. Examples for such
curves can be found in Fig. 2. Although the noniterative
bonds are fixed during the RG transformation, only at
one initial value will the recursion relations have a non-
trivial fixed point. At the fixed point the noniterative in-
teractions have the same value as the iterated ones. Near
the fixed point, both interactions have similar order of
magnitude. Hence, the system is more likely to have the
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(a) (b) two scalars, A, and co. The dynamic exponent is obtained
via (2.13), (4.2), and (4.3),

1z= —+Df .
V

(4.4)

The expression (4.4) for z is the same as (3.7) for the
NBKC. However, in the NBKC 1/v=Df, while here
1/v=(ln2m )/lnb &Df.

FIG. 2. The modified NBKC. (a) The generator. (b),(c) The
fractal after two and three steps of iterations, respectively. The
solid lines represent iterative bonds K. The dotted lines
represent noniterative bonds Ko. The bold dots represent the lo-
cation of the spins. In this example 1=2 [the two bonds which
compose the edges of the triangle in (a), and m = 1].

properties of the BKC rather than the NBKC.
The two branching points, o., and o.b, on the two sides

of the noniterative bond Ka are linked by a chain of l
iterative bonds. A tracing over the intermediate l —1 spins
in the "link" leads to an effective interaction
Kb ——tanh y between o., and o.~. Taking into account
the 2m spins in the two external sides of oq and ot, we
find the recursion relation for K and Z:

y'=y tanh(Ko+K~ ),
(4.1)

& =2 +' 'cosh +'(K)cosh(Kc)cosh '(K')(1+y'yo),

where yo ——tanhKO. The recursion relations have a non-
trivial fixed point y =1 only if yo ——1. The fixed point
has a critical exponent I/v=2m.

The transformation of the magnetic field is derived in
the Appendix. At the fixed point we find

(h )'=(2m+i)h =b fh (4.2)

2 ~+' 'cosh +' '(K)cosh(KO)(1+y yo) .

This term should written as cu' 3 in order to restore the
form of the right-hand side of (2.10). The power —,

enters because the total contribution to m comes from two
neighboring generators. By comparing it to (4.1) we find

CO = coshK
as r~r, .

coshK
(4.3)

Like the NBKG the invariant subspace is composed from
one field, It . The matrices A and 0 are reduced to the

The above recursion relations define the RG transforma-
tion of the left-hand side of the master equation with ei-
ther a~or CE.

The RG transformation of the right-hand side of (2.10)
will be performed with 4, the magneticlike perturbation.
A typical term P"o.; is linear in o.;. Thus, as in the
NBKC, the only terms which do not vanish under the RG
are P'J'pJ. In these terms P'J' is the P of a generator
with the first bond starting from the site of pj removed.
It is even in the spins, and has only one p. Thus, the trac-
ing over the spins leaves only the spin-independent term

V. BRANCHING KOCH CURVES

The BKC are characterized by an iterative procedure
in which the n-order segment is replaced by a generator
having segments coming to, and going from, a blob of
polygons (Fig. 3). The nonequilibrium Hamiltonian is
parametrized using the interaction K [or y, (3.1)], and a
set of fields hq where q is the coordination number. As
examples, the BKC's which appeared in Fig. 1 have the
following construction: In Fig. 1(c), n =1, m =1, r =2,
1=1 and the fields are h» 2 and b» 3. In Fig. 1(d),
n =1, m =1, I] ——2, I2 ——1, I3 ——3 and the fields are hq
and h» q. The n, ,m, r, l are defined in Fig. 3(a).

We first study generators having only one polygon [Fig.
3(a)]. The RG transformation of the equilibrium proba-
bility distribution is given by the recursion relations,

Z'=y"+ (y" +y')( I+y" +') ' (5.1)

h'q 2 b» 2(n+m——+r+l —3)+2h»

h'» 3 ——hq 2[ —,(n+m+r+I —4)]+4h» 3 .
(5.3)

In the recursion relation for hq 3 we assumed a symme-
trical generator n =m. If n &m one can either distin-
guish between the different b» 3 fields according to the

Gp Gb Ob

FIG. 3. The BKC fractals. (a) A generator with hq —3 The
number of the bonds in different parts of the generator is denot-
ed by the letters on the figure. (b) The generator with hq)3.
The number of the bonds in each "link" is denoted by the I;.
The arms are to the left of o.„and to the right of a-~, and include
k =1+2=3bonds.

2(n+m+r+1 —2)(coshK)(n+m+r+I) h 1K'( 1+— r~&)

(5.2)

The RG transformation of @ is a little more complex.
There are sites with different coordination number
(q =2, q =3), and the RG transformation creates different
renormalized fields at the different sites.

The renormalized field at the site p; is obtained in the
Appendix. At the fixed point we get
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symmetry of the vertex, or one can average the contribu-
tions.

At the fixed point, the recursion relation for h reduces
to the one given in Ref. 3, where it was obtained by a gen-
eral argument which uses the quasi-first-order nature of
the transition at T, =0.

The eigenvalues and the eigenvectors of the recursion
relation (5.3) are

=n +Pl +7 +I=Q, XM = 1

A, '=Iq2, q3I, A, =I1,2—b //2I.
(5.4)

The RG transformation of the right-hand side of (2.10)
is straightforward. The typical terms in the expression
are P"o.; and P'J'p&. As in all other cases where the RG
is a decimation, the first terms are linear in o. and vanish
under the operation of the trace. The RG contribution of
P'~'pj from each generator that includes the pj arises as
the constant term in the renormalization of P„except one
factor of coshK which is missing in this case. By keeping
the right normalization of the probability distribution we

get, for a site with a coordination number q,
q

' —q/2

~M
coshK'

for T, =O.
coshK

dy'

dg

The limit as T~0 of co, the largest q =2 eigenvalue is

AM (n+m——) '=b- (5.5)

The dynamic exponent is now obtained from (2.13), (5.4),
and (5.5):

1z= —+Dg .
V

(5.6)

y'=y "tanh g tanh '(tanhIK)
l

(5 7)

The transformation of the magnetization was discussed
at length by Gefen et al. To save ourselves calculations
which are similar to those in the preceding two sections,
we shall cite their result, namely, that the largest eigen-
value is b, and that the corresponding eigenvector is
composed from all the fields hq.

To calculate co we should recall that the transformation

The BKC which we have studied has a generator which
is composed from a "blob" and two "arms, " where the
"blob" creates two parallel links between the "arms. "Dif-
ferent BKC cauld have a larger number of parallel links
in the "blob" [ Fig. 3(b)]. We will now show that this
modification does not change the expression for z, given
by (5.6) in terms v and the fractal dimensionality.

The generator of the fractal has in its two "arms" a to-
tal of k bonds, and has links with length l;. In the com-
ing calculations it is convenient to express the contribu-
tion of the blob between o, to ob, after performing the
trace over the internal spins in the blob, as

I;
A~exp[( g K~ )o,o'b], where K~ ——tanh (tanh 'K. ). Us-

ing this notation, the calculation reduces to that of a
linear chain. In particular, the recursion relation for the
bond strength is

of P'J' is the same as the constant term from the RG of a
generator with k —1 bonds in its "arms, "
2" 'cosh" '(K)Abcosh(K~ ), where Kb = g;KI . Thus,
the difference between this constant and the contribution
from the free energy (of the full generator),

A =2" 'Abcosh"(K)cosh(Kb )/cosh(K'), (5.8)

is the factor coshK'/coshK. This is the contribution to co

from each generator. If pJ has a coordination number q,
the total contribution to co is AM ——(coshK /
coshK)»=b»~' "'. Using (2.13) we find that the dynamic
exponent is

(5.9)

=2 'cosh" '(K)Abcosh(Kb )—p,p2 . (5.10)
3'

This term should be written as coA(h )p~p2. By compar-
ing (5.8) and (5.10) we get

co = (coshK'/coshK )(y'/y ) —b ' ' "'= (AM )'

Now the contributions from all the q generators should
be collected together. The scaling factor depends on the
coordination number of the two sides of the specific gen-
erator. The perturbation 4 should be written using a set
of fields h with q )2, which are defined according to the
specific geometry of the fractal. However, the lowest q is
always 2, thus the largest eigenvalue in all geometries, coE,
is co~ co(AM)' =b ' ——and the dynamic exponent is
zz ——2/v. Since for the BKC 1/v & DI, zz &zM.

VI. CONCLUSIONS

We have studied three families of fractals. All of these
fractals have topological dimensionality of 1 and a finite
ramification, and are, thus, quasilinear. This property im-
plies a static behavior exhibiting a quasicritical phase

which reveals the NBKC result.
We proceed with the study of the relaxation of the even

perturbation 4 . This is a perturbation of the interaction
K. Thus, the RG of the left-hand side of the master equa-
tion is given by the recursion relation (5.7) and (5.8) which
leads to A,E ——b' . To calculate coE we have to renormal-
ize the right-hand side of the master equation. 4 (hE) is
an even perturbation. Hence, there is a linear contribution
to A. However, (2.10) is already linear in hz, thus A can
be taken in the zero order of hE, which is (5.8). Around
the renarmalized lattice site p~ there are q generators.
The multiplication of these generators by 8'z creates a
structure similar to generators with only k —1 bonds in
their "arms. " The spin o.„the NN of p~, which appears
in the perturbation p&o., is in only one generator. The re-
normalization of the other q —1 generators is just as in
the magneticlike perturbation, i.e., (AM)'» "~ . The last
generator is multiplied by o, The trace over its inter-
mediate spins is proportional to the spin-dependent term
in the renormalized probability distribution of the k —1

generator,

2" 'cosh" '(K)A~cosh(Kb )y 'tanh(Kb )p, &@2
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transition at zero temperature. If the fracial is not
homogeneous it has a larger v compared to the homogene-
ous fractal with the same fractal dimensionality.

We calculated the dynamic exponent for these fractals,
and found that it can be written in terms of the static ex-
ponents,

1z= —+Df .
v

(6.1)

The factor Df results from the scaling of the most slowly
relaxing perturbation. The factor 1/v results from the
scaling of the Liouville operator. The common behavior
of the three families of fractals is the above scaling law
which connects z with the static exponents. I /v is direct-
ly linked to the topology of the fractals. Hence, even if
the different fractals have the same fractal dimensionality,
they can have different I/v, different z, and different re-
laxation of energylike perturbation.

In the first family, the NBKC, I/v=Df. The. expres-
sion for z reduces to 2Df. This result can be obtained
directly from the Glauber solution of the kinetic Ising
chain. Noticing that in 1D, I/v=Df 1, we find t——hat the
expression for z reduces to the known one, z=2 at 1D.
Two kinds of perturbations [(2.7) and (2.8)] were studied.
In the NBKC both relax with the same time scale.

In the BKC family 1/v is no longer Df. Moreover,
I/v obeys the relation I/v& 1 &Df. Thus, the BKC will
relax faster than a NBKC with the same fractal dimen-
sionality. In the NBKC the two invariant subspaces, the
magneticlike and the energylike, were constructed from
one parameter only. This was not the case in the BKC.
Each of the invariant subspaces of the BKC includes a
few parameters which depend on the coordination num-
ber. The matrices A and 0 do not commute. The scalar
product of their eigenvectors corresponding to their larg-
est eigenvalues does not vanish. This implies that the pro-
cedure to determine z, which was described in Sec. II, ap-
plies to this situation, and that the relaxation has tran-
sients. For a detailed discussion of these transients the
reader is referred to Ref. 30. We also found that the ener-

gylike perturbation relaxes faster than the magneticlike
perturbation.

We introduced another family of fractals, the modified
NBKC. These fractals behave more like the BKC than
the NBKC in the sense that I/v &Df and the energy per-
turbation relaxes as in the BKC. On the other hand, 0
and A reduce to scalars as for the NBKC. If we compare
a NBKC with a modified NBKC which had been
prepared from the former by introducing noniterative
bonds we find the same Df. If the noniterative bonds are

replaced by iterative bonds we obtain a BKC with larger
Df. Thus, of the two fractals the modified NBKC will
relax the fastest, while the NBKC will relax the slowest.
The BKC has relaxation time between these two.

We would like to comment on the method that we used
for the calculations. The TDRG transformation of these
fractals is an exact one. On the other hand, there are
some assumptions in the model. One is the assumption of
the existence of the linear response regime. This assump-
tion fits the critical relaxation close to equilibrium. We
also assumed that there are no other invariant subspaces
which have slower relaxation time. From our experience
with 1D problems, this assumption is very likely valid.

The appearance of I /v in (6.1) causes the difference be-
tween families of quasi-1D fractals. To understand its
origin, we recall the arms and blob picture which was
mentioned in Sec. V. The blob is composed of a few
parallel chains of bonds. The blob can be substituted by
an effective bond, much stronger than the bonds in the
arms. As the system approaches T, =0 the effective bond
becomes so strong that the two spins at its edges can be
taken as totally correlated. Thus, all the relaxation pro-
cedure takes place along the arms, whose length is given
by I/v.

It appears not unreasonable to us to extend the result
obtained here to randomly diluted systems, i.e., to assume
that the randomness will affect the value of v, but not the
scaling law (6.1) between the dynamic and the static ex-
ponents.

The diluted magnetic system in the vicinity of the per-
colation threshold' '" is a random fractal system with
T, =0. If the arms and blob picture is applied to it, as
was suggested by Refs. 37 and 38, such a system can be
used to test the scaling law.

We know of only one such system, for which experi-
mental information regarding the static and the dynamic
exponents exists. This is the percolating Ising antifer-
romagnet, RbqCo, MgI, F4 with c =0.58. The static ex-
ponent v=1.32+0.05 of this system was measured by
Cowley and co-workers. The theoretical value for Df
is' '" Df ——1.58, and the dynamic exponent was measured
by Aeppli et al. ,

40 Z=2.4+001. Unfortunately, the brack-
ets of uncertainty are too large to test (6.1) in random sys-
tems. However, this experimental z is very close to
z=2.34 which is obtained by plugging the experimental
values into (6.1).

The agreement between the experimental and the calcu-
lated values of z is much better than results derived from
our study of the Sierpinski gasket. However, we must
stress again that the applicability of (6.1) to random sys-
tems needs further support than is given here.
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APPENDIX

1. Modified NBKC: The recursion relation for N

The magnetic field near the fixed point is treated as a small perturbation. The contribution of the field at the
2m + I —1 spins in the generator is

I —1 rn —1

2 +' 'cosh +'(K)cosh(Xo) y +' (1+yo)+y [(1+ytyo)+y~(yt+yo)]
1 —p 1 —g

+y (1+y')(1+yo) h (pi+@2) . (Al)

This should be written as P,' A, h (p&+pz) where P' is the contribution to the probability distribution from the

pi —p2 normalized interaction. Using (4.1) we get

I —1 1 m —1

X= y +' (1+yo)+y [(1+y'yo)+y (y'+yo)]+y (1+y')(1+yo) (1+y'yo) '(1+y')
1 —y 1 —p

The new field at p &
is

h'=(2X+1)h, (A3)

where the first term stands for the contribution from the two generators around p i, and the second term comes from the
original field at that site. At T, (A.3) reduces to (4.2).

2. The BKC: The recursion relation for @

The recursion relations for the magnetization can be found using the contributions to the renormalization of the field
in the internal j=(n+ m+r+I —2) spins of the generator between p& and p, z,

TP,' '(h, oz+ . +h, o, )= g [(a,"—y'aP)p, +(a, —y'a,")p,](1+y"+') '(1 y') 'P", —
q

where,

az ——y[(1—y" ')(1+y "+')+y"(1—y ')(y "+y')]/(1 —y), a3 =y "(1+y"+'+y "+y'),

(A4)

and tt~ are obtained from the above expressions by interchanging n and m. The P,' ( P", ) are the equilibrium prob-
ability distributions for the generator ( segment ) between p& and p2. The renormalized field at the site p; is obtained
from the above internal contribution, together with the old field at p;. At the fixed point this expression is reduced to
(5.3).
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