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We study the phase structure and critical behavior of fully frustrated systems. The Hamiltonians
considered have global 0( n) symmetry, as well as the discrete symmetries associated with the space
group. The fully frustrated XY (n=2) model on the square and triangular lattices are two of the
more popular models that belong to this class of problems. We derive a Landau-Ginzburg Hamil-
tonian for the general case, assuming that both the (continuous) O(n) symmetry, and some discrete
symmetry are broken in the low-temperature phase. This Hamiltonian is studied in 4—e and 2+ e

dimensions by standard renormalization-group procedures. For n =d=2 we establish connection to
a microscopic double-layer model, which is mapped onto a Coulomb-gas problem.
Renormalization-group recursion relations are derived, and the resulting flows are used to restrict
the kinds of transitions that can be observed in various cases. In particular, for the fully frustrated
XY model on the square and triangular lattices, we expect a single transition from the disordered
phase to one with Ising-like long-range order and algebraically decaying XY-type correlations.

I. INTRODUCTION

Interest in fully frustrated spin systems has been trig-
gered originally by the close connection of these systems
with various models of spin glasses. Peculiar phase struc-
ture of spin glasses is generally believed to appear as a re-
sult of competition between randomly distributed fer-
romagnetic and antiferromagnetic interactions. ' Owing
to this competition, the low-temperature phase of spin
glasses is highly degenerate. Edwards and Anderson,
considering a model with randomly interacting XY-like
spins, have estimated that there may be 0 (2 ) ground
states for a model with N spins. Each one of these states
is continuously degenerate, but only discrete transforma-
tions can connect these 2 states.

Fully frustrated continuous-spin systems are somewhat
intermediate between usual phase-transition models and
spin glasses. In these models a high degree of bond com-
petition results in double degeneracy of the ground state,
even though their Hamiltonian is translationally invariant.

More recent interest in uniformly frustrated models has
been motivated by their connection to experimental sys-
tems such as arrays of coupled-system Josephson junc-
tions in a transverse magnetic field.

A simple system exhibiting this discrete degeneracy of
the low-temperature phase consists of XY spins on a two-
dimensional square lattice with the Hamiltonian (the neg-
ative inverse temperature —P will be absorbed in coupling
constants)

are chosen to satisfy

0 if (i,j ) is in x direction,

r; xF if (ij ) is iny direction,
(1.2)

where lattice spacing is taken to be unity and F is the
frustration. Periodicity of interactions in (1.1) and reflec-
tion invariance provide a natural cutoff for frustration:
0 & F & m.. The case F=~ corresponds to fully frustrated
model for which (1.1) and (1.2) reduce to ferromagnetic
coupling in the x direction and alternating rows of fer-
romagnetic and antiferromagnetic bonds in the y direction
(Fig. 1).

In addition to usual continuous degeneracy, the low-
temperature phase of (1.1) may have a high degree of
discrete degeneracy. For F =2'(m/n), where m/n is an
irreducible fraction, multiplicity of the ground state is of
order n. In particular, the ground state of the fully frus-
trated model has double (discrete) degeneracy, in addition
to the obvious invariance under rotations.

Models exhibiting double degeneracy of the low-
temperature phase have been studied by Villain, who
pointed out-that they possess some new type of long-range
order which he called "chiral" order. Consider, for exam-

H =J g S; A'(fi)SJ =J g cos(8; —8I fj), —
&~j& (I'j&

where (ij ) denotes a pair of nearest neighbors and
A'(f 1 ) is the operator of rotation by an angle fy. The fz

FIG. 1. Fully frustrated square lattices. Thick lines corre-
spond to antiferromagnetic coupling, thin lines to ferromagnetic
coupling s.
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pie, the fully frustrated model on a two-dimensional
square lattice. In the ground state the square lattice splits
into four sublattices, A, B, C, and D. Each sublattice is
ordered ferromagnetically, but the direction of magnetiza-
tion differs from sublattice to sublattice. Two different
relative orientations (helicities) are possible [Figs. 2(a) and
2(b)]. Notice that the ground state of Fig. 2(a) cannot be
transformed into the state of Fig. 2(b) by a continuous
transformation. The order parameter associated with the
spontaneously broken discrete symmetry can be identified
as follows.

On each plaquette we define two vectors P~ and $2 by

Q, =S"+A —S +A —S +A' SD,
4 2

(1.3)

P,=S"+A ——S +A ——S +A — S
2 4

In the ground state of Fig. 2(a),
~ P& t

= 1 and P2 ——0, while
in the ground state of Fig. 2(b),

~ P2
~

=1 and P&
——0. Vil-

lain argued that at sufficiently low temperature any
ground state is stable with respect to introduction of a
domain of the other ground state. His argument is as fol-
lows. Consider a narrow boundary separating two
domains of different helicity. The energy of such a boun-
dary per unit length (unit area for three-dimensional sys-
tems) is of order T

~

J
~

and its entropy is of order unity.
Therefore, in the low-temperature phase (

~

J
~

& 1) most
plaquettes will have the same helicity, and the "chira1"
correlation function

I,h(R) = ( [p((0)—pp(0)][/)(&) —p2(&) ] ) (1.4)

FIG. 2. Ground states of the fully frustrated XY model on
the square lattice.

wilI have a nonvanishing limit as R~oo. This long-
range order will vanish at some transition temperature T„
which does not have to be the same as the critical tem-
perature of a Kosterlitz-Thouless transition, also expected
in this system.

Monte Carlo simulation of this model produced evi-
dence for a transition similar to a Kosterlitz-Thouless
(KT) transition, except for one important feature.
Whereas in the KT transition the specific heat per site C
has a peak with a maximum value C,„ that is indepen-
dent of lattice size X, in the frustrated model C~,„

H =J g S; SJ(1+r;rj),
(~',j)

(1.5)

where the S; are n-component vectors (n & 2), 7; are
Ising-like variables, and (i,j ) runs over pairs of nearest
neighbors on the two-dimensional lattice. An Ising-like
transition is predicted for the model (1.5) with n & 3. In
Sec. IV the Hamiltonian (1.5) with n =2 is rewritten in
the Coulomb-gas representation and analyzed using a
Kosterlitz-type position-space-renormalization group.

Such renormalization-group procedures are based on
expansion in various small fugacities. The initial Hamil-
tonian does not lie in the region where these fugacities are
small. Therefore, we cannot draw unambiguous con-
clusions concerning the nature of the transition from the
disordered phase to the low-temperature one. However,
the possible scenarios we find are either a single first-
order transition or a single continuous transition of novel
critical behavior (Ising-like and Kosterlitz-Thouless-like
simultaneously). Which of these two scenarios is chosen
by any particular system may depend on various
nonuniversal details of the underlying model.

diverges logarithmically with X. The logarithmic scaling
of the specific heat is characteristic of the Ising transition.
However, the Monte Carlo data were not precise enough
to distinguish whether the peak value of the specific heat
occurs at the same temperature as the jump in vorticity or
slightly above.

The fully frustrated XY model on the triangular lattice
has been studied recently by mean-field techniques and
Monte Carlo simulation. ' These calculations favor a sin-
gle transition of a novel type rather than two consecutive
transitions.

While the precise form of the definition of P&, Pq de-
pends on the details of each model, the possibility of such
a definition and Villain s argument depend only on the ex-
istence of two different types of ground state which can-
not be connected by rotation. In this work we argue that
all models exhibiting this kind of low-temperature phase
are described by the same Landau-Ginzburg-Wilson
(LGW) Hamiltonian. Assuming that the strong universal-
ity hypothesis" is satisfied, that is, all models described
by the same LGW Hamiltonian belong the same univer-
sality class, we study this Hamiltonian by renormal-

- ization-group methods.
The most general LGW Hamiltonian, appropriate for

transitions in fully frustrated models, is derived in Sec. II.
It should be noted that, up to the leading anisotropy term
(fourth order), the XY antiferromagnet on the triangular
lattice, the fully frustrated XY model on the square lat-
tice, and the XF helimagnet are all characterized by the
same LGW Hamiltonian. In Sec. III this Hamiltonian is
studied by means of an exact renormalization group in di-
mension d =4—e and d =2+a. In both cases no stable
fixed points are present in the vicinity of the Gaussian
fixed point. In dimension 4 —e this is interpreted as a
first-order transition, while for two-dimensional systems,
renormalization-group recursion relations allow us to es-
tablish a close connection between our models and a
model defined by the Hamiltonian
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II. SYMMETRY ANALYSIS

A. general considerations

ed from three basic invariants:

01+br 4 1'4'2 (2.6)

Consider a system of classical n-component ( n )2) unit
vectors S; located at sites i of a d-dimensional lattice.
The Hamiltonian of such a system will be assumed to
satisfy usual requirements of translational invariance, glo-
bal O(n) invariance, and sufficiently short-range interac-
tions. As a result of the rotational invariance of the Ham-
iltonian the ground state is continuously degenerate:
under arbitrary global rotation it transforms into another
ground state. However, it may happen that not all ground
states can be connected by rotation. In this case, in addi-
tion to rotation, some discrete transformation is required
to connect all ground states.

In this paper we will concentrate on the "minimal"
case: we assume that apart from the usual rotational de-
generacy, the ground state has additional double degenera-
cy. Then these ground states form two "pockets" in phase
space, separated by a potential barrier, and the symmetry
group of the Hamiltonian contains some discrete transfor-
mation 2}, satisfying ri =E, which connects these two
"pockets. "

Let ~ be the number of spins per unit cell in the lom-

temperature phase. Consider the expectation values

(SJI~), a=1,2, . . . , n, L=l, . . . ,~ (2.1)

satisfying the following requirements:
(a) For each M, n quantities P~p transform under rota-

tion as components of an n-dimensional vector PM.
(b) In one ground state,

(2.3)

while in the other ground state,

14'2 I
&o (2.4)

(c) z) transforms pi into $2 and vice versa.
Assuming that P3,Pq, . . . , P,- vanish at all tempera-

tures, we see that the order parameter can have at most 2n
independent components

$1P, $2P, P=1,2, . . . , n . (2.5)

The appropriate Landau-Ginzburg-%'ilson effective
Hamiltonian' is constructed from all possible invariants
that can be built from the order parameter and its deriva-
tives.

Consider first those terms in the expansion which do
not contain derivatives. Any such term which is invariant
under both rotation and the operation q can be construct-

where j runs over unit cells, L, labels spins within a cell,
and a labels spin components. Let us assume that these
quantities do not depend on j for all temperatures. Then
we have only n~ independent quantities (SL~). Stan-
dard theorems of linear algebra tell that we always can
choose n~ independent linear combinations,

PMp= g a~p(, SI~), P=1,2, . . . , n, M =1,2, . . . ,~
I.,a

(2.2)

It will be convenient to define the following set of invari-
ants,

Ok= Iki I 14'2 I "cos(ka), k=0, 1, 2, . . .

where a is defined by

(2.7)

lkil ldzl

Ok can also be written as

Op ——1,
Oi =Pi'$2

Oz ——2(pi. pz) —/~1/2,

Ok OkO +(Ok+ Ok —A

(2.&)

Then all terms which do not contain derivatives are of the
form

(pl+/&)'(pip&) Ok, i,),k=0, 1,2, . . . . (2.9)

Inserting the derivative terms, one finds that the most
general Hamiltonian is

A = r($1+$2)+Will $2+(V/1)'+(Vgz)'+a(Vlt 1)(V/2)

+u($1+$2) +Vgigz+u'2(2(P, $2) —Pi/2}

+ ~1(41+4'2)(41 (t'2)+ (2.10)

where the ellipsis denotes terms of sixth and higher order.
Notice that for our models u & 0 and v & 0.

The partition function is obtained by performing the
functional integral over $1 and $2,

Z = J %pi &pzexp —J d"x P (pi, pz, V/1, Vpz, . . . )

(2.11)

The appearance of two second-order invariants indicates
that the order parameter transforms as a reducible repre-
sentation of the SO(n) X Z 2 group generated by rotation
and g. However, in most cases the group of transforma-
tions which do not leave the ground state invariant is
larger than SO(n)XZ2, i e , the f.ul. l symmetry group of
the Hamiltonian contains a transformation g which acts
on the order parameter as follows:

=
m(8)y (2.12)

~= 1'($1+$2)+(V/1) +(Vyz) +&(yi+yz)

+U014'2+~(2(el 4'2) 4'lez)+ (2.13)

The existence of g also assures that the order parameter

Here, %(8) denotes the operator of rotation by a certain
angle 8&2m. . Since Ok is invariant under g if g =E (k8
is a multiple of 21r), several invariants including pi.pz
disappear and the Hamiltonian (2.10) becomes
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transforms as an irreducible representation of the group
generated by rotation, g, and g.

—g g S(k).S(k )e'
&)kk (2.18)

1. Triangular lattice

The simplest example of a frustrated system is provided
by the antiferromagnetic XY model on the triangular lat-
tice (see Fig. 3). This model is defined in terms of two-
component unit vectors SJ located at the sites j of a tri-
angular lattice. The Hamiltonian of this model is

H=J g s, .s, , (2.14)

where (i,j) denotes a pair of nearest neighbors and the
coupling constant J ~0 favors antiferromagnetic align-
ment. This Hamiltonian is invariant under the group O(2)
of rotations and reflections of the spins, and also under
the translations, rotations, and reflections which form the
space group P6mm of a triangular lattice. ' Since the
operations in O(2) and P6mm commute, the symmetry
group Go of H is simply their direct product.

The ground state can be obtained' by a Fourier
transformation of SJ.

SJ ——g S(k)e ', s( —k) =s"(k) (2.1S)
k

where k runs over the Brillouin zone of the triangular lat-
tice. Then we have

M= JN g S(k) S( —k) I cos(k. t& )+cos(k t2).
k

B. Examples of frustrated systems

In this subsection several frustrated models are treated
explicitly. We determine the order parameters of these
models and construct corresponding LGW Hamiltonians.
Only two-dimensional lattices are considered.

and then looking for solutions satisfying (2.17). Under
the weak condition the minimum satisfies

where A, is the Lagrange multiplier. In order to obtain a
nonvanishing solution, we must have

A, =cos(k t, )+cos(k t2)+cos[k. (t~+tq)] . (2.20)

Multiplying both sides of (2.19) by S( —k) and summing
over k we see that —JNA, is just the total energy of the
system. Therefore, S(k) must vanish unless k is such that
A, reaches its maximum. The maximum is reached for
k =+Q, Q = ——,

' g~+ —', g2, where g&,g2 are reciprocal-
lattice vectors defined by g; tj ——2m 5,&. Note that +Q lies
at the corners of the first Brillouin zone. The ground
state corresponding to k =Q is given by

SJ ——u cos(Q rj )+v sin(Q rz ), (2.21)

where u and v are two orthogonal unit vectors. The sym-
metry group P6mm contains a global rotation of the lat-
tice by 180'. Action of this transformation on the ground
state (2.21) gives us another ground state,

SJ =u cos(Q rJ ) —v sin( Q 'rj ), (2.22)

which corresponds to k= —Q. Since u and v are two-
component vectors, the pair (u, v) cannot be continuously
transformed into (u, —v).

The order parameter of this model can have at most six
independent components, that is, expectation values of
two spin. components for each one of the sublattices. The
six quantities

S(k)leos(k t~)+cos(k tz)+c os[k.(t&+t2)]I =AS(k),

(2.19)

+cos[k (t&+t2)]I, (2.16) SL, ——(SL, ), L =A, B,C and a=x,y (2.23)

where N is the number of lattice sites and t&, t~ are the
lattice vectors. Since Sz

——1, the S(k) satisfy N condi-
tions,

g S(k) S(k')e '=1, j=1,2, . . . , N . (2.17)
k, k'

The ground state can be determined by minimizing
(2.16) under the "weak" condition

transform as a reducible representation of P6mm &&O(2)
which can be decomposed into a four- and a two-
dimensional irreducible representation spanned, respec-
tively, by the following linear combinations:

v~
Pi» =Sq —

2
Sa»+ Say ——Sc» —

2 Scy

p)y
——Spy — Sa» ——Say+' Sc» —

2 Scy ~

(2.24)
1 v3 1 v~3

Pq» =S~» ——Sa„— Say ——Sc„+ Scy ~

2

vS
$2y = gy +

2 a» — Say — Sc» — Scy r

and

FIG. 3. Ground states of the fully frustrated XY model on
the triangular lattice.

P3„——S~„+Sa„+Sc P3 ——Sw +Sa +Sc (2.25)

Since p3 is just the net magnetization which vanishes
both in the ordered and disordered phases, we will be con-
cerned only with the representation spanned by P&, P2.
This four-dimensional representation is a Kronecker prod-
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uct of a two-dimensional representation of P6mm and a
two-dimensional representation of O(2). In a compact
vector notation,

271 2~
$1——Sg +A S21+A' — Sc,

3 3

v2 VZ v2
p 1„———Sgx +

2
S21x — S21y —Scx —

2
SDx—

v2 v2 v2
$1y gy + S21x + 21y +Sex + SDx

v2
Dy

v2
2 Dy~

(2.32)

2~ 2'
$2 ——Sg +A — S21 +A SC,

3 3

(2.26)

%(2m./3)P1

A( 2' l3)—$2

42
(2.27)

Therefore Ok invariants disappear, unless k is a multiple
of 3, and the Hamiltonian is

where p1, p2 and SL are understood as two-component
vectors, P; =(P;„,Py ) and SL ——(SLx,SLy).

Under global spin rotation, $1,$2 transform as two-
component vectors while elements of P6mm act as fol-
lows. Since the elements of P 31m leave p1, p2 unchanged,
we need to consider only the factor group P6rnm/P31rn,
which is just the group of all permutations of sublattice
indices A, B,C. This group is generated by the permuta-
tions g: [ABC]~[CAB] and 21: [ABC]~[ACB], which
act on P1,P2 as

v2
02x =SAx + SBx + S21y +Scx—

2 2

v2 v2
Sgx+ Spy —Sc—$2y ——S~y—

v2 V2
SD + SD

V2 v2
Dx 2 Dy

The action of the symmetry group on $„$2 is generated
by rotation, g, and the permutation of sublattice indices g:
[ABCD]~[DCBA], which act as follows:

4'I ~(~i2)(i'1 01 02

02 ~( ~i2)02 ' " 02
(2.33)

O4 8((( I 4'2) 80152(01 4'2) +0102 (2.34)

Now consider effects of various lattice anisotropies. In-
troduction of different coupling on alternating horizontal
rows will break g, but g will remain a good symmetry. In
this case the

Therefore, the Ok invariant of lowest order appearing in
the Hamiltonian is Oq,

H = a(y', +y,')+ u (y', +y,')'+ Uy', 0,'

+u 3(4(01 (I 2) —30102(01 02)) + ' (2.28)
O, =2(y, y2)' —y', y2

2. Square lattice

The fully frustrated XY model on the square lattice ' '

is defined by the Hamiltonian

H QJJS; SJ, —
(i,j&

(2.29)

where the absolute value of the coupling constant is fixed,

I JJ I

=J. On horizontal bonds, JJ )0, while vertical
bonds form alternating rows of ferromagnetic and antifer-
romagnetic couplings (Fig. 1). In the ground state the
original lattice splits into four sublattices, A, B, C, and D
(Fig. 2).

In addition to the usual P2mm &&O(2) symmetries, the
symmetry group of the Hamiltonian (2.29) contains a
"gauge" symmetry' ' g. This transformation can be car-
ried out in the following two steps:

(a) Perform the gauge transformation

S —+ —S J"~—I"
E EJ EJ (2.30)

SL ~
——( SL, ), L =A, B,C,D and a =x,y (2.31)

on all sites of sublattice D (Fig. 2).
(b) Rotate the lattice by 90' to obtain the initial configu-

ration of antiferromagnetic bonds.
Under the action of P2mm, O(2), and g, the eight

quantities

3. XY helimagnets (Refs l9 and 20).
In some models all Ok invariants disappear from the

LCxW Hamiltonian. Consider, for example, a system of
XY spins at the sites of a square lattice interacting via the
following Hamiltonian:

H=J, g S; SJ+J2 g S;.SJ,
&i j& &i j&'

(2.35)

where (ij ) runs over pairs of nearest neighbors and
(i,j )' runs over pairs of next-nearest neighbors in the x
direction. If J1,J2 satisfy

Jl)0 J2« IJ2I ) 4J1

the ground state will be given by

(2.36)

invariant will appear in the LGW Hamiltonian. Another
way to break g is to introduce antiferromagnetic bonds
different in absolute value from the coupling on ferromag-
netic bonds. Then g will also be broken and the LGW
Hamiltonian will be of the most general form, (2.10).

It is of special interest to note that the four-dimensional
irreducible representation (2.32) contains two functions
that belong to k =(0,0) and two that belong to k =(O, vr).
While usually symmetry operations of a space group do
not mix functions with

I
k1

I
& I

k2 I, the operation g
does. A similar observation was made by Blankschtein
et al. ,

' who studied fully frustrated three-dimensional Is-
ing models.

transform as two four-dimensional irreducible representa-
tions. The relevant representation is spanned by SJ =ucos(Q rj)+vsin(Q ri), (2.37)
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or by

SJ =ucos(Q rj) —vsin(Q rj), (2.38)

. f —1

2m L S(Lx),
o

.I —1

—2m L S(Lx) .

(2.39)

Here, S(Lx) denotes average magnetization on sites with
the x coordinate equal to I.. For incommensurate wave
vectors we must take the limit ~~ oo. Translation by a
lattice spacing in the x direction acts on P&,$2 as follows:

%(2m.(m/~) )P(

Pz %(—2m(m /~) )Pz
(2.40)

Therefore, the Ok invariant of lowest order appearing in
the Hamiltonian is O, .-&z for ~ even and 0,,- for ~ odd.
For incommensurate wave vectors, all Ok disappear and
the LGW Hamiltonian is constructed from powers of', an

+ (ttt'1+ (t'2) +~ (41+02) +u(t'102+ (2.41)

III. e EXPANSION NEAR FOUR AND TWO
DIMENSIONS

where the wave vector Q points along the x direction and.
cos

~ Q ~

= —J~/4J2 (lattice spacing is taken to be unity).
Equations (2.37) and (2.38) describe spiral magnetic struc-
tures with opposite helicities.

For
~ Q ~

=2m(m/~), where m/~ is an irreducible
fraction, the unit cell in the low-temperature phase con-
tains ~ spins, and the components of the order parameter
can be defined as

+4nuv —8(n —1)uw —4(n —2)uw],

GU 1=ev+ [(n —4)u —24uu —4(n —1)uw],4~'
JLO 1=ew+ [(6—n)w —12uw+2uw] .
dl

(3.2)

From the recursion relation for u, it follows that if we
start from a non-negative initial value of u, the renormal-
ized value of U will also be non-negative. However, all
stable fixed points of these recursion relations reside in the
region U ~0. Under the action of a RG transformation,
systems with a positive initial value of u flow to the insta-
bility region bounded by the planes u =0 and
4u + u =

~

w
~

. Renormalization-group trajectories for
models with n =2 and w =0 are shown in Fig. 4. This
runaway to the instability region is interpreted as a first-
order transition. ' Therefore we conclude that a first-
order transition is expected in three-dimensional fully
frustrated systems.

B.2+ e dimensions

The phase transition in two-dimensional systems can be
studied by means of Polyakov's 2+v expansion. As op-
posed to the soft spin field of the 4 —e expansion, the
2+e theory deals with a fixed-length spin field. There-
fore, the partition sum now reads

Z = I uy, uy, n(1 y', y,')——

Xexp —f d x(VP&) +(V/2)

ferent context by Aharony. Recursion relations for u, u,

and w were found to be

Ju =eu — [8(n+4)u +nu —2(n+14)w2 2 2

dl 8m

A. 4—e dimensions

~= r(y]+$2)+(Vy]) +(V/2)'+u(y]+yp)

+ud fA'+ w(2(ki 02)' —(t f49 . (3.1)

The Hamiltonian (3.1) was studied previously in a dif-

The mean-field approximation predicts that systems
described by the Hamiltonian (2.13) exhibit a second-order
phase transition. However, since the mean-field theory is
not very reliable, we will study the critical behavior of
(2.13) by the powerful methods of the renormalization
group.

Recursion relations for three-dimensional systems can
be obtained by Wilson's e-expansion version of the
renormalization-group (RG) transformation. ' In this ap-
proach the Hamiltonian is Fourier-transformed and, a
spherical Brillouin zone is introduced. Performing the
functional integral over the P(q) which have wave vectors
q in the range A/l &

~ q ~
& A, with l & 1, and rescaling q

and P(q), a partition function of the same form but with
new parameters r', u', U', and m' is obtained. Terms of
sixth and higher orders are known ' to be irrelevant near
d =4, so that (2.13) reduces to

+ u 0 1'(t'2 + g wk Ok +
k&2

(3.3)

FIG. 4. Renormalization-group trajectories in d =4—e for
models with n =2 and u =0.

Assuming that the magnetization is along the P& direc-
tion, we parametrize the spin field by

P)(x) =e "y)(x), Pp(x) =(1—e ) y2(x), (3.4)

where y~
——yz ——1. Inserting (3.4) into (3.3), one finds that

the a field acquires mass U. By power counting the mass
is found to be strongly relevant (to zeroth order in
e, A,, =2). Thus we can set u = oo and neglect the a field.
Since all Ok invariants are proportional to some power of
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H =J g p; QJ
—U g p;~p;2, (3.5)

a, these invariants are irrelevant.
The partition function (3.3) is a continuous limit of a

microscopic model, H=J g S;.SJ(1+x;ij) .
(i,j)

(3.9)

contribute to the partition sum. Substitution of (3.8) into
'(3.7) yields

where we neglected Ok invariants. Defining

(3.6)

This Hamiltonian describes an (n & 2)-component vector
model coupled to an Ising model. For n & 3 this Hamil-
tonian is expected to exhibit a single transition of an Ising
universality class. The n =2 case will be studied in detail
in Sec. IV.

S,' =~;S;, ~;=+1 . (3.8)

In the limit U=+ oo only configurations satisfying (3.8)

and taking into account that P&+Pz ——1, (3.5) transforms
into

H= JQS; S, +J g S,' S,'+vg[(S; S,')' ——, j . (3.7)
ij (ij) i

From the constraint Pt+Pz ——1, it follows that
(S; S,' ) & —,

'
with equality if and only if

C. Effects of symmetry breaking

Consider the LGW Hamiltonian (2.10). The quadratic
part can be diagonalized by introducing

(3.10)

In terms of these two representations, the Hamiltonian
takes the form

W)r+ lp)+ 1'—
2

1+—(Vg, ) + 1 ——(V/2) + u+ —+

W2+ u+ —+
I

W2 46+ —,—
3W2 2

0102 (U ~2)(el e2) + (3.11)

In d =4—e one finds that this Hamiltonian has, for
large symmetry breaking, two transitions. The first (high
temperature) is associated with ordering of the O(n) type.
This is followed by an Ising-like transition. Such a situa-
tion arises in systems with a tetracritical point. In our
case, however, on the m& ——0 line the transition is first or-
der. Therefore, the phase diagram has a first-order line at
low symmetry, and two lines of continuous transitions at
large symmetry breaking; these lines join in some manner.

For d =2 and n =2, one expects, for large symmetry
breaking, a high-temperature Kosterlitz-Thouless transi-
tion, followed by an Ising transition. So far we can
deduce only that one of the three possibilities of Fig. 5
[(a)—(c)] can occur.

The fact that one has to choose among only these three
possibilities, combined with the results of Sec. IV, will al-
low us to exclude possibility (a).

W)

2f'

w,
2I'

(a)

(b)

IV. FRUSTRATED XYMODEI.
IN T%O DIMENSIONS

In this section we study the model (3.9) with two-
component spins S;. First, a variational approximation is
presented, followed by scaling arguments applied to this
model. Subsequently, the partition function is
transformed into the Coulomb-gas representation. Stan-
dard position-space RG techniques are employed to derive
generalized Kosterlitz recursion relations. These recur-
sion relations are used to establish the phase diagram.

w,

2r

(c)

FICi. 5. Possible phase diagrams for models with w =0.
Thick line denotes first-order transition. The manner in which
transition lines meet in (b) has not been specified.
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A. Decoupled variational approximation PF= g ( P—,H+p, lnp, )
Is,~j

(4.1)

The model (3.9) consists of an XY model and an Ising
model with some peculiar coupling between them. One of
the possibilities that arises here is that this coupling is ir-
relevant and the model (3.9) has two independent phase
transitions, one of XY type and one Ising-like. If indeed
this is the case, the natural question to ask is which tran-
sition occurs first.

In order to estimate the critical couplings of XI'and Is-
ing transitions, we will minimize the trial free energy

under the constraint

pt pxY(K)pI(L)

exp K g S;SI exp L g rvI.
. (, }''

ZIIY(K)ZI(L )

(4.2)

Here, K and I. are the parameters to be determined. Sub-
stitution of (4.2) into (4.1) yields

)33 = g g ( —JS; SI —Jv;AS;.Sj+KSt. .SI.+L'r;rj)1

xY I (sz] &t j&

Using the relation

X exp K g S;.SI exp L g v;~j
. (, }''. —lnZXY(K) —lnZI(L) . (4.3)

g KS; SI exp K g S; SI lnZxY(K—) = (HXY(K) ) +pF = —SxY(K),
[s,~], &i j& ) &i j&

where S~Y(K) is the entropy of the XFmodel at coupling K, and a similar relation for the Ising model, we obtain

f3F= SIIY(K) —SI(L) ——(HXY—(K) }— (HXY(K) ) (H, (L) & .J J
E NEL,

Here, N is the number of bonds. In order to minimize the free energy, K and L must satisfy

(4.4)

(4.5)

K=J 1 — (HI(L) },L—= —J—(HXY(K) j .
1 1

N
(4.6)

The functional dependence of (1/N)(HI(L) ) on L is known exactly, while (1/N)(HIIY(K) ) can be taken from Monte
Carlo simulation of the XI'model. After substitution of these functions into (4.6), this system can be solved numerical-
ly, giving K and L as some monotonic functions of J. When L(J) reaches the critical value L, = —,ln(1+v 2), K(J) is
equal to 1.07, which is slightly below the critical value K, =1.12. Therefore we conclude that within the decoupled ap-
proximation the model (3.8) possesses an intermediate phase with ordered Ising spins and disordered XI' spins.

B. Double-layer model

The model (3.9) is a limit of a more general model described by the partition function

+ J d8(r)dg(r) exp J g cos[8(r) —8(r')]+J g cos[&[t(r) —&()(r')]+L g cosp[8(r) —P(r)]
r (r, r'} T

(4.7)

where p is some positive integer. The model (3.9) is
recovered if p =2 and L~oo. For finite L, (4.7) de-
scribes a system consisting of two layers of XY'spins with
an interaction L cosp[8(r) —&()(r)] on links between the
layers.

To check the relevance of the coupling between the
layers, we calculate the correlation function

In the spin-wave approximation the correlation function
(e'p[@ ' @p) ) was calculated by Jose et al. ,

e ip [8(,0)—8(,p) ] i —p /2m J~p (4.9)

(cosp [8(0)—P(0)]cosp [8(p) —P(p)] )

(eip[8(0) —()(p)]) (e —ip[p(0) —p(p)]) (4 8)

I

Consequently, the correlation function (4.8) decays as

P p I I. From this result and from the scaling theory of
phase transitions, it follows that the operator
L cosp (8—

&(&) has a scaling index 2 —p /2~J, i.e., it is ir-
relevant for 2mJ &p /2. Since vortices are known to be
irrelevant for 4&2nJ, the Gaussia. n fixed line is stable
against both vortex perturbations and coupling between
the layers for 4&2m J &p /2. Therefore we expect that
the model (4.7) with p) 3 will exhibit an intermediate
massless phase similar to that of the p-state clock model
with p) 5.

In order to proceed further with the investigation in the
double-layer model, we rewrite it in an equivalent lattice
Coulomb-gas representation. In this representation typi-
cal problems of two-dimensional statistical mechanics are
formulated in terms of two sets of integer variables m (R)



1786 MARK YOSEFIN AND EYTAN DOMANY 32

and q (r) residing on sites r of the original lattice and sites
R of the dual lattice. Interaction between charges of the
same kind at large separations is proportional to the loga-
rithm of the distance. On the other hand, the
m(R) —q(r) interaction is proportional to the angle be-
tween the vector R ra—nd some fixed direction in the
plane. This form resembles the interaction between elec-
tric charges and magnetic monopoles. The duality
transformation for a model written in a Coulomb-gas rep-
resentation has a particularly simple form. It reduces to a
interchange of "charges" m and "monopoles" q.

The purpose of rewriting our model in Coulomb-gas
language is twofold. First of all, recursion relations for a
problem with a single Coulomb gas were derived by Kos-
terlitz. Derivation of recursion relations for a model
with any number of Coulomb gases can be done by
straightforward generalization of Kosterlitz's method.
Another advantage of the Coulombic formulation lies in
the unification of various models: the difference between
problems is reflected only in changes in the parameters of
the interactions. This unification suggests that under

l

k cos(x) —k(x —2mm) /2

which can also be written (up to a normalization factor) as

QO
2—q /2k+iqxe (4.11)

Substituting (4.10) for the coupling within each layer and
(4.11) for coupling between layers, we obtain

renormalization-group transformation our model may
fiow toward some simpler model with known behavior.

The general prescription for the transformation of
two-dimensional models into the Coulomb-gas representa-
tion was given by Kadanoff. ' Following his methods we
find that the double-layer model can be reformulated in
terms of two sets of "charges" I (R) and n (R), and a set
of "monopoles" q (r).

The first step in the transformation into the Coulomb-
gas representation is the replacement of all cosine interac-
tions by a Villain form,

g I d&(~)dy(~) y exp ——y [&(~)—&(~') —2~~(~,r')]'
r ln (r, r') (r, r')

n(r, r')
q(r)

[P(r) —P(r') 2vrn(r, r')—]
(r, r')

g q'(r)+ip g q (r)[0(r)—P(r)]
r r

(4.12)

Note that m (r„r') = —m (r', v).
Since the Villain interaction has the same symmetries as the cosine interaction, and closely approximates it numerical-

ly, one can argue that models (4.7) and (4.12) belong to the same universality class. Indeed, the differences between Vil-
lain and cosine interactions were shown to be irrelevant to the critical behavior of the XI'model. On the other hand,
the Villain interaction allows exact decomposition of the configurations to spin waves and the Coulomb gases of vortices.

For future convenience we will carry out the transformation to the Coulomb-gas representation for a more general
model. We introduce in the Hamiltonian a term

K g [g(r) —8(r') —2am(r, r')][/(r) —P(r') —2rin(r, r')],
(r, r')

(4.13)

with 0(E(J. The initial model corresponds to the value K =0, but since a nonzero value of this parameter will be gen-
erated by the renormalization procedure, it is convenient to include it explicitly from the start. This term is missing in
the recursion relations of Parga and van Himbergen, who studied the p =1 case.

On each site R of the dual lattice we define integer variables I (R) and n (R) which are essentially the circulation of
m (r, r') and n (r, r') around the plaquette containing the dual lattice site R:

m (R)= g m (r, r') = I (R ——,x ——,'y, R+ —,x ——,y)+m (R+ —,x ——,y, R+ —,'x+ —,'y)
R

+m (R+ —,x+ —,y, R ——,x+ —,y)+I (R ——,x+ —,y, R ——,x ——,y),

n (R)= g m (rr') = n (R —
~ x —2y, R+ —,x ——,y)+n (R+ —,x ——,y, R+ ~ x+ zy)

R

+n(R+ —,'x+ —,y, R ——,x+ ,y)+n(R ——,x+ —,y, R ———,x ——,y) .

(4.14)

Now the partition function (4.12) reads
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m(R), n(R),
q(r)

Z (m, n, q)exp g q'(r) (4.15)

Z (m, n, q) = g g f d8(r)dg(r)
m(r r') r r
n(r, r')

)& exp ——g [8(r)—8(r') —2nm (r, r')] ——g [P(r)—P(r') 2—nn (r, r')]
(r, r') (r, r')

+ K g [8(r)—8(r') 2mm(—r, r')][(t)(r) (t)(r—') —2m'n(r, r')]+ip g q(r)[8(r) —P(r)] . (4.16)

In order to obtain the Coulomb-gas representation, we need to perform summations on m (r, r'), n (r, r') and integra-
tions on 8(r), it)(r) in Z (m, n, q)

This is done in detail in the Appendix. We obtain, after some algebra, the final form,

2 7T2
Z = g exp — Jpm (R)— Jgn (R)+sr K+m(R)n(R)

mnq R

1 mp+ g q (r)+2m J g m (R)ln m(R')R —R'
2L 2m J+2+% (R,R') a

+2m J g n (R)ln
(R,R')

n(R') 2' g—m(R)ln
a R+R'

fR —R'f

+ ip g [m (R)—n (R)]B(R r)q(r)+ — g q(r)ln q(r')2p fr r'f—
2~J+2~K (r r ) a

(4.17)

where a is the lattice spacing. This expression is derived assuming K(J. The prime on the summation implies, for
K & J, "charge neutrality" for each of m (r), n (r), and q (r). For K =J, only the constraints g q (r) =0 and

gz [m (R) —n (R)]=0 survive (see the Appendix). The function 6(R) is given by

e(R„,Ry)=tan '(Ry/R ) . (4.18)

The integer-valued variables m(R) and n(R) are identified ' " with vortices on different layers of the double-layer
model (4.7), while the q (r) mediate the interaction between the layers.

Correlation functions can be transformed into the Coulomb-gas representation by the same techniques. Two different
correlation functions can be defined for the model (3.9)—the correlation function for the Ising variables,

(4.19)

and the XI'correlation function,

( &i8(0)ei8(p) ) (4.20)

Analogous correlation functions can also be defined for the model (4.7). They are

/ i(8(0)—P(0)) —i(8(p) —P(p)))e (4.21)

ancl

( ) (ei(8(0)+()(0))8 i(8(p)+p(p)—) ) (4.22)

Following the same steps as the Appendix one finds that the Coulomb-gas representation for the correlation function is
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2 2

Iz(p)= —g exp — Jpm (R) — Jgn (R)+rr Kg m(R)n(R) — gq (r)
mnq R R R

+ g [q'(r)] +2m'J g m (R)ln m(R'}7Tp R —R'
2&J+2~K „(R a

+2' g n (R)ln
(R,R')

n(R') 2~K—g m(R)ln n(R')
a R&R' a

R,R'

+ ip g [m (R) n(R)]—6(R r)q'(—r)+ g q'(r)ln q'(r')2p f
r r' f—

2mJ+ 2+% („,, ) a
(4.23)

and

I xr(p)= —.g exp
m, n, q

Jgm (R) — Jgn (R)+m Kgm(R)n(R)
R R R

1 mp 1R —R'
2L 2m.J+2m K+ g q (r)+2~J g m (R)ln ' m(R')

(R R')

+2rrJ g n(R)ln n(R') —2n.K g m(R}ln n(R')
(R,R') R~R'

+ip g [m (R)—n (R)]6(R r)q (r)+i g—[m (R)+n (R)][6(R)—6(R —p)]
R, r

2 2

+ g q(r)ln q (r')—
2mJ+2+X („,, )

a

In (4.23), q'(r) is defined by

I
ln

mJ a
(4.24)

q(r}+ 1/p, r =0
q'(r) = q(r) —1/p, r =p

q(r), r&O,p

(4.25)

D. Recursion relations and the phase diagram

R'
Z = g exp (lny) pm (R)+(lny) gn (R)+(lnyq) gq (r)+2mJg m(R)'ln m(R')

a(R,R')m, n, q

+2' J g n (R)ln n(R') —2~K g m (R)ln n (R')fR —R'
f

(R,R ) R,R' a
R~R'

Recursion relations for the Hamiltonian (4.17) can be derived by means of Kosterlitz s position-space
renormalization-group techniques. To apply his methods, we rewrite (4.17) as

t

+ ip g [m (R) n(R)]6—(R r)q(r)+2vrJ~ g—q(r)ln q(r')
R, r (r, r')

(4.26)

where y, yq, and Jq are defined by

lny = — J,
2

2~Jq ———2p
2m J+2m.K

1
lny =—

2L
2p

2m'J+ 2+%
(4.27)

Since the constraints (4.27) can be relaxed by the
renormalization-group transformation, we will treat y, y~,
and Jq as free parameters. Although it is not necessary to
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introduce a new parameter for the fugacity of q's, because
one can vary it by changing L, it will be more convenient
in the intermediate steps to use yq.

The term gz m(R)n(R) in (4.17) serves as a fugacity
of combined vortices "onfigurations in which the m-
vortex and n-vortex reside on the same lattice site. For
brevity, such configurations were left out in (4.26). All
but one type of these combined vortices are found to be ir-
relevant in the entire range of couplings we are interested
in. The only complex vortex which can be relevant con-
sists of an m-vortex and an n-vortex of the same sign.
We introduced a new parameter, lna, for the fugacity of
such a double vortex.

Now we can study the partition function (4.26) in the
region y,yq, a«1, where the dilute-gas approximation
m ( R), n( R),q(r) = 0, +1 can be used. Using standard
methods, ' ' the following recursion relations are ob-
tained:

dy =(2—m J)y,

dyq =(2—m Jq )yq,

K
J

I

2 (a)

4 l

9 2
(b)

8
p2

(7T'J)

dl
=[1 ~(J —K)—]a,

(4.28)
dJ = —m((2m )'(J'+K')y'+ 2(2~)'(J —K)'a' —p'y ),

= —m((2~) Jqyq —2p y ),

= —m(2(2m) JKy +2(2~) (J K) a py ) . — —

Of these six equations, the first three describe the varia-
tion of fugacities y, yq, and a, and the last three of cou-
plings J, Jq, and K, under renormalization. It is easy to
show that

2p
2mJq — ——0 .

dl q 2~J+2' (4.29)

=(4—2m.Jq )L (4.30)

We consider the first three equations for different values
of p, to determine regimes of J,K for which the various
fugacities are irrelevant. We find that y is irrelevant for
(m J) '

& —,', a is irrelevant for K/J & 1 —(m J) ', and yq is
irrelevant for K/J & (p /4)(m J) ' —1. These regimes
give rise to the various regions of stability, as indicated in
Fig. 6.

First consider the p )4 case [Fig. 6(c)]. In region A, y
and a are irrelevant, and yq (or L) is relevant. We assume
that the RG flows will proceed to I —+co, y, o.~0. For

Therefore, the initial relationship (4.27) between Jq and
J,E is preserved under renormalization.

It may seem more attractive to work with the more
physical parameter L instead of yq. The recursion rela-
tion for the latter is [using (4.27) and (4.28)]

p2

FIG. 6. Stability of the Gaussian plane y =yq ——L =0. (a)

p =2, (b) p =3, and (c) p )4.

this case one obtains the following behavior of the correla-
tions:

—1/n JeffI ~~(p)-p ', I z(p)-const (4.31)

for p~co. Therefore, an initial Hamiltonian character-
ized by J,K in region A will have algebraic decay of the
XY correlations and spontaneous breaking of the discrete
symmetry.

In region B all these fugacities flow to zero, and thus
algebraic decay of both correlation functions is expected:

—&/mj, ff p ( )
—1/m(Jeff+Keff)

xrP -p ~ pP P (4.32)

In this expression J,ff,K,ff denote the point in region B,
reached (asymptotically) by the RG trajectory of some ini-
tial Hamiltonian, characterized by J,K and nonvanishing
fugacities.

Since the line that separates region A from region B is
the domain of attraction of Hamiltonians that lie on the
phase boundary and on this line the exponents depend on
J ff E ff obviously the transition between phases of type
(4.31) and (4.32) is nonuniversal. That is, I ~~ decays with
a power that depends on the initial Hamiltonian. Howev-
er, the decay of I ~(p), since it depends only on J,ff+K ff,
and this being a constant for the A /B boundary, is
universal.

In region C, y is relevant, while yq (e.g. , L) is ir-
relevant. In this region both correlations decay exponen-
tially. On the B/C boundary, ~J,ff ——2 and, therefore, the
index associated with I zz is universal, whereas that cor-

/
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responding to I
&

is nonuniversal.
Other types of behavior, such as exponential decay of

I zr together with either (1) long-range order
(I z

—&const), in region D, or (2) algebraic decay of I z, in
region E, are also possible. However, for the problem at
hand one has initially K =0, and therefore regions 3, B,
and C are expected to serve as sinks of the various phases.

Thus, for p )4 one expects for the model (4.7) to have
three phases. At low temperatures the discrete symmetry
is broken and I &~const, while I ~~ decays algebraically.
At high temperatures, in the disordered phase, both corre-
lations decay exponentially. In the intermediate phase
both correlation functions exhibit algebraic decay.

For p =2, in region 3, again I &~const (Ising order)
and I zz is algebraic. In region D, I &~const and I zz
decays exponentially.

In region C the system is completely disordered. In be-
tween, in region D', since both y and yq are relevant,
correlations cannot be estimated directly. We consider re-
cursion for J—E:

dl
—(J E)=——m(2~)'(J —K)'y',

and note that, in regions D' and C, J—E~O with renor-
malization. Thus, concentrating on the J=E subspace,
we note that the partition function (4.17) becomes

g' exp
R n(R) = —oo M(R),

q(r)

2

J gM (R)—
R

1 1 2+ — gq (r)+2m J g M(R)ln M(R')iR —R'i
2L, J

+i 2+ M(R) e(R —r)q(r)+ g q(r)ln q(r')4

R, r 27'J a
(4.33)

where M (R)=I (R) n(R—). Notice that, for J IC =0, t—he constraint g~ n (R)=0 is relaxed. Additional terms in the
exponent of (4.33) that could possibly be generated by the RG transformation are

(lny) gn (R)+(lny') gn(R)M(R) .
R R

Summation over n will generate only a fugacity term for M (R), and we obtain

(4.34)

Z = g exp (lny") gM (R)—
M(R), R

q(r)

1 1+ — g q (r)+2+J g M(R)ln M(R')
2I. J (R,R') a

+ i 2 +M(R)e(R r)q(r)+ —g q(r)ln q(r')4

R, r 2' („„.) a
(4.35)

This is recognizable as the partition function of an Ising
model with possibly incorrect fugacities. However, for
any value of the fugacities, the transition in model (4.35)
is governed by an Ising fixed point. For J—%=0 the
correlation function I xr(p) is disordered for all J,
whereas I q(p) becomes identical to the Ising correlation
function, which decays to a constant for J greater then
some J, and decays exponentially for J &J, . This is what
happens on the J=K subspace; since points with projec-
tion on D' Aow to this subspace, we expect that D' con-
tains two regions; one with Ising order, the other with dis-
order (same phase as C), separated by a line of Ising-like
transitions.

This line (or, more precisely, the hypersurface it
represents) may be connected to the low (E/J) part of-
Fig. 6(a) in different ways.

(1) It reaches K =0 with ( vrJ )
'

& —,. This means a se-
quence of two transitions. Starting from the completely
disordered phase, an Ising-like transition occurs first, fol-
lowed at lower temperature by a transition below which
I &z decays algebraically.

(2) The Ising line in D' reaches the boundary of & with
K &0. Then, depending on the trajectory of the Hamil-
tonian as the temperature is varied, either the phase struc-
ture described above, or a single transition, from com-

pletely disordered to ordered, can occur. This transition
will, in general, be first order; only in a special case (of
lower codimensionality) can it be continuous. To see that
the transition is first order, note that one passes from re-
gion 3, with finite Ising order, directly to the disordered
region in D', and therefore the Ising order undergoes a
discontinuity.

Thus we conclude that either a single transition (first
order or continuous), or two transitions, is (are) expected,
with an intermediate phase of Ising order and XY disor-
der.

However, referring back to Sec. II C, we note that there
we concluded that an intermedIate phase, if present, will
have XY order and Ising disorder. Thus exclusion of the
two-transition scenario for the p=2, n =2 model seems
to be justified.

For p =3 similar arguments apply for the region D'
[Fig. 6(b)]. In the most general case, one may have one of
the following possibilities:

(1) Two transitions: intermediate phase (B) with both
correlations algebraic.

(2) Single first-order transition.
(3) Two transitions: intermediate phase (D or D') with

r3 const and I ~y exponentially decaying.
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V. SUMMARY AND DISCUSSION

In this work we studied spin systems whose low-
temperature phase has two kinds of order. That associat-
ed with a spontaneously broken discrete Z(2) symmetry,
and the characteristics of the low-temperature phase of a
system with 0( n) symmetry.

Important examples of'such systems are fully frustrated
two-dimensional XY models on triangular and square lat-
tices and XY helimagnets. By symmetry arguments, we
identify the order parameter, appropriate for transitions in
these systems, and construct the most general LGW Ham-
iltonian. We study this Hamiltonian by means of an exact
renormalization group in dimensions d =4 —e and
d =2+e. In d =4—e we find a single first-order transi-
tion.

Analysis of the LGW Hamiltonian in 2+e dimensions
shows that one flows to a microscopic model (3.9), that
contains O(n) and Ising-type variables on each site. For
n & 2 such models will have only a single Ising transition
in d =2. For n =2 this microscopic model can be viewed
as a limiting case of a more general class of double-layer
models. In these latter models each site has two XY-type
variables, 8;,P;, with ferromagnetic coupling within, and
quadrupolar cos[2(8; —(t;)]-type coupling between layers.
Therefore, we expect that analysis of such a double-layer
model will yield results that are relevant to the original
problem, i.e., the fully frustrated X1"model in d =2.

The double-layer model is generalized to interlayer cou-
plings of the form cos[p(8; —P;)]. It is mapped onto a
Coulomb-gas problem, to which standard RG techniques

are applied. The resulting recursion relations are
analyzed, and the following results are obtained.

For p ~8 the low-temperature and disordered phases
are separated by an intermediate massless phase. In this
phase correlations associated with both the discrete and
XY-type symmetry decay algebraically. Phase transitions
in the p & 8 case will be of Kosterlitz-Thouless type with
unobservable essential singularities in the specific heat.
Some exponents that characterize the decay of the correla-
tion function at the transition are nonuniversal. For p =2
(the most interesting case) we predict a single transition.
Our analysis cannot resolve whether this transition should
be first order or continuous.

Note added in proof. Derivations of the Landau Hamil-
tonian for some of the systems discussed by us have ap-
peared in recent papers by M. Y. Choi and S. Doniach
(unpublished), T. C. Halsey (unpublished), D. H. Lee (un-
published), J. D. Joannopoulos (unpublished), and J. W.
Negele and D. P. Landau (unpublished).
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APPENDIX

The Coulomb-gas representation of the partition sum (4.15), with Z(m, n, q) given by (4.16), is obtained by performing
summations (integrations) over m (r, r'), n (r, r'), 8(r), and P(r). To do this, on each lattice site r we introduce integer
variables k(r) and l(r). On the horizontal bonds of each layer we replace m(r, r') by k(r') —k(r') and n(r, r') by
l(r') l(r), while on—the vertical bonds we define new variables m(r, r') and n(r, r') by m (r, r') =m(r, r') k(r)+—k(r')
and n (r, r') =n(r, r') —l (r)+l(r') Now the s.ummation over m (r, r') and n (r, r') can be replaced by the summation over
m(r, r'), n(r, r'), k(r), and l(r). We have

Z (m, n, q)=
m(r, r'),
n(r, r')

+ g f d8(r)
r k(r)

II~ 'r VL m(R), m(r&, r&) —m(r3, r4) n(R), n(r&, r ) 2n(r3,r&)—
r l(r) R

Xexp ——g [8(r)+2rrk(r) 8(r') 2rrk(—r')] ——g [P(r—)+2rrl(r) P(r') 2ml(r')]- —J J
&r, r') 2 &r, r')

+K g [8(r)+2nk (r) 8(r') —2m k(r')][/(r) +2—vrl (r) P(r') 2rrl (r')]-—
&r, r')

0 r +2m.k r —0 r' —2+k r' —2am r, r'
2 &., '&

I

[P(r)+2vrl (r) P(r') 2ml(r') 2m—n (r,r')]- —
&r, r')

+K g [8(r)+2nk (r) —8(r') —2mk(r') —2mm(r, r')]
&r, r')

X fP(r)+2nl(r) —P(r') 2vrl(r') —2mn(r, r')]—+ip gq(r)[8(r) —P(r)] . (Al)
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Here, denotes the sum over vertical bonds and denotes the sum over horizontal bonds. Note that the integrand in
(Al) does not depend on 8(r), P(r), k(r), and l(r) separately, but only on the combinations 8(r)+2nk(r) and
P(r)+2~l(r). This property can be used to extend the range of integration by making the replacements

8(r)+2nk(r) +8(—r), g f d8(r)~ f d8(r),
k(r)

P(r)+2ml(r)~P(r), g f dP(r)~ f dP(r) .
l(r)

At this point the integrals in (A 1) reduce to the Gaussian form,

(A2)

Q f d8(r)dg(r) exp ——g [8(r)—8(r')] ——g [P(r) —P(r')]
r 2& ) (r, r')

+X g [8(r)—8(r'))[P(r) —P(r')]+2m g [8(r)—8(r')][Jm(r, r') —En(r, r')]
&r, r') (r, r')

l

+ 2n g [&t(r) P(r')][J—n(r, r') ICm(r, r'—)]+i@gq(r)[8(r) —&t(r)] (A3)

Symbolically, this can be written as

f DeDC exp — BG 'e—+ICeG 'e —e-G-—'e+a6+ae+C
2 2

(A4)

where the variables 8(r) and p(r) are combined into the vectors 6(r) =(8(r&),8(rz), . . . ) and 4(r) =(p(r~), p(rq), . . . ).
G ' is the matrix of the quadratic form g&„,, &[8(r)—8(r')] . From (A4) it is easy to see that shift of the 6's,
6(r)~e(r) —(IC/J)&b(r), will decouple integration over 6 from integration over 4. Indeed, performing this shift in
(A3), we arrive, after some algebraic rearrangement of the expression in the exponent, at decoupled Gaussian integrals,

K/ f d8(r)dy(r) exp ——y [8(v)—8(v')]' ——1—,y [y(r) —y(r')]'
(r r') J (r r')

IC E+ +8(r) 2mJ m(r, r+y) m(r y, r) n(—r, r+y—)+——n(r y, r) +—ipq(r)—
r

+ gP(r) 2mJ 1—E
r

K . IC
n(r, r+y)+ n(r —y, r—) ip 1 ———q(r)J J (AS)

These integrals can be immediately evaluated by the standard method of Gaussian integration, giving, after some rear-
rangement of the terms in the exponent,

Z (m, n, q) =
m(r, r'),
n(r, r')

LL m(R), m(r&, r&) —m(r3, r4) n(R), n(r&, r&) —n(r3 r4)i~~ &

2

Q exp g q (r)G(r r')q(r')+ip g [m (r, r—+y ) —m (r —y, r)]G(r r')q(r')—
~J+mK „„,

ip g [n—(v, r +y ) n(r y, r)]G(r v')q (r—')— —

nJ g [vn(r, r +y) m(—r y, r)]G—(r —r')[m(r—', r'+y) —m(r' y,r')]—
nJ g [n(r, r +—y ) n(r —y, r)]G(r —r')[n(v', r'+y ) n(r' y,—r')]——

+2niC g [m(r, r +y ) m(r y, r)]G(r—r')[n(r', v'+—y) n(r' —y, r')]— —

—2n Jg m (r, r') —2—m(r, r')n(r, r')+n ~(r, r') (A6)
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Since there is equal number of summation variables and Kronecker 5 functions, we can solve for the m(r, r') and
n(r, r') in terms of m (R) and n (R) in the form

m(r, r+y)= —g m(r+ —,y —(j ——,')x), n(r, r+y)= —g n(r+ —,'y —(j ——,'x) .
j=0 j=0

(A7)

The last step is to substitute (A7) into the exponent of (A6), and to simplify the resulting expression. We will carry out
the calculation for the term

ip—g [m(r, r +y ) m—(r y, r)—]G(r r')q(—r') .

We wish to calculate

g [rn(r, r +y ) m(r —y—,r)]G(r r') . — (A9)

Substituting here (A7) and rearranging the summations, we obtain

g g m (r + 2 y (j —
2
—)x )[G(r r') G(r—y —r—')]-,

P J=0

replacing the summation over r by the summation over R = r + —,'x ——,'y,

(A10)

g m(R) g [G(R-+ ,'y+(j ———,
' )x r') G—(R ———,'y+(j ——,

' )x —r')] .
R j=O

In a continuum notation, the sum over j reads

f a G(R r')dR, —

(Al 1)

(A12)

where the path of integration runs from R to infinity in the positive x direction. Since G(R) can be well approximated
by ln(R/a), this integral can be evaluated using the Cauchy-Riemann relation B„ln(R r')= —B e(R——r'), where
e(R)=tan '(y/x). Finally, we obtain, for (AS),

ip g m (R)e(R —r')q(r') .
R, r'

Other terms in the exponent of (A6) can be evaluated similarly, and the partition function (4.15) becomes

(A13)

Z= +exp
m, n, q

gq (r)+~J g m(R)G(R R')m(R')+—mJ g n(R)G(R —R')n(R')
2L, R,R' R,R'

—2m% g m (R)G(R R')n (R')—+ip g [m (R)—n (R)]e(R r')q(r')—
R, R' R, r'

2

+ g q (r)G(r r')q(r')—
2~J+2~K, „,

(A14)

Here, G(R) is the lattice Green's function, defined by

G(R) = —2v
2m 4 —2 cosq~ —2 cosq

(A15)

It is easy to see that the Green's function G(R —R') diverges for R =R'. To isolate divergences, let us split G(R)
into two parts,

G(R) =G(0)+G'(R),

where G'(R) is the finite quantity,

de e ElgR

G'(R) =2~
2m —'II 2m' 4—2 cosq& —2 cosqz

and G(0) is the infinite constan't,

m' de 1G(0) = —2m —~ 2n. —~ 2~ 4—2cosq~ —2cosqz

(A16)

(A17)

(A 1 8)
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Substitution of (A16) into (A14) yields

Z = g exp G(0) ~J pm(R) 2v—rK pm(R) gn(R)
m, n, q R R R

2

+ mJ g n(R) + gq(r)2~J+ 2'

Xexp — gq (r)+2~J g m(R)G'(R —R')m(R')
21. (R,R')

+2' g. n (R)G'(R R—')n (R') 2rrK—g m(R)G'(R —R')n (R')
(R,R')

2

+ ip g [m (R) n(R)—]B(R r')q (r')—+ g q(r)G'(r r')q(r')—
R, r' 27TJ+2~K (A19)

where g~z z,
~

denotes a summation over all pairs of lattice sites with each pair counted only once. Since G(0)- —ae,
only terms with a vanishing expression in the large square brackets contribute to the partition function. If 0 & K &J, this
expression vanishes if three neutrality conditions are satisfied, namely

gm(R)=0, gn(R)=0, gq(r)=0. (A20)

For It =J only two conditions remain, namely

gm(R) —n(R)=0, gq(r)=0. (A21)

Therefore we can write

Z = g'exp
m, n, q

1 g q (r)+2vrJ g m (R)G'(R —R')m (R')
2I (R,R')

+2~J g n (R)G'(R —R')n (R') 2vrK g m—(R)G'(R —R')n(R')
(R,R')

2

+ ip g [m (R) n(R)]e(R— r')q(r')+- g q (r)G'(r r')q(r')—
2~J+2mK (, „,)

(A22)

where the prime on the summation means summation over configurations satisfying condition (A20) if 0 & K &J, or con-
dition (A21) if K =J. Approximating G'(R —R') by

G'(R —R') =ln
a 2

'

where a is the lattice spacing, we obtain expression (4.17) for the partition sum.

(A23)
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