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Time scale of thermally activated diffusion in random systems:
A new law of thermal activation
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Exact time scales are obtained for a class of stochastic models of thermally activated diffusion in

random systems with a one-dimensional quantum reaction coordinate. The results are valid at any
temperature. At low temperatures various forms of the thermal activation law of Arrhenius emerge,
the dominant time scale of the diffusion depending on the temperature T according to
T~exp(A /k& T), where A is the activation energy and p an exponent depending on the details of the
models. These correspond to different bounded energy spectra for the randomly selected energy lev-

els along the reaction coordinate. As an example we consider the Wigner semicircular distribution
of eigenvalues of large random matrices. Another example considered is a Gaussian distribution of
energy levels, and in this case a new thermal-activation law is obtained, having the form

exp[B /(k&T) ], where B is proportional to the width of the distribution. This form has recently

been found in Monte Carlo experiments on large Ising-spin-glass models by Young.

Recently it has become feasible to give exact evalua-
tions of the dominant time scale in stochastic models of
such processes as Monte Carlo experiments and classical
diffusion. ' These models are described by the master
equation for the evolution of the probabilities I W j of
occupation of a set of quantum states labeled by the index

W = —QLapWp, g W =1.
dt

the system, which will serve as a "quantum reaction coor-
dinate. " We refer to this principle as "optimal network
kinetics, "which is explained in more detail elsewhere.

Suppose the system is in contact with a reservoir keep-
ing the temperature equal to T, and let the quantum states
have energies I E j: The condition of detailed balance

0 0I.~p Wp ——L, I3~ 8'~,

where then

Here I L p j are the elements of the stochastic matrix L,
and satisfy

W&& a~ s /Z Z ~ E~/kst—
(4)

+Lap 0, Lap(0 for c——t&P.

The time scale for relaxation to equilibrium I Wa j de-
pends on the eigenvalues of L. The conditions (2), which
derive from the interpretation of the elements of I as con-
ditional transition probabilities per unit time, imply that it
has only non-negative eigenvalues, and at least one is
equal to zero, i.e., l&

——0. The dominant time scale is then
given by the smallest of the remaining eigenvalues, i.e.,
T2 = 1/12. S'ince the eigenvalue l2 resides inside the spec-
trum of L, it has only recently been considered' how to
estimate r2 exactly, in the form of upper and lower
bounds. Hence, while the existence of the eigenvalue
l& ——0 is sufficient to establish the existence of a stationary
solution I

W' j, one needs to know l2 to estimate how
long it takes to reach it. The conventional bound on l2
coincides with lI ——0, and hence does not provide a finite
upper bound on ~2.

In the present paper we shall apply the new finite upper
bound v2 (~, which is available, so far, only when L is tri-
diagonal. This means that, in the models we may consid-
er, a kinetics corresponding to an essentially one-
dimensional chain of quantum states must be selected by

(2)
is sufficient to assure that the equilibrium state is reached,
but of course in itself does not establish how long it
takes. '

The nature of the system then defines the stochastic
model in terms of the sets of parameters IEa j and the ele-
ments of L. We shall discuss models in which the ener-
gies are random variables, sampled, for each quantum
state along the reaction coordinate, from a distribution
with probability density P(E), normalized for each state:

J dE Q(E) =1. The stochastic process then corresponds
to thermally activated hopping between random energy
levels.

In Ref. 3 we discuss models in which a strong correla-
tion was assumed to exist between adjacent energy levels,
forming a continuous potential in the classical limit,
whereby the stochastic model represents a classical dif-
fusion process with a continuous reaction coordinate. Of
course, for a quantum reaction coordinate, the distinction
between hopping and diffusion is merely formal. But in
the limit of an infinite sequence of states the results are
qualitatively different in the two cases, which are both of
considerable physical interest.

Let
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H p-+(P —a) f dE P(E)
—E/kB T

(6)

This is obviously true for independent random energies

E& in Wz. However, it is of interest to note that it may
still hold if the Er display certain forms of correlations,
as may be the case in realistic systems.

For example, in a Monte Carlo sequence of spin flips in
an Ising model the energies differ at most by the max-
imum energy change possible due to the reversal of a sin-
gle spin, and this is generally much smaller than the total
energy. So a correlation exists until a large number of
spins have been flipped, even if the spin-interaction ener-
gies are random.

The class of models of random systems for which the
results of the present work are valid can then be defined
by requiring the validity of (6). It has been shown that if
the energies Er are the eigenvalues of members of certain
ensembles of large random matrices, ' then for almost
every individual matrix the condition (6) holds when P(E)
is chosen as the ensemble level density for the given class
of random matrices, in the limit when they become infi-
nitely large. Thus, the Ez need not be independent as
long as they are sampled with equal weight throughout
the spectrum of the given random matrix.

If we assume initially that there are g quantum states
along the reaction coordinate, reserving the limit gaz oo
for later, then the partition function becomes

Z =g f dE (t (E)e (7)

as soon as g is large enough to bring (6) into effect.
In order to make the models definite we shall assume

about the matrix of transition probabilities the following
parametrization. Let, for a&P, p p =pp, and let t E i3I
be a set of parameters of dimension energy. For a&P,
then

—E p/k~T
~aP I aPe

For a=P the elements are given by Eq. (2). Detailed bal-
ance (3) then implies the constraint

Eap —Epa =Ea —Ep .

Of course, this is not sufficient to determine all the pa-
rameters. While our result could be stated for any choice
of transition probabilities, it is not in general expressible
in elementary terms. In order to facilitate this, let us con-
sider a simpler set of transition probabilities, defined ac-
cording to

E~p rE~+(r —1)Ep,——p~p 2r —1
(10)

Here r is a real, non-negative parameter. Then, for a&P,
the matrix L is given by

y=P
H~p= g Wr.

y=a+1

When a sufficient number of states along the reaction
coordinate are sampled in this sum, we assume a form of
ergodicity which implies that for l13—a

l

~oo (cf. Ref.
4)

Introducing the Laplace transform of P, where 13= 1/ks T
(not to be confused with the index, of course),

C'(P) = f dE P(E)e ~, (13)

we have, according to Eqs. (6) and (7),

Ho ~
——a@(P)/Z,

H g
= (g —~)@(P)/Z,

Z=g4(P) .

(14)

(15)

(16)

The ergodicity (6) implies that now the sum in Eq. (12),
depending on the energies, due to the energy dependence
in the transition probabilities induced (along with the tem-
perature) by the detailed balance requirement (3), is also
convertible to an integral in the limit g —+oo. In the
model (11) this follows because the exponential depen-
dence is similar (as will appear) under reasonable assump-
tions about the spectral density P(E). Furthermore, it
may be noted here that in some cases the upper limit z
may become infinite, i.e., the dominant time scale may be
infinitely long. Also this conclusion would be physically
significant, indicating that equilibrium cannot be reached
in finite time. This could be a consequence of having en-
ergies with P(E) which would make the integral version of
(12) nonexistent.

These considerations, as well as those in the following
of a similar nature, all relate to the laws of large num-
bers. " Our concept. of ergodicity, therefore, has a
rigorous foundation. Decisions about the behavior in
probability of the sums in (6) and (12) as g —+ oo can be
reached, for every indiuidual realization of the randomly
constructed structure, by an analysis of P(E). There is
no need for any subsequent averaging over any ensemble
of such structures (which is known to produce potentially
ambiguous results). The time scale r which we shall
derive applies with probability one to any individual ran-

1 (8' )"(8' )"
Tp

This choice is simply for definiteness and convenience.
By considering models with different values of r, such as
r = —,

' or r =1, we can draw conclusions about the nature
of the influence which the transition probabilities have on
the resulting time scale, irrespective of how the energy
levels are arranged. Models of such considerable interest
as those of Metropolis et al. and Glauber, ' favored in
Monte Carlo experiments, have the same functional form
as Eq. (11) for r= —, in that the transition probability de-

pends on the energy difference Ep E~, an—d are physical-
ly equivalent to this case, except for being slightly more
complicated to treat analytically. In the models defined
by Eq. (11) and the P(E) to be given in the following, the
resulting time scale can be expressed exactly in terms of
standard functions.

The upper bound on the time scale is given by'

Ho H s &=g-' Ho H
+0 0 0 r

a=) l ~aa+1 I ~a+1 a=& ( II a~a+I )

(12)
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dom structure, as soon as g is sufficiently large (cf. Ap-
pendix). The reason that we do not let g~ oo immediate-
ly will become clear in the following.

The probability density of the random variable
E +E +& in (12) is the convolution of P with itself, as-
suming that E and E +i are independent (but cf. Ref.
4).

t/i(E~+E~+i)= f dE$(E)(t(E +E~+i E) —.

Its Laplace transform is

%'(/3) =N(P)

Finally, in order to evaluate (12) we note that

a=g —1

~(g —a) = —,
'

(g + 1)g (g —1)=—,g' .
a=1

We then find

r= —,
'

rog [4(/3)IZ] f dEQ(E)e'~ Z "

passage, and can be compared with the existing expres-
sions for the mean first-passage time. '

The case of diffusion, which we consider in the present
work, is distinct from the first-passage case and the sys-
tem may return to any state arbitrarily often in the long
run, except under the special circumstances discussed
above. Whereas in continuous potentials used to describe
reactions that terminate the stochastic process once the
system reaches the absorbing state (more generally, once it
leaves the class of transient states considered), the first-
passage criterion may be most relevant; in the present
models of diffusion in random systems one cannot identi-
fy any particular state for which a first-passage would be
physically significant. This is especially the case in op-
timal network kinetics, since the network can be expected
to have a high degree of connectedness. However, the dis-
cussion of the first-passage problem from a class of tran-
sient states with random structure seems feasible in the
present approach.

I. BINARY MODELS

r= 6 rog "+'[@(/3)"4(—r/3)] (19)

In this result, if r is to be finite, then the two-sided La-
place transforms must exist, which means that P(E) must
vanish sufficiently rapidly as E~+ oo to balance the ex-
ponential in (13). If r becomes infinitely large it may im-

ply that in the random systems arbitrarily high energy
levels somewhere along the reaction coordinate become
too frequent to allow a finite value of ~2. It should be not-
ed, however, and examples will be given in the following,
that we do not have to completely exclude such high ener-
gies from P(E), only to assume that they are not too
heavily represented to prevent a finite ~. But in any case
the result we obtain for ~ is meaningful. The possibility
that states of large energy along the reaction coordinate
may break it up is due to the detailed balance requirement
which introduces the temperature T into the elementary
transition probabilities in the models. This condition is
not necessary in order to obtain results such as the upper
bound on 7 2 with the present methods, ' but simplifies the
investigation and is physically well motivated. If the
chain of quantum states in a model effectively breaks into
smaller pieces which do not communicate for this reason,
then one may consider systems corresponding to models
with energy levels belonging only to one such effectively
connected piece at a time, and for each obtain its indivi-
dual r by means of the appropriately modified P(E) and
(19).

With models based on the canonical detailed balance
conditions (3) and (4), the states are recurrent for finite g,
but may or may not become null-recurrent when g~ m. 1

If the elements of I. are modified, say such as to create
an absorbing state at the end, Lg ig ——0 and L g,+0,
then the equilibrium is rather %~= 1, and W' =0 for
1 (a (g —1, and the 1atter states are transient. The
theory may then be applied to problems of the first-
passage time scale, ' where the state to be passed is g,
after which event no return is possible. The time ~ is an
upper bound on the longest time that may lapse before the

where

2r+1 r 2 PA
6 rog (wio whigh) e (21)

2 =2r(Eh; h Ei, ) . — (22)

This result displays the thermal-activation law of Ar-
rhenius'" with activation energy A. In general, this law
implies the existence of a dominant time scale depending
on the temperature according to

r —f ( T)e ~" for T~O, (23)

where f( T) is a less singular function than the exponen-
tial in the limit T~O. It also emerges in nonrandom sys-
tems, ' and can be interpreted, as is well known, in terms
of energy barriers along the reaction coordinate of height
related to the activation energy A. The exact relation,
however, also depends on the nature of the transition
probabilities, which is evident in (22) because of the pres-
ence of the parameter r.

In particular, for I = —,
' we get A=Ehlgh E[ This

result distinguishes itself from the form of the activation

When T~O, P~+ co, 4(P) is dominated by the parts
of P(E) of lowest energy, while 4( rP) is domi—nated by
the parts of highest energy. Thus, the simplest model of
P(E) only contains two energy levels Ei,„and E„;g„
represented with weights mI, and uh;~h..

wlow~(E Elan)+whigh~(E Ehigh)

The leading terms as T~O then become

4&(/3) —wi, „e
—PE)

highN( —r/3) —wh;ghe

This would also be the case in models with a spectral
weight of P(E) at intermediate levels as long as Ei,„and
Eh;gh are separated from them by a finite gap. In the
latter case m&, +mh;~h &1. Thus, the leading term of 7

becomes
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energy in nonrandom systems. Ordinarily A is the ener-

gy difference between the energy at the summit of a bar-
rier configuration and that of a "metastable" local energy
minimum, which may not be as low as Ei,„,provided, of
course, the model has such energy levels at all. However,
the randomness implies that on both sides of the summit
of a barrier along the reaction coordinate there must be
states with energies as small as the lowest one, E&, .

Letting w»„——wh;sh ———, and Eh;sh ———Ei,„=b, in (20)
the result at arbitrary temperature is

r= —,
'

rog "+'[cosh"(Ph)cosh(rPb, )] (24)

D*=g /6r-DD(w&, „wh;s„) er —2 3/k~ T
(26)

which remains finite. Due to the randomness the energy
barriers occur with uniform probability throughout the
length of the reaction coordinate. They would not in gen-
eral have identical shapes, but as T~O only their heights
matter. These barriers are "equivalent" in this sense, and
a further analysis employing the results of Ref. 1 shows
that in such cases there will be several time scales besides
rz which obtain the leading low-T form. This has the
consequence that in the limit ~2 does not become equal to
r, but differs by a numerical factor which is, however, not
of the order g but of the order l. In elementary diffusion,
which can be solved exactly for all time scales, this factor

»m, „(r/Tp) =1T /6. We conjecture that in the
present random case there is a similar relation between the
times scales and the diffusion constant as in the conven-
tional diffusion processes. The basis of this significant
aspect is that for all models in which I.«+iL +i~&0 it
is known' that the eigenvalues of L are all simple.
Hence, the time scales ~2, ~3, . . . do not coincide, even
though they assume the same leading T~O form. This
formation of a "band" of dominant time scales, contain-
ing as many of these as there are equivalent barriers,
means that their sum r (cf. Ref. 1) is not proportional to
their number, but rather to a moderate number such as
the n /6 of the diffusion models. Therefore, in most con-
texts it would be quite reasonable to regard the time scale
~ and the diffusion constant D* as the physically relevant
results, considering the strong temperature dependence of
the law of Arrhenius.

II. GAUSSIAN MODEL

Now consider the dependence on the size g. Et is physi-
cally most reasonable to assume that when g~ ~ then ~0
depends on g in such a way that the transition probabili-
ties p~p remain finite. According to (10) and (16) we may
then assume that Do is a finite parameter in this limit,
and defined by

Do=g'' '"«o (25)

From (21) we then conclude that r-g as g~no, which
is a diffusive behavior. The system will never reach
equilibrium, but its evolution will correspond to diffusion
with diffusion constant

2„+] (r +r~)w /(k&T)
oR e (28)

This is a new thermal-activation law, distinguished from
the Arrhenius law (23) by its much stronger temperature
dependence.

In Monte Carlo studies of large, two-dimensional
Ising-spin-glass models Young found' a temperature
dependence of the relaxation time of precisely the form
(28) (in zero magnetic field). As is indicated by its depen-
dence on the parameter r, this form apparently is rather
independent of details in the transition probabilities.
Since our result [Eq. (28)] is also relevant in models with
transition probabilities of the forms of Metropolis et al.
and Glauber, we may interpret Young's result in the fol-
lowing way. In a sequence of Monte Carlo spin flips the
Ising-spin-glass energy forms a random succession which
in the long run becomes ergodic in the present sense, due
to the randomness of the Ising coupling constants (here
taking values + 1 randomly for nearest neighbors). The
thermal bias introduced by the detailed balance in the
transition probabilities should then cause the system to
perform a hopping in the spin configuration space which
preferably, at low temperatures, will take it from one local
energy minimum to another across a random barrier along
a path of comparatively low energies. This could be re-
garded as a manner of forming an essentially one-
dimensional quantum reaction coordinate, or a more or
less uniform network of such paths. It also implies that
the energy spectrum P(E) on such a network, selected by
thermal bias, will be rather different from the spectrum of
the complete set of states of the Ising model. ' Particular-
ly, spin configurations with larger energies than those
which occur on the network would be unlikely to occur
during such a run. It might, therefore, be realistic to con-
sider the network energy density as a Gaussian [Eq. (27)],
in which large energies are relatively weakly represented,
although not absent. Further details were discussed in
Ref. 4.

III. SEMICIRCULAR MODELS

Suppose that the energies are eigenvalues of large ran-
dom matrices, of dimension X. For an ensemble of such
Hermitian matrices it follows that P(E) is the Wigner dis-
tribution"

for iEi (b, . (29)

where w is the energy variance. In the absence of detailed
information about the energy levels this would be a most
plausible assumption on which to base a model, and it also
occurs in some ensembles of random matrices. ' Its two-
sided Laplace transform is

q&(p) e(w /2)P

We thus find, at any temperature

Consider next the case of a Gaussian density:

—E /2w

&2mw
(27)

Here 6 =4%5, where 6 is the second moment of the
distribution of elements of the matrices in the ensem-
bl &8

Since our evaluation of ~ will be feasible for a more
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general class of densities P(E), including (29), we shall
consider

P(E)=
p —1/2

1 (2"p!) E1—
vr4 (2p )! b, ~

for.
l

E
l
(5, (30)

@(p)=p! Ip( pb,
l

), p & —T'
2

pb,

From (19) we then find

p 2(r+1)
V= 6 kg' I' P!

normalized for p~ ——, , with P(E)=0 elsewhere. For

p = 1 it is the Wigner density (29), for p = —, it is the uni-

form density {t(E)= —,6, for p =0 it is a random-phase
sampling- of a sinusoidal energy with amplitude 6, while
for p~ ac it becomes 6(E). Thus,

lowest temperatures, and in the Gaussian model it is par-
ticularly pronounced. This dependence corresponds we11
with the Monte Carlo experiment on the random Ising
spin glass, ' while the somewhat weaker curvature of the
models in Sec. III, due to the power-law dependence of
f (T), resembles the temperature dependence seen in the
viscosity of glass-forming liquids. ' It seems reasonable
to conclude from the present study that such curvature
can be expected to continue to T=O, and is a universal
feature which may be particularly pronounced in random
systems with continuous energy spectra.

The discrepancy between the Monte Carlo simulations
in the two-dimensional Ising-spin-glass model of
Young' and of McMillan can easily be interpreted in
the present context. In the first instance the Gaussian
model of Sec. II applies accurately, while in the second ex-
periment the data appear more like the semicircular
models of Sec. III with a relatively large p (cf. Fig. 1). In
fact, for large p, the density (30) with b, =&2@—lw ap-

X [lp (ph )"Iq ( rpb, ) ] (31)

This is valid at any temperature. Its leading low- T form
is obtained from

I„(x) —e "/v'2vrx

and is
(2p+1)(r+1)

2p+ ) (p!) 2kB T 4ralk~T
6 (4 )r+ I 2p+1

10

(32)

For example, if r = —, and p = 1, the Wigner distribution
implies

3

r= —', rcg2 I)(pb, )I)( —,pA) (33)
0 '-

10
while for {u, = z the uniform distribution implies

r= —,rug
"+' (PA) '"+"[sinh"(Pb. )sinh(rPb, )] . (34)

p
2

The low-temperature form with these continuous densi-
ties also produces the law of Arrhenius, the activation en-
ergy being 2 =4rb„ i.e., 2r times the width of P(E) as in
Eq. (22). However, in the present cases it is seen how the
continuity near the edges brings various versions of
temperature-dependent functions f ( T) of (23) into
These are powers of T, and depend on the nature of the
singularity at the edges of the spectrum. They are also
present in the case of diffusion in a continuous classical
potential, the power depending on the nature of the
model as in the present random case. These extra tem-
perature dependences, apart from the almost universal and
model-independent exponential, give rise to convexity in
the so-called Arrhenius plot, which is shown in Fig. 1 for
a selection of our present r= —,

' models. In the case of
Sec. I the curve is straight at low enough temperature, and
the curvature is only seen at high temperatures. On the
contrary, in both of the cases with continuous P(E) con-
sidered in Secs. II and III the curvature persists to the

FIG. 1. Diffusion time scale 7=6s/~og "+'=Do/D* in
models with transition probabilities of r=T in (11) in Ar-

rhenius plot in%. vs 6/k~ T, where 2h is the width of the random
energy distribution P{E) Curves .are labeled according to the
models defined in the text, and the plotted functions are expres-
sions (24), (28), (33), and (34). Various degrees of curvature are
present in the T—+0 limit, particularly in the Gaussin model
where we used w=A/2. The straight line obtained with the
model in Sec. I corresponds to the law of Arrhenius with no
temperature-dependent factor f{T) in (23). The result for the
Gaussian model is not expressible in this form, and is a new
thermal-activation law appropriate to certain random models.
It is notable that until the temperature becomes quite low the
models with bounded spectra of Sec. III follow a rather similar
parabolic temperature dependence, but then at the lowest tern-
peratures assume a power-law form for f{T), the exponent de-

pending on details of the model. Thus, in (33) it is T, while in

(24) it is zero. In these models, and also in the uniform case
(34), the activation energy is the same A=26. It can be seen
that the illusion of a straight curve at low T in the cases with a
nonvanishing power in f ( T) can be quite deceptive, and the
slope does not provide the correct activation energy correspond-
ing only to the slope of the curve of (24).
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proaches the Gaussian (27) asymptotically, except for the
slightly weaker wings near the cutoffs at +b, . In a finite
model, the spectrum P(E) must end at some finite energy,
such as b., and the contingent nature of the effect may
therefore well cause discrepancies such as those reported.

Recent studies of large three-dimensional Ising-spin-
glass models have shown that the kinetics depends sig-
nificantly on the dimensionality. This is quite consistent
with the ideas behind the present work, since the nature of
the optimal network is structural. Although the precise
low-temperature dependence remains undecided so far, it
seems to require spectra P(E) different from those con-
sidered here. The same can be said about the time scales
of the real spin glasses, and many other glass-forming
systems. But in these cases we have found that certain
simple and plausible premises lead to a spectrum P(E)
which implies the observed Vogel-Fulcher temperature
dependence.

APPENDIX

The weighted sum of random variables in (12) is pro-
portional to

Y=gf X

where

p(E +E~+) f 1 ~a pa ag

The density p(E) of E=E + Ea+, derives from tb, so
the JXa j are identically distributed, but not independent,
even if the [E j are. One must provethat as g~ao,

I pI;=gf X, ,

where

Xo —J dEQ(E)e "~

Let each X be correlated with at most n variables among
the set [Xa j, including itself, and denote this subset A
Let oo be the variance of the X with P. By the Cauchy-
Schwarz inequality,

~

cov(X,X&)
~

&cro, if pe%
=0, if PEA

The variance cr of I'then satisfies the inequality

~'&~'X X f-fp
a PE.A

By definition of Ha tt
t

10&f & —,
hence

a. (oo(nag)'" .

According to (14)—(16),

—+ g g ~ g

so Yp =
6 Xp. Consequently 0.~0 as g ~ oo, provided

o.
p & oo and n/g~O. By Chebyshev's inequality then

Y~ Yp with probability one. It is conceivable that this is
also true if ap does not exist, as long as Xp does and the
correlations are short range in the sense n Ig~0. Thus,

r=rgZ "1'- , rg "+'4(P—)"Xo .

The locations of the correlation sets ( Aaj are arbitrary,
which is particularly reassuring with optimal rietwork ki-
netics.
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