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Heuristic generalization of the Bogolyubov-Tyablikov magnetization equation
to arbitrary isotropic spin Hamiltonians
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The Bogolyubov-Tyablikov (BT) magnetization equation for the Heisenberg Hamiltonian with an
arbitrary elementary spin is shown to reduce to the mean-field result in the limit of infinite-range in-
teractions. Comparison with the mean-field magnetization equation for an arbitrary isotropic spin
Hamiltonian, ferromagnetic as well as ferrimagnetic, suggests a generalization of the BT magnetiza-
tion equation and of the effective, temperature-dependent, magnon spectrum corresponding to any
such Hamiltonian. The condition for a first-order phase transition in a ferromagnetic system is de-
rived, showing that mean-field theory underestimates the magnitude of the quartic term required.
The validity of the results conjectured is verified for a certain class of non-Heisenberg Hamiltonians.

The Heisenberg model, which has had an enormous im-
pact on the development of the theory of magnetism, is
insufficient to account for the vast variety of experimen-
tally observed phenomena concerning the properties of
magnetic materials. '

Typical extensions of the Heisenberg Hamiltonian in-
volve the addition of terms which are of higher order than
bilinear in the spin operators. A considerable amount of
effort has been invested in the study of systems represent-
ed by spin Hamiltonians involving biquadratic terms such
as (s;sj) as well as three- and four-center terms such as
(s;sj)(sask) and (s;sj)(skst). Such terms arise in accurate
treatments of the many-electron problem containing direct
exchange, superexchange, and spin-orbit coupling. '

They also appear as a consequence of spin-phonon cou-
pling, giving rise to magnetostriction. The thermodynam-
ic properties of such Hamiltonians were studied in Refs.
7—11.

Complicated effective spin Hamiltonians are also ap-
plied in the description of nonmagnetic phenomena such
as the orientational ordering in solid hydrogen, whose ef-
fective Hamiltonian is antiferromagnetic with a large bi-
quadratic term. ' Three- and four-particle exchange
terms among nuclear spins are of crucial significance in
the theory of the phase diagram of He around 2 mK. ' '
Spin Hamiltonians containing anisotropic and higher than
bilinear terms were also investigated in the framework of
a lattice model of quantum fluids. '

In spite of the very impressive progress in the under-
standing and accurate theoretical treatment of
Heisenberg-type Hamiltonians, the methods developed for
them cannot be transferred straightforwardly to more
complex cases.

Several developments in mean-field theory have taken
place recently. Some of the relevant contributions are
presented in Refs. 18—21. The present authors have stud-
ied a formulation of mean-field theory which is applicable
to spin Hamiltonians of arbitrary form. This formulation
was applied to isotropic ' and anisotropic magnetic
systems. It enabled the study of heat magnetization
magnetostrjction, the phase diagram and dynamics

of magnetic systems with axial symmetry, and a new
mechanism of ferromagnetism which has also been
discovered in a recent experimental study.

In order to account for short-range correlations a treat-
ment which is more accurate than mean-field theory is
needed. One such approach, which is based on decoupling
the hierarchy of two-time Green's functions, was formu-
lated by Bogolyubov and Tyablikov ' for the Heisen-
berg Hamiltonian with spin —,. This approach was gen-
eralized to a Heisenberg Hamiltonian with arbitrary
spin ' as well as to the Heisenberg antiferromagnet.
A variational formulation enabled the extension to a sys-
tem consisting of species with internal structure which in-
teract via an effective anisotropic Heisenberg Hamiltoni-
an, ferromagnetic as well as antiferromagnetic. This
method was successfully applied to a number of concrete
systems.

The BT model has several attractive features which
suggest that it provides overall a rather satisfactory
description of the properties of the spin system. In the
limit of infinite-range interactions it reduces to the mean-
field approximation. ' At low temperatures the BT model
reduces to the spin-wave treatment, which at that limit is
exact. For T & T, it coincides with the spherical
model, ' which in the limit of an infinite-dimensional spin
becomes exact. ' As an indication of the relation be-
tween the BT and spherical models, note that those criti-
cal exponents which were evaluated for the former agree
with the latter, both above and below T, . A further sig-
nificant advantage of the BT method is that it provides in
a unified self-consistent way both the thermodynamic and
the dynamic properties, which in most other approaches
are treated separately.

The BT Careen's-functions treatment of the Heisenberg
Hamiltonian

results, among other things, in a self-consistency equation
for the magnetization

S=aB (o ln(1+4& ')),
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where 8 is Brillouin's function and

4=(1/N) g t exp[2/3'(q, T)]—1I

with P= 1/k& T and

co(q; T) = [J(0)—J(q) ]S(T) .

(3)

(4)

co(q) =[J(0)—J(q)]o. (5)

by the replacement of the elementary spin o with S ( T).
Therefore, N is just the distribution function of the effec-
tive magnons, evaluated using Bose statistics. In order to
proceed we note that in the limit of infinite-range interac-
tions

J(q) =J(0)5(q),
so that, for an isotropic Heisenberg Hamiltonian,

4& = I exp[/3J(0)s] —1] (7)

Here S is the magnetization per site and J(q) is the
Fourier transform of JJ.

The structure of these results can be interpreted by not-
ing that co(q;T) is the effective, temperature-dependent,
magnon spectrum which differs from the mechanical
( T~0) magnon spectrum

generalization of Eq. (3) should be

4=(1/N) g I exp[/3Q(q;aH/as)] —1I

0 is the generalized effective magnon spectrum, depend-
ing on the temperature through its dependence on aH/aS,
which is a function of the magnetization. Here, H is the
infinite-range limit of the microscopic Hamiltonian H.

It is clear that in the infinite-range limit II should be
independent of q, except for a singularity at q=0, which,
however, has no effect on 4. Moreover, to agree with Eq.
(10), the infinite-range limit of 0 should be

n(q;aH/aS) —aH/aS . (12)

We do not yet know how to derive 0 from first principles.
What we do know is that the low-temperature limit of
A(q;aH/as) is the effective mechanical magnon spec-
trum corresponding to the general spin Hamiltonian
under investigation, which can presumably be obtained
from the equations of motion for the Fourier transform of
the spin operators, making the appropriate generalization
of the familiar linearization procedure for the
Heisenberg-type spin waves.

As an additional heuristic argument supporting Eq'. (12)
we point out that the infinite-range form of the equations
of motion for an arbitrary anisotropic spin Hamiltonian
1S28

S=oB(/3cr J.(0)S) . s+ i [H,s+ ]=iF+——(s,s, )s ~, (13)

Equation (8) is the standard mean-field magnetization
equation for the Heisenberg Hamiltonian.

The generalization of Eq. (8) to an arbitrary isotropic
infinite-range spin Hamiltonian H(S) is

S=crB ( /3oaH/as—) . (9)

PBH/ss 1 )
—1— (10)

so as to obtain Eq. (9) by substituting this expression in
Eq. (2). At this stage it seems almost inevitable that the

The similarity in form of Eqs. (8) and (9) reveals the
fact that the appearance of the Brillouin function is a
universal characteristic of the degeneracy of the spin
states, independent of the form of the Hamiltonian. The
comparison of these two equations suggests that the effec-
tive field, which in the Heisenberg case is of the form
J(0)S, can in general be written as —aH/aS. A second
universal feature of the BT formalism as expressed by Eq.
(2) and (3) is the form of the distribution function @,
which reflects the bosonic nature of the magnons.

The above interpretation strongly suggests that a
heuristic procedure for the generalization of the BT for-
malism can be based on a reversal of the logical sequence
presented by Eqs. (1)—(8).

Let us start with the generalized magnetization equa-
tion [Eq. (9), instead of Eq. (8)], make the appropriate
changes in Eqs. (7), (6), (5), (4), and (3), and assume that
Eq. (2) remains unchanged.

The generalization of Eq. (7), i.e., the infinite-range lim-
it of the Bose distribution function of the "generalized"
effective rnagnons, should be of the form

where

F+ ——N I 1 —exp[+(1/N)a/as, ]]H(s,s, ), (14)

co(q; T) =co(q) [J(0)S],
where

co(q) = [1—J(q) /J(0) ],
and offer the. following interpretation of the two factors in
it. J(0)S is just the effective field, which, as we have al-
ready seen, should be replaced by —aH/aS in the general
case. On the other hand, 1 —J(q)/J(0) is a kinematical
factor which depends on the lattice structure and the as-
sumed range of interaction. It therefore appears plausible
that the generalized effective magnons will be of the form

0= —co*(q) aH/aS . (17)

co*(q) is the reduced magnon frequency, which is indepen-

N being the number of elementary spins. In the thermo-
dynamic limit (N ~ oo ) the equations of motion become

s~ =+l (aH/as ) 's+ (15)

If H depends on s, only this result implies that the
mechanical magnon frequency is —(aH/as, ), and the

Z

effective temperature-dependent magnon frequency is
—aH/aS where S is the magnetization. This last result is
actually valid for any H(s, s, ), for all q&0. This is in
harmony with Eq. (12).

At this stage we would like to rewrite Eq. (4) in the
form
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dent of the temperature and the scale of energy, and
which has to be determined for each case according to the
lattice symmetry and the range of interaction assumed.
Equation (17) should be viewed as a conjecture concerning
the result of the linearization of the equations of motion
for the generalized magnons.

Substitution of Eq. (17) in Eq. (11) and substitution of
the. latter in Eq. (2) provides the generalized BT magneti-
zation equation for an arbitrary ferromagnetic isotropic

spin Hamiltonian.
An application of the BT formalism to the nearest-

neighbor antiferromagnetic Heisenberg Hamiltonian was
proposed by Hewson and ter Haar. Their equations for
the two sublattice magnetizations can be written in the
fol m

S+ ——oB (crln(1+4+')), (18)

where

@+=(1/2X)g I [(e ' —1) '+(e ' —1) ']+[2J(S+—S )/(E) E2)]—[(e ' —1) ' —(e ' —1) '] I
q

(19)

and
E) p ——JI+[(S++S ) —4S+S co (q)]'~ +(S++S ) I

(20)
with

S+ crB ( ———PcrJsp) (21)

(c) The infinite-range sublattice magnetization equa-
tions for an arbitrary isotropic two-sublattice spin Hamil-
tonian are

c0 (q)=1—y (q), y(q)= —,
'

+exp(iq 5) . .
NN S; =cr;B ( —Pcr; c)H/Bs;), i =1,2 . (22)

To generalize these results to an arbitrary two-sublattice
isotropic spin Hamiltonian we make the following three
observations:

(a) The mechanical magnon spectrum of a two-
sublattice Heisenberg Hamiltonian with elementary spins
o i and cr2 (Ref. 45) is essentially identical to Eq. (20), pro-
vided that S+ and S are replaced by cr& and o.2.

(b) The infinite-range limit of Eq. (18) is

S;=o.;B (o;ln(l+C&, ')), i =1,2 (23)

where

Following the same heuristic approach which was ap-
plied in the ferromagnetic case we conjecture that the BT
equations for an arbitrary isotropic two-sublattice spin
Hamiltonian, whose infinte-range limit is H(S),S2 ), are

@;=(1/2X) g I [(e ' —1) '+(e ' —1) ']+(—1)'2(h) —hz)[(e ' —1) ' —(e ' —1) ']/(E, —Ez) I
q

(24)

and

E; =( —1)'t(h)+h2) —4h)h2[co'(q)] I' +(h)+h2)
(25)

and approximating H outside of the commutator brackets
by its infinite-range form H we obtain

ls = [BA (H)laH] [s,'-",H] (27)

with

h, =aH/aS, , i. =1,2.
co'(q) is the temperature-independent structural factor.

A simply manageable example, in which the generaliza-
tion of the BT formalism can be carried out so as to sup-
port the above conjectures, can be introduced in terms of
the Hamiltonian

The Fourier transform of Eq. (27) is

is,'-"=[a~(H)/aH] [s'+-',H], .

Treating the commutator in the usual way we obtain

lsqi'-)=(+au. /aII). S M(q) sq-)

(28)

(29)

where co(q) is given by Eq. (16). Noting that
H = —J(0)S /2 we finally obtain

~=+ci„H", is,'-) =+[a~(S)/aS] ~(~) s,"-' (30)

n —].

y Hm[ (+) H]Hn —m —i

n m=0
(26)

where H is the isotropic Heisenberg Hamiltonian and a„
are arbitrary coefficients. Noting that

is'; =[s ', A ]

in agreement with Eq. (17).
Let us return to the general case of an arbitrary fer

romagnetic spin Hamiltonian. If the phase transition is of
second order the behavior near the critical temperature is
determined by the leading quadratic term in S, so that
both the critical temperature and the critical exponents
are identical to those obtained for the Heisenberg Hamil-
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tonian. However, the phase transition for a general spin
Hamiltonian can also be of first order. To obtain the con-
dition for a first-order phase transition we determine the
slope of the magnetization curve evaluated from Eq. (2)

with @ given by Eqs. (11) and (17), at the temperature T'
at which S—+0.

Using the fact that in the vicinity of T', S as well as
BH/BS are small, we obtain

PdH—/BS F '( —1)I1—[1/2F( —1)] PBH/OS+[3 —F(—1)F(1)]/[12F(—1) ](PBH/BS) + . j,
where

(31)

The magnetization equation becomes

S=as.(pa t [—(aH/as)/F ( —1)+p'(aH/aS)'[F ( —1)F(1)—1]/[12E(—1) ] j ) .

Only the two leading terms in

(32)

H= —(J/2)S —(a/4)S +. . .

are relevant. By comparison with a similar analysis in Ref. 22 it follows that the condition for a first-order transition is

a~ I3J/4[o(o+1)] j I[(2o+1) +1]/5+F(l) —F '( —1) j . (33)

In the infinite-range limit F(1)=F(—1)=1 and the re-
sult reduces to that of Ref. 22. Note that F(1) is the ar-
ithmetic mean of the reduced magnon frequencies and
F '( —1) is their harmonic mean. By a well-known
theorem it follows that F(1)~F '( —1), which means
that mean-field theory underestimates the magnitude of
the coefficient in the quartic term required for a first-
order phase transition. Note that this result is indepen-
dent of the specific form of the reduced magnon spectrum
co*(q), which means that it holds for any lattice type and
any range of interaction.

We plan to extend the heuristic approach discussed in

the present contribution to anisotropic spin Hamiltonians
as well as to systems with internal structure. The ap-
propriate infinite-range results have recently been de-
rived. ' ' ' It is of course desirable to replace the
heuristic arguments presented by a more satisfactory
derivation, either along the lines of the original Green s-
functions approach or generalizing the method used by
Suzuki.
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