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The T=O supercurrent in the B phase of superfluid He in a weakly inhomogeneous magnetic
field is calculated by a method developed by Mermin and Muzikar and is found to agree with our
earlier result.

I. INTRODUCTION
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where v' is the superfluid velocity, v' the spin superfluid
velocity, p the mass density, m~ the magnetization densi-
ty (divided by the He magnetic moment), and R; the
spin-orbit B-phase rotation. There is a rather simple
physical explanation of the last two terms of Eq. (1): The
first one merely corresponds to a convection mass current
due to a difference between, say, spin-up and -down super-
fluid velocity (resulting in a spin superfluid velocity) with
unequal spin-up and -down populations. This term is also
present in the 3 phase. The second term is much more
typical of the B-phase structure. It may be linked to the
appearance of an intrinsic angular momentum

1

L; = ——,R~;mo.

in the presence of a nonzero spin density, due to the quan-
tum rigidity of the Cooper pairs, which in He-B are
formed in a state of zero total angular momentum, after
which the spins are denoted by R:

J=L+R 'S=—0 . (3)

Recently, however, Mineev and Volovik have described
another calculation of the zero-temperature mass current
based on a gradient expansion of Gor'kov's equations for
the B phase in a magnetic field (also see Muzikar for
similar results) and have obtained a rather different result.
In particular, they do not find any pure curl term as in
(1), but rather a contribution of the form

jjkR~k'8j ol K Ejkm BgR~k (4)

with K &~K . They argued that this is due to the small-
ness of the intrinsic angular momentum carried by the
Cooper pairs, which prevents the existence of a well-
defined angular momentum as given by Eq. (2). We note
that the two calculations are expansions of Gor'kov's
equations. The only difference is that in Ref. 1 the mag-

There is presently a controversy over the expression of
the hydrodynamical mass-current density in He-B. By
an expansion of Gor'kov's equations and making use of a
gauge transformation to follow the rotation of the order
parameter, Combescot and Dombre' showed that the su-
percurrent at zero temperature is given by

netization is dynamically induced by the order-parameter
motion, while in Ref. 2 it is produced by a magnetic field.
However, the expression for the current should not de-

pend on the physical origin of the magnetization and the
two calculations should reasonably lead to the same result.

We shall not discuss the general question of intrinsic
angular momentum, which is a very delicate one. We find
it more important to try to resolve the discrepancies con-
cerning a quantity of primary physical interest such as the
ground-state mass current in the B phase. In order to do
this we present here a third calculation, using an approach
previously introduced in a beautiful paper by Mermin and
Muzikar to answer similar problems in the 3 phase. The
spirit of the method is to expand to first order in gra-
dients an equation relating directly the one-particle densi-
ty matrix to the order parameter. This equation may be
shown to result from Gor'kov's equations, but it leads to a
computation much more compact and with very few hy-
potheses. We take the same situation as Mineev and
Volovik and consider the B phase in a weakly spatially
varying magnetic field H(r) and an arbitrary spatial con-
figuration of the order parameter. We obtain the same re-
sults as Ref. 1 for the expression of the mass and the spin
currents to first order in H and in gradients. This pro-
vides an unambiguous and independent proof of the valid-
ity of our expression (1) for the supercurrent.

II. CALCULATION OF THE CURRENTS

Our starting point will be the following relation be-
tween the one-particle density matrix p and the order pa-
rameter P as given in Ref. 5:

where the functional product notation f g means

f g(r&, r2)= fdr3f(r&, r3)g(r3, rz)

and

f (ri, r2)=f'(r2, ri) .

For a justification of Eq. (5) and further details on
some technical aspects of this method, the interested
reader should refer to the paper of Mermin and Muzikar.
We shall work for both p and P in a mixed representation
where the variables are the center-of-mass variable
r= —,

'
(r&+r2) and the momentum p relative to the differ-
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ence variable r& —rz. In this representation, when p and P
are slowly varying functions of r, we can use the gradient
expansion (correct up to first order):

f g =f(r, p)g(r, p)+ —,
'

i [f(r, p), g(r, p)],
where f,g are 2 X 2 (spin) matrix functions and [f,g] is
the Poisson bracket defined in spin space by

T

a a[fgl. .., = g
&
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g,...1 2 (jy. 1 3()p. 3 2

of which result directly from Galilean invariance.
We now solve Eq. (5) to first order in H and in gra-

dients with an order parameter given by Eq. (11). We set

p=po+p~

(14)

which gives, to first order in H,

where po is zeroth order and p& first order in gradients.
To zeroth order in gradients, we obtain

P o po—=fofo

0 c)
fs&s3

Q s3sp ~

Pi y;

2= 2
po —pa=&

Mo( 1 —2po) =2bcd X (d X H):—2V .

(15)

Let us now recall the structure of the order parameter
in the homogeneous B phase: g may be written as

g(p) =i cr d(p)b(p)oy,

where the spin vector d is defined by

d (p)=R,p;, (10)

and b(p) is a real function which is isotropic.
We shall describe an inhomogeneous B phase in a

nonuniform magnetic field H(r) by the following order
parameter:

f(r, p) = [o"d(r,p)b(r, p)

where

+ i~ d(r, p)XH(r)c(r, p)+S(r, p)]io~,

d (r, p) =R;(r)p; . (12)

b (r,p) and c(r,p) are two real functions for which we do
not need to assume any relation. As we will see, it is
necessary to introduce the above nonunitary first-order
correction to the order parameter induced by H, in order
to achieve a nonzero polarization in the liquid. This
correction has necessarily the above form if one requires
the triplet part of g to stay in the p-wave manifold: one
must build from H and d a spin vector first order in H
and linear in p. Clearly, the only choice is d &&H. The
function c(r, p) must be real if the triplet part has the
same transformation law under time reversal as in the
homogeneous case. The form of the density matrix we
find with this term is in agreement with the result of oth-
er methods. It can be checked that an imaginary part in
c(r,p) would not affect the mass current to first order in
H, but the spin current would be modified.

The singlet correction S(r,p) is required in order to
avoid singularities in the density matrix at the Fermi sur-
face. It is first order in gradients and is already present in
zero magnetic field. Therefore it is not directly related to
our problem. We will see that it plays actually no role
and we keep it for consistency only. Finally, by taking
b(r, p) real we discard the possibility of local phase
changes, which are of no interest to us. It would be easy
to handle them and they would lead to the pv term in the
mass current and the m v term in the spin current, both

We have expressed the matrix p in terms of the Pauli ma-
trices (o&,crz. , o 3 or cr„,cr~, cr, ) and the 2 X 2 identity matrix
oo as

p=o.(@+a M, (17)

By expressing po as in Eq. (17), it is easily seen that only
[Mo o, Mo o] contributes to [Po,po], but this is second
order in II and therefore [po,po] drops out. Defining

~ ~[to,Po+l=~o~+~ B,
we have, to first order in H,

A =[bd, c(d XH)~],B = —,
'

e~gr[bdi3, bd—r] .

With these definitions, Eq. (18) becomes

pi( 1 —2po) —2M' 'Mo ——2

(20)

(21)
Mi( 1 —2po) —2piMo=B+ 2bd ReS+2cd X H ImS .

Since A and Mo are first order in H, so is p& from the
first equation. This makes the term P~Mo second order in
the second equation and we can neglect it. From Eq. (21)
we have

d M&(1 —2po)=d B+2b ReS,
(22)

d B:
~ e~prd~[bdp bdr]: ~ e~prb d~[dp dr]

At the Fermi surface, po
———,

' and d B&0, and d.M,
would diverge if we had not the compensating term
2b ReS. Now if we follow Mermin and Muzikar and as-
sume that the pair wave function retains the B-phase
form, we have

1S =
~ pob&~ijrd~[dp, dr ]

This makes ImS =0 and gives

d.M) ———,' b e~prd~ [dp, dr ]—. (24)

This term can be seen to give in the spin current a correc-

and dropped explicit dependence on r, p for simplicity.
Note here the need of a nonunitary order parameter to ob-
tain Mo&0. To first order in gradients, Eq. (5) gives

pl pop& plpo Y~& [poipo] = Y~~ [fo~fo ]+Pofl +014o
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tion of order T, /EF to terms with the same symmetry,
and therefore we will omit it from now on. Note that this
term is slightly different from the analogous one in kinet-
ic theory, where the gap is assumed to retain the 8-phase
form. This one gives a (T, /EF) correction.

We are left with the component Ml of Ml perpendicu-
lar to d, and, since Mp is also perpendicular to d, Eq. (21)
simplifies into

([DC,D]+H.c. ) =(D [C,D]+H.c. ) . (37)

Setting Herm(A)= —,'(A +H.c), we deduce from Eq. (36)
the relation

Herm(D Herm([DC, D]))=D Herm([C, D]), (38)

where we use the fact that D and Herm([C, D]) are sca-
lars.

This is equivalent to
pl(1 —2pp) —2Ml Mp ——A, Ml (1—2po)=B

We now define two Hermitian operators D and C as

D=bd cr, C=c(dXH) o .

They are related to Pp by

gp
——(D+iC)iay .

By comparison with Eq. (19), we have

ooA = —,([D,C]+H.c. ), o"B= , i[D,D] —.

(25)

(26)

(27)

(28)

b A =e pybd [bdp, V y]=e pyb d [dp, Vy] (39)

2A = ( 1 —2pp)Eapyda[dp, Mpy ]—2MpyEapyda[d p,pp]

28a =(1 2PO)&aPydP[dy Pp)

(40)

Comparing with Eq. (25), we obtain, by inspection, that

(where in the last step we have made use of elementary
Poisson-bracket algebra).

Making use of Eq. (30), we obtain

On the other hand, Eqs. (15) and (16) read, in terms of D
and C,

2= 2
po —po=»

Pl z ~aPyda[ P.Mpy]~ M la z ~aPydP[dyrpp]

which can be written as

(41)

(29)
o Mp(1 —2pp) = 2iDC =2i—CD =2o"V,

which, after a derivation 8 with respect to r or p, gives

Bp (1 2p )=d—D, BM (1—2p ) —2' M =2BV. (30)

Bearing in mind these relations, we now try to introduce
in the Poisson brackets, Eq. (28), the operators D and
CD. This strategy will reveal a nice solution of Eq. (25).
To do this we use the standard identity between Poisson
brackets,

pl
———, Herm—(iD[D,p p]) . (42)

It is interesting to note at this stage that the density
part po does not appear anymore in p&. A consequence of
this striking feature is that the supercurrent will be ex-
pressible in terms of the magnetization, its gradients, and
the gradients of the rotation matrix R; only.

In order to compute the currents, we write explicitly the
Poisson brackets in Eq. (41). The resulting expression can
be rewritten as

[fg, h] [f,gh] =f [g,h] —[fglh—
Applying it a first time for f=g =h =D, we obtain

[D,D] —[D,D l =D [D,D] [D,D]D, —

(31)

p] ————,Berm 'i»
Blpj

a» a
drj Brj.

po

2[D,D]=D[D,D] [D,D]D, —

where D is the unitary operator defined by

(32)

which, in view of the scalar character of the operator D2,
simphfies into When we insert these expressions in the formulas for the

currents [here, I is for 2 Jd p/(2') and we set m =1],

gi = P~pl ~ (4.4)

~
A AD=o"d (with DD t=oo) .

This relation is equivalent to

[D,d]=2d XB
or

(33)

(34)

and integrate by parts, we obtain

a Aa»
g; = —,Herm i p;D pp

Brj Bpj.

~ (jD A A.+» po — S. »» po (45)

28a =capydp[dy, D ] (35)

[DC,D) —[D,CD] =D [C,D]—[D,C]D,
or, equivalently,

(36)

Then we apply a second time the identity Eq. (31) for
f= h =D and g =C and obtain

p~ =pRaida~
Bda 1 5apR pJ= —(5ap —dad p)R py

—= (46)

Also, pp depends isotropically on p, while, from Eq. (16),

In order to calculate these various contributions explicitly,
it is convenient to use
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Moa (——5ap d—ad p)h p 5—aph p, (47) 2p= JpO, l22a =7 ha

where hp is isotropic in p. Performing the angular aver-
age, we have, for the mass density p and the magnetiza-
tion density m,

The first term in Eq. (45) gives to the mass current a
contribution

Mp w i Q w p

2 ~aPy Pi™oa dy =
2 eaPy Rk Ri4j dkdy5Pi45av v

Brj BPJ Brj

=
2 eaPy RkiRPj dkdyha =

4 Ejik (Raki22a )
rirJ drJ

(49)

where we have made use in the second step of the antisymmetry of eapy and taken advantage in the last step of the iden-
tity

e~pyR+, R pgRyk =&ij
The second term in Eq. (45) contributes to the mass current as

1 Bdp r, i r)Rpj ~ ~ 2 s
2 ~apy ~Oa

~ dy =
2 'Eapy Rkj dkdy5ai4hi4 =Uia a ~'dr;

where the spin superfluid velocity is defined by

s 1 Rp
Ui =

4 6'&Py Ryj .
Br;

Finally, the last term in Eq. (45) gives a contribution

(51)

Mp My
e py pMO (53)

Brj Bpj

which is zero because the three vectors M, Bd /Brj, and M IBpj are perpendicular to d, which makes their mixed product
vanish. The two terms (49) and (51) for the mass current give a result identical to our former expression, Eq. (1).

The spin current is obtained along the same lines. The first term in Eq. (45) gives, similar to Eq. (49),

Bdp ~ i (l M g,

Y apy g PipO ~ dy 6 ~ijk ~
(p ak) 6 ijk Rak +pBrj Bpj r)rj J J

The result for the second term is completely analogous to Eq. (51):

1 Mp~ 2 S
2 ~apy PO dy =TPUia

Br;

Finally, the last term leads to

(54)

(55)

adp ad, aRp„
EaPy JP;PO =EaPyRkiRvj Ri4k dkdi45yiPO

Brj Bpj Brj

s 4 1=2P~apy&crpiiR kiR vj Uj cr [ IS 5ki45yv lp (5yk5iiv+ 5kv5yii )]

2p s 2p sia+
15 (RajRpi 4RaiRpJ)UpJ

The second term in Eq. (54) can be rewritten as

BRak D s—+e"k —— (R R p
—R p R )u.pij g

=
3 ai J & aj

rJ

by making use of Eqs. (50) and (54). When we combine Eqs. (54)—(57), we obtain, for the spin current,

4ps sgia= oi (RaiRPJ+RP;Raj)ojP 6 ejikRakiijP ~

5 5

in agreement with our earlier results

(56)

(57)

(58)
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