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The approach towards complete wetting is considered for adsorbed liquid layers and for gravity-
thinned layers in binary mixtures. These layers are bounded by one or two fluid-fluid interfaces.
The thermal fluctuations of those interfaces are studied in the framework of effective interfacial
models. Their correlation function C(x) is calculated within the Ornstein-Zernike approximation
and by transfer-matrix methods. For large distances x, C(x) cc exp( —x /g~~). Due to the divergence
of the correlation length g~~, complete wetting can be regarded as a critical phenomenon. Two dif-
ferent scaling regimes have to be distinguished depending on the nature of the long-ranged forces
and on the dimensionality. In the mean-field regime, the critical exponents depend on the long-
ranged forces. In the fluctuation-dominated regime, they depend only on the dimensionality. It is
also shown that these critical effects are characterized by one superuniversal feature: The critical ex-
ponent g which governs the decay of the correlation function C(x) for x &&g~~ is zero both in the
mean-field and in the fluctuation-dominated regime. The result g=0 is expected to be valid for all
types of wetting transitions. The experimental work which has focused on the thickness of the wet-
ting layer is briefly reviewed. Furthermore, two types of experiments are proposed by which the
correlation length g~~ could be observed: it should show up both lu the intensity of the small-angle
scattering of light from the interfaces and in experiments which measure the dispersion relation of
the capillary waves. This relation is found to be co (q) ccq(q +g~~ ), where co and q are the frequen-
cy and the wave number of such waves. It is also suggested that the regime of critical wetting could
be obtained in binary mixtures by the addition of impurities.

I. INTRODUCTION

Complete wetting has been recently studied in two dif-
ferent physical systems: (l) in the adsorption of liquids on
substrate surfaces and (2) in binary liquid mixtures in
contact with their vapor ' or with a surface which
prefers one of the two liquid phases. ' ' The wetting
layers observed in these systems are bounded by two inter-
faces. In the case of adsorption or binary mixtures in con-
tact with a selective surface, the wetting layer is bounded
by a solid-liquid and a fluid-fluid interface. In the case of
a binary mixture in contact with its vapor, the boundaries
consist of two fluid-fluid interfaces. The critical effects at
wetting can be understood in terms of the effective in-
teractions between these two interfaces.

For complete wetting, this interaction is described by an
effective potential which has been known for a long
time. ' ' This potential yields a prediction for the thick-
ness I of the wetting layer. ' ' That quantity has indeed
been studied in many experiments. ' ' On the other
hand, it has been largely overlooked by the wetting com-
munity that the same effective potential implies long
range interfacial correlations' if the wetting layer is
bounded by at least one Auid-fluid interface. Due to
these correlations, complete wetting involves the addition-
al length scale g'~~, which governs the correlations parallel
to the interfaces. Because of g~~, complete wetting can be
regarded as a critical phenomenon. That is the main
point of this paper. This viewpoint becomes especially
clear when complete wetting is studied for arbitrary
dimensionality (see Secs. IV and V). For three-

dimensional systems, on the other hand, where complete
wetting has already been observed, the correlation length

g~~
should be accessible to various types of experiments

(see Sec. VI).
Most of the recent theoretical work has been focused on

critical rather than on complete wetting. ' From these
theoretical efforts, a rather complex picture has emerged
for bulk dimension d =3. For short-range forces, critical
wetting has been found, ' and effective interface poten-
tials have been obtained which seem to lead to an intrigu-
ing and nonuniversal critical behavior. " Such a
behavior might have been observed in a Monte Carlo
simulation. For systems with long-range forces, critical
wetting is less likely to occur. In the case of adsorption,
the present theoretical picture is as follows. If the
adatom-substrate interactions are lorig ranged and the
adatom-adatom interactions are short ranged, the square-
gradient approximation for the density functional of the
fluid is appropriate and one may study a Landau-
Ginzburg type of theory for the fluid density. '9 As a
result, one obtains an effective interface potential which
implies that a critical wetting transition cannot occur as a
function of temperature. ' ' ' If both the adatom-
substrate and the adatom-adatom interactions are long
ranged, such a transition might occur, but only if the
effective potential fulfills several restrictive constraints.
As a consequence, fine tuning of the microscopic interac-
tion parameters is necessary in this case. Thus, it is not
surprising that no clear experimental evidence has been
found for critical wetting so far.

On the other hand, when viewed as critical phenomena,
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complete wetting and critical wetting are quite similar.
They share indeed most of their critical features: (1) the
length scales l and

g~~ diverge; (2) thermodynamic quanti-
ties such as the interfacial specific heat have a singular
behavior; (3) these critical effects can be characterized by
critical exponents; (4) these exponents are universal and
depend only on the bulk dimensionality and on the short-
or long-ranged nature of the underlying microscopic in-
teractions; and (5) there are scaling laws which reduce the
number of independent critical exponents. In fact, from
this conceptual point of view, complete and critical wet-
ting differ only in this number: complete wetting can be
characterized by one independent exponent, ' ' whereas
critical wetting is governed by two such exponents. "
Therefore, complete wetting can be considered as a proto-
critical transition. (The expression "protocritical" has
been used before for the bulk critical behavior of the
Yang-Lee edge singularity. )

For short-range forces, the critical effects at complete
'

wetting have been studied by various methods. Within
mean-field theory, the thickness l has been found to
diverge logarithmically, " ' whereas the correlation length

exhibits a power-law divergence. ' ' "' A simple
Ginzburg criterion suggests that these results should ap-
ply for three-dimensional systems. ' ' This is in accor-
dance with a linear renormalization-group calculation as
reported in Ref. 18. The logarithmic divergence of l as
predicted by mean-field theory has indeed been observed
in a recent Monte Carlo simulation for a three-
dimensional system with short-range forces. For two-
dimensional systems, both / and g'~~ have a power-law
divergence which has been obtained from continuous
and discrete ' interface models.

In the present paper, complete wetting is systematically
studied for d-dimensional systems with long-range forces.
The results for short-range forces are recovered as a limit-

ing case. This work which is an elaboration on Ref. 18 is
done in the framework of effective interface models. In
Sec. II, these models are motivated and defined. In par-
ticular, it is shown that both adsorbed liquid layers and
gravity-thinned layers in binary mixtures can be studied
within the same theoretical framework. In Sec. III, com-
plete wetting is investigated by mean-field theory and by
the Qrnstein-Zernike approximation for the interfacial
correlations. Section IV contains a rather extensive study
of complete wetting in two-dimensional systems. The
reader who is not interested in the more formal aspects of
this work may skip both Secs. III and IV since their main
results are summarized at the beginning of Sec. V. That
section contains a unified scaling picture for complete
wetting. Finally, two types of experiments for the obser-
vation of the correlation length g~~

are proposed in Sec. VI.

its vapor phase. The thickness of this wetting layer grows
as one gets closer to the bulk coexistence curve of the
fluid. Finally, at coexistence, the wetting layer is macro-
scopically thick, and the solid is completely wet. This -im-

plies that the interfacial tensions o.~L, o.~v, and o.
L v satis-

fy Antonow's rule osL, +~L,v=osv where the subscripts
S, L„and V stand for solid, liquid, and vapor.

On a microscopic scale, the two interfaces which bound
the wetting layer have an intrinsic structure as described
by the density profile of the fluid. Near the surface of the
solid, the fluid density exhibits oscillations due to packing
effects. Typically, these oscillations are confined to a
few interatomic spacings from the substrate. Within the
liquid-vapor interface, on the other hand, the density is
expected to vary smoothly from its value in the liquid to
its value in the vapor. The scale for this variation and,
thus, for the intrinsic width of the liquid-vapor interface,
is given by the bulk correlation length g~.

In this work, the mean value l for the thickness of the
wetting layer is always assumed to be large compared to
both the interatomic spacings and the bulk correlation
length gb. In this regime, a coarse-grained description
should be appropriate where the intrinsic structure of the
interfaces is neglected. On this coarse-grained scale, the
solid-liquid interface is viewed as a geometric surface, and
the liquid-vapor interface as a structureless drumhead.
As a consequence, the wetting layer is described by a sin-
gle variable I which measures the distance between the
two interfaces (see Fig. 1). In general, this distance devi-
ates from its mean value 1 due to thermal fluctuations of
the liquid-vapor interface, i.e., due to capillary waves.
Thus, the distance I is a fluctuating field which depends
on the coordinates x =(x &,x2 ) parallel to the substrate
surface: I = l(x); see Fig. 1(b).

Note that the description of the wetting layer in terms
of a single-valued variable I does not include extreme
thermal fluctuations which lead to overhangs of the inter-
face. . However, as long as one stays away from any bulk
critical point, such fluctuations should be rather rare.
Indeed, the typical capillary waves are expected to be
small-amplitude waves which means that their amplitude
is small compared to their wavelength. In the absence of
a substrate, the capillary waves on a liquid-vapor interface
have been theoretically studied in much detail.
However, as shown in this paper, the properties of these
waves are strongly affected by the presence of a substrate

V

II. EFFECTIVE INTERFACE MODELS S

A. Adsorbed liquid layers

First, consider a fluid of adatoms in the presence of a
substrate surface. Due to the attractive interactions be-
tween the adatoms and the solid, a liquid layer may be
formed on the substrate although the bulk fluid is still in

FIG. 1. Wetting layer of adsorbed liquid (L) between solid
(S) substrate and the vapor ( V) phase. In (a), the thickness l of
this layer is constant; in (b), it varies due to thermal fluctuations
of the liquid-vapor interface. x denotes the coordinates parallel
to the the solid-liquid interface.
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wsF (r)~ esF(—r /AsF ),
LUFF ( r )~—eFF ( r /A, FF )

(2.1)

for large r. The e's and k's in (2.1) are the parameters for
the interaction energies and for the interaction ranges,
respectively. It can be shown that (2.1) leads to an effec-
tive interface potential

or any other interface which interacts with the liquid-
vapor one.

What is the free energy associated with a wetting layer
of thickness /(x) as shown schematically in Fig. 1? First
consider a layer of constant thickness / as in Fig 1(a. ). Its
free energy per unit area will be referred to as the effective
interface potential V(/). This potential can be derived
from microscopic considerations where one starts from
the interactions between the single atoms. The adsorption
systems studied experimentally in Refs. 1—8 are governed
by dispersion or van der Waals forces, i.e., by induced-
dipole —induced-dipole interactions. If retardation effects
are neglected, the dispersion force between two atoms has
a long-range attractive tail ccr, where r=

vari

is the
separation between the atoms. ' ' To be more specific,
assume that the tails of the solid-fluid interactions wsF(r)
and the fluid-fluid interactions wFF(r) are given by

the effective potential V(/), i.e., by

BV

1=7
(2.7)

Tlllls; thc Illcall posltloI1 / cc (5p ) . ' Sucll a
behavior has been seen in many experiments, ' * ' ' al-
though the value for the exponent is often found to be
larger than —,

' (see the discussion in Sec. VI A).
Next, consider thermal fluctuations of the liquid-vapor,

interface. Such fluctuations increase the free energy of
the wetting layer due to (i) distortions of the liquid-vapor
interface, and (ii) disp/acements of this interface from its
mean position /. The free-energy increase due to distor-
tions of the interface is given by the interfacial tension
o =ot.v times the increase in the interfacial area, i.e., by

o.fd xI[1+(V/) ]'i —1}

= fd x[ —,'o(V/) +O((V/) )] . (2.8)

The square-gradient approximation is physically motivat-
ed by the fact that the capillary waves are expected to be
small-amplitude waves. This approximation may a1so be
justified by more formal arguments. The frec-energy in-
crease due to the displacements of the interface is taken to
be

V(/) =5@/+ VSF(/)+ VFF(/) (2.2.) f d x[V(/(x)) —V(/)], (2.9)
with the asymptotic behavior

VsF(/)+ VFF(/)~ W/

for large /. The variable 5p in (2.2) is given by

(2.3)

5iL = (Pl. Pv )(/L /—I)— (2.4a)

where PI and pz are the particle number densities of the
liquid and the vapor, and p —p is the deviation of the
chemical potential p from its value p* at coexistence. If
the vapor is treated as an ideal gas, and if one considers
thermodynamic paths with constant temperature, one has

p' —p = kII T In(p/p*)—, (2.4b)

where p is the vapor pressure and p' is its value at coex-
istence. The Hamaker constant 8' in (2.3) can be ex-
pressed in terms of the microscopic parameters which
enter (2.1). One finds F I / j =fd x [ ,' cr( 9/) +—V(/)] . (2.10)

where the effective potential V(/) is given by (2.2). For
the first two terms of V(/) in (2.2), the expression (2.9) is
strictly valid since these terms arise from external poten-
tials for the fluid molecules which do not depend on the
configurations of these particles. In contrast, the last
term VFF(/) in (2.2) stems from the microscopic interac-
tions between the fluid molecules. For an I-dependent in-
tctfacc posltloll /(x), tllcsc 111tcl'actlolls glvc Else hot/I to a
contribution VFF(/(x)) in (2.9) and to the distortion terln
(2.8). In addition, one would expect more complicated
terms which involve products of / and (V/)I. Such terms
will not be considered here. They would not affect the
mean-field results discussed in Sec. III, but could have
some effect in the fluctuation-dominated regime.

Thus, the total free energy F I /] for a thermal fluctua-
tion /(x) is taken to be

6 6
(pi, pv)(psesF ~sF —pt. eFF4F), —

12
(2.5a)

As a consequence, the probability I' for such a fluctua-
tion is given by

W'= (PL Pv)(Ps —PI )eA, —
12

(2.5b)

where ps is the particle number density of the solid. This
formula may be further simplified if one takes
~sF—6FF 6' and A'sF —XFF—A. This leads to

F(I) l(ksT)—
(2.1 la)

where k~ and T are the Boltzmann constant and the tern-
perature. Once PI/] is specified, all interfacial properties
may be expressed in terms of Feynman path integrals over
/. For instance, the interfacial free energy f, is

The empirical value for 8'is

IV-klI X(100 K)-10 ' erg, (2.6)

T

k, sin J J DI/]/—I/] (2.11b)

as obtained, for instance, from the data of Ref. 1.
In the classical theories, ' ' the mean value I for thick-

ness of the wetting layer is determined by the minimum of

.and the mean thickness I of the wetting layer is

/ = J J D I/II I/]/ . (2.11c)
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:——,
' o[(/ —//a. )] (2.12)

for the effective potential, where m, g, and z are the parti-
cle mass, the gravitational acceleration, and the capillary
length, respectively. This term will be considered in Sec.
VI A.

Note that the expectation values of l are not affected by
any constant term in V(/) since such a term can be ab-
sorbed in the normalization of P I / I.

The effect of gravity has not been included in the effec-
tive potential (2.2). Its influence on the thickness / is dif-
ficult to estimate in general since it depends on the
geometry of the adsorption experiment. Cxravity also af-
fects the fluctuations of the liquid-vapor interface.

Vg(/) = —,(pL pp )—mg(/ —/)

thickness / as shown in Fig. 2(a). Obviously, this situation
looks very similar to the one discussed in the preceding
subsection [see Fig. 1(a)]. The free energy per unit area of
such a wetting layer is given by'

V(/) =(p~ —p„)gL~/+ W/ (2.13)

W= (ag —o.g )(~y —~g),
12

(2.14)

for l large compared to the interatomic spacings. pz and

p~ are the mass densities of the two phases, and I.z is the
thickness of the A phase [see Fig. 2(a)]. The first term in
(2.13) is the work one has to do against gravity in order to
move the layer of the 8 phase from the bottom to the top
of the A phase. The second term in (2.13) is due to the
underlying dispersion forces between the molecules. Ac-
cording to de Gennes, ' the Hamaker constant 8 is given
by

LA

Le

(a) (c)

FICi. 2. geometry for gravity-thinned layers in binary mix-

tures. A is the lighter and B the heavier liquid phase of the

mixture. (a) and (b}, wetting layer of the heavier 8 phase be-

tween the vapor ( V} and the A phase (Refs. 9—12). The vari-

ables I& and l2 denote the local distance of the two Auid-fluid

interfaces from some reference plane. (c), wetting layer of the

lighter A phase between the solid (S}wall and the 8 phase (Ref.
14).

B. Gravity-thinned layers in binary mixtures

The second class of systems where complete wetting has
been studied experimentally consists of binary liquid mix-
tures. '" As the temperature is changed, these systems
move along their line of triple points where the vapor
coexists with the two liquid phases, say with the A and B
phase. If the mass density p~ of the 8 phase is larger
than the mass density Pq of the A phase, the lighter A

phase will normally sit on top of the heavier B phase due
to the presence of gravity. It can happen, however, that a
wetting layer of the heavier 8 phase intrudes between the
vapor and the A phase ' as shown schematically in Fig.
2(a). This wetting layer will be referred to as the V 8 A--
layer. A. different geometry may occur in the presence of
a solid surface which prefers the lighter A phase. ' " In
this case, a wetting layer of the lighter A phase. can be
formed between the solid surface and the heavier B phase.
Such a S-A-8 layer is shown schematically in Fig. 2(c).
This is in fact the geometry studied in Ref. 14.

Let us first consider a V-8-A wetting layer of constant

where the a s are proportional to the specific polarizabili-
ties of the three phases. A similar expression can be ob-
tained from (2.5b) if one identifies the solid, liquid, and
vapor in the adsorption problem with the vapor, liquid B,
and liquid A in the binary mixture. This leads to

W= (pg —pg )(py pg )eA, —
12

(2.15)

V(/) =(pg —pg )gLg/+ W/ (2.16a)

L~ is the thickness of the intermediate 8 phase, and

(/ ~ Sa)(Ps P~)—&~—6

12
(2.16b)

may be taken as an approximate expression for the
Hamaker constant of a gravity-thinned layer due to a
selective surface.

Note that the first term in (2.13) and (2.16a) depends Qn

the mass densities pz, pz, whereas the expressions (2.15)
and (2.16b) for W depend on the number densities pz, p&.
For complete wetting, one needs 8 ~0. Thus, p~ should
be larger than pz since one would expect that p~~p& in
(2.15) and pz &ps in (2.16b). On the other hand, pz has
to be smaller than pz in order to have a gravity-thinned
layer. It turns out that both inequalities hold for most of
those mixtures for which a wetting layer has been ob-
served. This will be discussed in more detail in Sec. VI B.

Next, consider thermal fluctuations of the interfaces
which bound the wetting layer. One may apply the same
philosophy as in the case of adsorbed layers if one makes
two simplifying assumptions. First, the lower B phase in
Fig. 2(a) and the upper A phase in Fig. 2(c) are assumed
to be so large that they effectively act as infinite reservoirs
for the wetting layers. This leads to a description where
the possible values for I are not restricted. The second as-
sumption, on the other hand, relies on the fact that

where pz, pz, and pz are the particles' number densities.
e and A, may be thought of as an average energy and an
average range parameter for the three possible pairs of
molecules in the binary mixture. The free energy of an
S-A-8 layer as shown in Fig. 2(c) can be easily found
from (2.13) and (2.15) by a proper identification of the
various phases involved. In this way, one finds
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3 &~I z or Iz. As a consequence, one may consider I z
and I.z to be constant and ignore their fluctuations. The
latter assumption will be justified in Sec. VI B. If one
makes those two assumptions, the free energy Ftl j for
the S A -8-layer has exactly the same form as (2.10), with
the interfacial tension o =azz and the effective potential
V(1) now given by (2.16). For the V 8 A-la-yer [see Fig.
2(a)], the situation is slightly more complicated since this
wetting layer is bounded by two fluid-fluid interfaces
which can both fluctuate. Therefore, one has to intro-
duce two variables /~(x) and 12(x) which measure the dis-
tance of these interfaces from some reference plane [see
Fig. 2(b)]. In order to emphasize the analogy with the S
A 8ge-ometry [see Fig. 2(c)], it is useful to choose this
reference plane to be equal to the mean position /] of the
8- V interface.

The free-energy functional now has the form

C. Generalized models

It is useful to generalize the interface models discussed
in the preceding subsections in two ways (1) From a
conceptual point of view, it is very instructive to consider
arbitrary dimensionality. Thus, (d —1)-dimensional inter-
faces in d-dimensional systems will be considered. (2) The
1 term of the effective potential V(/) will be general-
ized to an arbitrary power l

The 1 term stems from nonretarded dispersion forces
in three-dimensional systems. For two-dimensional sys-
tems, the same kind of forces will lead to a term propor-
tional to / . The latter /-dependence is also obtained
in d =3 dimension if retardation effects are included. ' '

An arbitrary power l & can be derived from a microscop-
ic adsorption model where the solid-fluid and the Auid-
fluid interactions wsF and w~~ behave as [cf. (2.1)]

FI/), lqj = fd x[ ,'a)(V—l)) + ,'o2(—Vl.~)

+ V(/2 —/) )], (2.17)

wsF ( r )~ ess ( r—IA sF )

WFF ( r )~ eFF (—r IAFF ), (2.21)

with the interfacial tensions o& ——a~& and a2 ——a&~. The
effective potential V(l) in (2.17) is given by (2.13). The
free energy (2.17) can be brought into a simpler form by
the linear transformation

I) ——I — I,0]+02

I2 ——l — I .
&+O2

This leads to

FI 1, , /2j =FI1j+fd'x[ ,'a(V/)'], — (2.18)

with

F I 1 j =fd x [ , a(V 1 ) —+V(l)], (2.19)

where o =a~aq/(a~+a@) and o =a&+a&. Note that the
free energy (2.19) for the V-8-A layer also has the same
form as the corresponding free energy (2.10) for adsorbed
liquid layers.

The free energy (2.18) does not contain a potential term
for the "center-of-mass" variable

/=(a)/)+ay/2)/(a)+a2) .

Thus, the fluctuations of / seem to be unrestricted. How-
ever, these fluctuations are bounded by the additional
term

Vs(/)) = —,a)a) (/) —/)) (2.20)

due to gravity which has been neglected in (2.17). ~& is
the capillary length of the 8- V interface, and its mean po-
sition /~ ——0 due to above convention for the reference
plane. A term such as (2.20) should always be included
for a liquid-vapor interface in. a gravitational field ir-
respective of the possible internal structure the liquid
might have. This term will be considered in Sec. VI B.

for large separations r between the atoms or molecules.
At the coexistence curve of the bulk fluid, this leads to an
effective interface potential V(l) with the asymptotic
behavior

V(/)~W/ ~, p=q —d —1 (2.22)

for large l with the generalized Hamaker constant

(2.23)

where

~"-""r((q—d —1)/2)
(q —d —1)(q —d) I (q /2)

For nonretarded dispersion forces ( q =6) in d = 3 dimen-
sions, this expression reduces to (2.5).

For small 1, the effective potential V(l) goes to some
constant, the value of which depends on the details of the
microscopic interactions wsF and wFp. The behavior of
V(l) for large and for small 1 may be combined into a
term of the form W(/+lp) ". lp is a nonuniversal pa-
rameter which is chosen in such a way that
V(0+) = Wlp ~. In addition, one must keep in mind that 1

measures the distance between the two interfaces. These
interfaces may touch but cannot intersect each other.
Thus, 1 cannot be negative. As a consequence, V(/) con-
tains a hard wall at 1=0, i.e., V(/) = oo for 1 &0. This
applies equally well to adsorbed and to gravity-thinned
layers.

Thus, the free energy for the wetting layer is taken to be

FI/j =fd 'x[ ,'a(V/) +—V(l)], (2.24a)
with

oo, 1 (0
5p/+W(/+/p) t', /)0. (2.24b)

For adsorbed layers, 5p is given by (2.4). For gravity-
thinned layers, 5p has to be identified with (Pz —Pz )gl. ;
see (2.13) above.

The model (2.24) is appropriate for complete wetting,
which is the topic of the present paper. Critical wetting,
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on the other hand, occurs when 8'is negative and goes to
zero from below as a function of temperature. That this
may happen can be seen from (2.23). Assume that W is
negative due to the third factor in (2.23) for temperatures
T far away from the bulk critical temperature T, of the
fluid. This implies that the solid is only incompletely wet
by the fluid. As T is increased towards T„ the liquid
density pL decreases and, as a consequence, the third fac-
tor in (2.23) may vanish at some wetting temperature
T ~ T, . The universal aspects of critical and multicriti-
cal wetting transitions in systems with long-range forces
are investigated in a different paper.

C(x) =—([1(0)—l][l(x)—I])
km~ dd 'q e'""

2~"-' q'+ ~~', 2 „-2

with30

(3.6a)

x x +Q (3.6b)

A reasonable choice might be to take a & 10X(interatomic
spacing).

From (3.4), one obtains the OZ expression for the corre-
lation function

III. MEAN-FIELD THEORY
AND ORNSTEIN-ZERNIKE APPROXIMATION

Bv
al

(3.1)

In the following, the MF value for l will be denoted by l.
For the effective potential (2.24b), (3.1) yields

The simplest method by which the interface model
(2.24) can be investigated is mean-field (MF) theory. '

As mentioned above [see (2.7)], the mean value l of the
wetting layer thickness is determined within MF theory
from

where 1/a is the high-momentum cutoff introduced
above. For d & 3, this cutoff is necessary in order that the
integral in (3.6a) converges for large momenta q. For
d &3, this integral converges even for a =0. Exactly the
same expression as in (3.6) has been obtained for the
correlation function of the soft mode in the density fluc-
tuation near wetting. ' Similar integrals arise for inter-
face fluctuations in a weak gravitational field, and in the
Ornstein-Zernike theory for the correlations near a bulk
critical point.

The integral in (3.6) yields

(3.7)

)
—)/()+p) (3.2) with

As a consequence, the interfacial free energy f, has a
singular part'

Q(z) = (2m)(( )/ z( ) K (z)
AT

(3.8a)

f = I'(&) ~(5p) "+P' (3.3) g(z) =z "Q(z) . (3.8b)

5=/ —I,
with

(3.4b)

Next, consider small fluctuations of l around l=l.
Within the Ornstein-Zernike (OZ) approximation, these
fluctuations are governed by the Gaussian expression

FI I j =FIl j+ J d" 'x[ —,o(V5) + —,og(i 5 ]+O(5 )

(3.4a)

for the deviations

K~(z) is a modified Bessel function. Note that (3.7)
gives a scaling form for C(x): apart from an explicit pre-
factor, C(x) depends only on the scaled coordinate
z=x/g~~. As a consequence, one can distinguish several
regimes. z ~0 corresponds to x (a, and z~ oo to
x »g((. Near the transition where g~( is large, there is also
an intermediate regime with a «x «g(). In the remain-
ing part of this section, I will set k~ T/o'= 1 in (3.8a). —

First, consider the regime x »g~(. For large z, the
asymptotic behavior of K is

' 1/2

d V(l)
dl

(3.4c)

K,(z)~
2Z

e ' for all v.

As shown below, g~( as defined by (3.4c) is the MF expres-
sion for the correlation length parallel to the interfaces.
From (3.4c) and (2.24b), one finds that this quantity
behaves as'

E ~ (5 )
—(2+p)/(2+2p)P (3.5)

On physical grounds, the wavelength of the interface
fluctuations described by the continuum model (3.4)
should be large compared to the intrinsic thickness of the
two interfaces (see Sec. II A). Otherwise, the description
of the interfaces in terms of smooth drumheads is not jus-
tified. As a consequence, one has to supplement the con-
tinuum model (3.4) with a high-momentum cutoff 1/a.

If this expression is inserted in (3.8), one finds'

C(x) &xx ' " e (3.9)

This yields

I

I (v)(z/2) & v&0
—ln(z), v=0 . (3.10)

for large x in a/l dimensions. The exponential decay in
(3.9) shows that g() as defined in (3.4) is indeed the correla-
tion length for correlations parallel to the interface.

Next, consider the limiting behavior of the correlation
function C(x) for x —+0. For small z,
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with

TQpg, d &3

C(0)= ~ (I/217)ln(g'~(/a ), d =3

g, g'~ ", d &3

n, =—(2~)&'-"'"2'"-""r((d—3)/2),
—= (2n. )" "' 2" "' l ((3—d)/2)

(3.11)

(3.12a)

(3.12b)

Thus, the divergence of C(0) implies that the interface
becomes rough as the wetting layer becomes large. Note
that a similar divergence occurs in the QZ theory for
correlations near a bulk critical point in d (2-. In this
case, the fluctuating field corresponds to a microscopic
spin variable which can have only two possible values. As
a consequence, the bulk correlation function Cb(r) is
bounded from above, and the divergence of Cb(0) within
the OZ theory is unphysical. ' In the present context,
however, the fluctuating field l can become arbitrarily
large even in a microscopic model. Therefore, C(x) is not
bounded from above and the divergence of C(0) as given
by (3.11) can be interpreted in a physical way as is (3.13).

Since C(0) becomes very large for d &3, it is con-
venient to consider the difference correlation function

b, C(x) —=C(0)—C(x)

Qo and go are the limiting values obtained from (3.8) for
d & 3 and d & 3, respectively.

It follows from (3.11) that C(0) diverges at complete
wetting for d (3.' This divergence has a very physical
interpretation since C(0) can be related to the effective in-
terfacial thickness or roughness gt..

(3.13)

b, C(x)~ ln(x/a) .1

4' (3.18)

EC(x)=
~
Qo~x (3.19)

for a «x «g~~. Qo is again given by (3.12a). It is re-
markable that the same prefactor, namely

~
Qo ~, occurs

in (3.17) and in (3.19). In (3.17), 00 arises from the lead-
ing term of the ascending series for K (z). In (3.19), flo
comes from the next-to-leading term of this series Th. us,
OZ theory yields a scaling regime both for d & 3 and for
d & 3 where C(x) and b,C(x) are given by the same ex-
pression,

~
Ao

~

x . The schematic behavior of C(x)
and AC(x) is shown in Figs. 3(a) and 3(b).

IV. COMPLETE WETTING IN TWO-DIMENSIONAL
SYSTEMS

A. Transfer-matrix formalism

In bulk dimensionality d =2, the interface variable l de-
pends only on one coordinate: I=l(x). As a conse-

C(x) "

For d & 3, the leading terms in (3.15) cancel, and one has
to determine the next-to-leading term of the ascending
series for X„(z).This term can be mostly easily obtained
from the definition of K„(z) in te~ms of the modified
Bessel functions I+„and from the ascending series for
I+„. The form of this term depends on v. For 0 & v & 1,
one obtains

E (z}= —,I'(v)(z/2) "+—,
' I'( —v)(z/2)"

for z~O. If this expression is used in (3.15), one finds

= —,
' ([l(0)—l(x)]2) . (3.14)

This function has also been studied in the context of the
roughening transition, and for an interface in a weak
gravitational field. From the scaling form (3.7), one ob-
tains for the difference correlation function

AC(x) =gii [go —g(x/g'ii)]

=St[!—g(x/4~~)], (3.15)

where (3.13) has been used in the last equation. Due to
(3.9),

bC(x} "

EC(x)=gj+O(e ~~) as x (3.16)

C(x) n~ -'"-",
with Qo given by (3.12a), and, for d =3,

(3.17)

whereas b,C(x)~0 as x —+0 by definition.
So far, the asymptotic behavior of C(x) for x~0 and

for x~ao has been discussed. Near the wetting transi-
tion, g~~ diverges. The MF result for this divergence is
given by (3.5). As a consequence, there is an intermediate
x regime with a «x «g~~. For d &3, the behavior of
C(x) for such intermediate values of x follows again from
(3.10). For d &3,

(b)

FIG. 3. (a) Correlation function C(x) for the interfacial Auc-
tuations in dimensionality d & 3. (b) Difference correlation
function AC(x)=C(0) —C(x) in d &3. In the latter case, the
interfacial roughness g, goes to infinity. In both (a) and (b),
there is a scaling regime for intermediate x values with
a «x « g~~ (see text).
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quence, the interface model (2.24) is one-dimensional and
can be studied by transfer-matrix methods. For finite
small-distance cutoff a, one has to determine the eigen-
values and eigenfunctions of the transfer matrix from an
integral equation. In the limit a —+0, this integral equa-
tion reduces to the Schrodinger-type equation

r

H1l)„(l)= 1 + V(l) P„(l)=E„P„(l),
2/3 o. dl

(4.1)

tained from two approximations for (2.24b). The first ap-
proximation consists of a harmonic potential plus a hard
wall. This is discussed in the next subsection. The second
approximation is given by the linear potential U(l) =5p l
plus the hard wall; see Sec. IVD. The harmonic approxi-
mation is correct for long-range forces with p &2, the
linear approximation for p )2.

B. Harmonic approximation

If one expands the potential V(l) as given by (2.24b)
around its minimum at l =l, one obtains

where the "quantum-mechanical" potential V(l) is given
by (2.24b). Due to the hard wall at l=0, one has the
boundary condition

with

V(l)= V(l)+ —,'co (l —l) +5V(l), (4.8)

P„(0)=0 . (4.2)

Note that (33:—1/(k1) T) corresponds to Planck's constant,
and the surface tension o to the mass of the quantum-
mechanical particle. For convenience, I will set P= 1 and
o.:—1 in this section.

Within the transfer-matrix method, the physical quanti-
ties of interest can be expressed in terms of the eigen-
values and eigenfunctions of (4.1). The interfacial free en-

ergy f, defined by (2.11b) is given by

f =Eo = (0o I
H()/o) . (4.3)

For the potential (2.24b), one has the commutator relation
l = [()/85p, H]. This leads to

Eo is the ground-state energy and 1)/o is the normalized
ground-state wave function. The parentheses indicate a
scalar product:

(f fg)—= I, dl f*(l)g(l) .

The mean thickness l of the wetting layer is

(4.4a)

5 V(l)—:g V'"'(l )(l —l )" .
n=3 ".

The expansion coefficients are

V(n)(l ) c l —P n—
[ V(2)(l)]1/2 (c )1/2l —(P+2)/2

(4.9)

(4.10)

(4.11)

oo, I &0
VH(l) = .

V(l )+ 2 co (1—l ), l )0.
(4.12)

The corresponding eigenvalue problem,

(4.13a)

where I have set lp in (2.24b) equal to zero for conveni-
ence. The harmonic approximation to V(l) is obtained if
one ignores the term 5V(l) in (4.8). Thus, one is left with
the potential

BEpI=
85@

The roughness g) of the interface is obtained from

g' =
& (l —l )'& =(yo

I
(l —l )'qo) .

(4.4b)

(4.5)

y„(0)=0, (4.13b)

p„(l)=c„D[v„ I
(2')' (l —l )], (4.14)

can be solved in terms of parabolic cylinder functions62 65

D[v
I x] (which are sometimes called Weber functions66).

As a result, one finds

Finally, the correlation length g(~ follows from the expres-
sion for the difference correlation functions [see (3.14)]

with

v. = —2+[e.—V(l)l/~ . (4.15)

n (&0)
(4.6)

The normalization constant c„ in (4.14) is

c„=(2o))'/ J dx D [v„ f
x]

Xp
(4.16)

For large separations x, the asymptotic behavior of this
sum is governed by the first term with n = l. As a conse-
quence,

with

(2')1/Wl [2(c )1/2]1/Wl(2-p)/4 (4.17)
k(~=(E( —Eo) ' (4.7)

Thus, in order to determine the critical behavior of the
free energy f, and the three diverging length scales l, g),
and g((, one has to find the eigenvalues Eo,E1 and the
ground state gp for the potential (2.24b). As shown below,
the asymptotic behavior of these quantities can be ob-

D[v„
f xp] =0, (4.18)

with v„and xp given by (4.15) and (4.17). As 5@~0, i.e.,
as complete wetting is approached, (4.17) leads to

The eigenvalues e„have to be obtained from the boundary
condition y„(0)=0, which implies
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—oo~ p (2
x, —[2(c,)'"]'", p =2

0~ p)2'
(4.19)

First, consider p & 2 where xo —+ —ao. In this case, one can use the asymptotic behavior of D[v
l
x j for large

l
x l:

X2/4 2% —x2/4
D[& lx01=e" lxo

I

" ' [I+~ (xo)l+cos(v~)e ' lxo I
+'[I+& (xo)l as xo~ —~ .r( —v)

L

(4.20)

e„=V(l )+co(v„+—, )

—X= V(l)+co(n+ —,
' )+O(e )

—X—=e„+O(e ) . (4.22)

Note that e„ is the usual spectrum for an harmonic oscil-
lator in an infinite system, i.e., without a wall. The
cor|ection terms due to the mall are exponentially small as

5p, ~0 since xc ~ l' ~' and 1 cc (5p) ' "+&' from
(3.2). As a consequence, the eigenfunctions y„(l) of (4.13)
also approach the eigenfunctions q&„(l) for an harmonic
oscillator quite rapidly:

q „(1)=y„"(t)+O(e "'),

Both A„(xc) and 8~(xo) are O(xo ), and A~(xo) is posi-
tive. If one inserts (4.20) into (4.18), one obtains the limit-

ing behavior

v„~n+ lxo l

"+ e as xo~ —ao, (4.21)1 2~+1 —xo/2

v'2nn!.
with n =0, 1,2, . . . . The energies e„are related to v„by
(4.15). This yields

0= cos(mv„/2)I ((v„+1)/2)

+v 2xosin(mv„/2)r((v„+2)/2),

which implies

v„=2n+1 — r(n+ —, )
l
x

l
+O(x ) .2v2 2

mn!

(4.27)

(4.28)

If this is used in (4.15), one obtains, for the asymptotic
behavior of the energies,

e„=V(I )+~(v, + —, )

I

In the last equality, the recurrence relation
dH„(x )/dx =2nH„, (x ) for the Hermite polynomials
has been used. Thus, apart from exponentially small
corrections, only the term with n=1 contributes to the
sum in (4.25).

So far, the harmonic approximation has been studied
for long-range forces which are characterized by I ~ with

p & 2. For such values of p, the variable xo in (4.18) goes
to minus infinity. For p )2, on the other hand, xo~0
see (4.19). As a consequence, one may expand the implicit
equation (4.18) in powers of xo. To leading order, this
yields

—n/2
' 1/4

y„(1)= — e "" ' ~2H„(v co(l —l)),
n! m'

(4.23) = V(&)+co(2n+ —', )+O(
l
xo l )

=e„+0(lxo l
) .

(4.29)

where H„(z) are the Hermite polynomials. ss In particu-
lar, the ground state becomes

' 1/4

q&p (I)=
7T

e —co(1—/) /2 (4.24)

a„=n+O(e ),
2(1—n)/2 2 —Xb„= J dxH„(x)e "x+O(e )n!- (4.26a)

—X1+O(e ), n =1
—X

O(e '), n)2.
(4.26b)

It is also instructive to study the difference correlation
function EC(x) within the harmonic approximation. Us-
ing (4.22)—(4.24), one finds from (4.6) that

r

b, C(x ) = 1 — g b„exp( —a„coax), (4.25)2' ~ ( ~0)

with

oo, l(l
C

V(l)+ —,'co(l —I), l ) l.
(4.30)

C. Mean-field regime (p ~2)

It turns out that the MF results discussed in Sec. III are
correct even for d =2, provided that the exponent p in
(2.24b) satisfies p &2. This will be shown below in two
steps. First, it is shown that E„~V(l ) by means of lower
and upper bounds. Then, a perturbation expansion
around the harmomc approximation V~(l) discussed in
the preceding subsection is used in order to determine the
next-to-leading terms.

A lower bound is easily found since

E„)min I V(l ) I
=V(l ) .

I
(4.31)

e„ is the spectrum for "one half of" an harmonic oscil-
lator, i.e., for the potential
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An upper bound can be obtained from VH" (l) as given
by (4.28) since V(l) & VH (l). This implies

E„(e„" = V(l)+co(2n+ —', ) . (4.32)

Since V(l) ~ l ~ and (o ~ l (~+ '/ from (4.11), (4.32)
oo /&gives e„~V(l) for p &2. As a consequence,

E„~V{l) for all n,
to leading order. Since the free energy f, is given by Eo
[see (4.3)], (4.33) already shows that f, behaves as in MF
theory [see (3.3)]. The same conclusion holds for l.

In order to determine g~) via (4.7), one has to find the
next-to-leading term for E„since E] —Eo vanishes to
leading order. This can be obtained from a perturbation
expansion of V(l ) around the harmonic potential VH(l ) in
powers of 5V(l), where VH(l) and 5V(l) have been de-
fined in (4.8) and (4.9). To zeroth order in 5V, E„=e„,as
given by (4.22) and (t„(l)=q)„(l) as given by (4.23). To
first order in 5 V, one obtains

Finally, one may obtain an explicit expression for the
difference correlation function bC(x) from (4.25) and
(4.36):

QC(x) =g) 1 —g b „exp( —a„x/g)))
n ()0)

with

a„=a„[1+0((5p)')],
b„=b„[1+0((5p )')],

where a„, b„, and z are given by (4.26) and (4.35). To
leading order in 5p, , (4.26) implies b, =1 and b„=O for
n & 2. In this limit, AC(x) has the simple form

5C(x) =g', ( I —e '() (4.42)

For x —+0 and x —+ ao, KC(x)~0 and EC(x)~g), respec-
tively. For 0 «x « g~~, (4.42) implies

EC(x ) = —,'x, (4.43)

E„=e„+(q „~ 5V(l )q .)

= V(l )+a)(n+ —,
' )[1+0((5p)')],

with

z=(2 —p)/(4+4p) .

(4.34)

(4.35)

where (4.41) has been used. This behavior is again identi-
cal with the OZ result (3.15) since Qo= ——,

' from (3.13) in
d =2 dimensions.

D. Linear potential (p = 00 )

Since z &0 for p (2, (4.34) implies that both the leading
and the next-to-leading term are correctly given by the
harmonic approximation. To the same order in 5V, the
eigenfunctions are

For p) 2, the harmonic approximation is no longer
useful. However, it turns out that another simple approx-
imation can be applied to this case. That approximation
is given by the linear potential

P„(l)=y„(l)+ g q)k(l)
k (&n) &n —&k

(l) m, l(0
6pl, I)0. (4.44)

=q „(l)+(5p)' g &„kq)k(l ),
k (&n)

(4.36)

where the exponent z is given by (4.35). The coefficients
A„k in (4.36) approach some constant values as 5p~O.

From the above results for the eigenvalues E„and for
the eigenfunctions (t/„, one finds the free energy

q)„(l)=c„Ai[(25p)' l+
~

A,„~ ], (4.45a)

This is in fact the short-ranged limit of V(l) as given by
(2.24) with @~os. The Schrodinger equation with the
potential (4.44) and the boundary condition q)„(0)=0 can
be solved exactly in terms of the Airy function Ai(x).
The eigenfunctions for (4.44) are

f E ~V(l) ~ (5p)P/()+P)

and the three diverging length scales

(4.37)
with the normalization constant

' —1/2
c„=(25p)'/6 f dx Ai {x+

~

A,„~ ) (4.45b)

aE, ~ (5 )
—)/(1+@)+0((5p)—P/()+P))

a5p
(4.38)

)( E)Eo) =('0 [1+0((5p) )]
~ (5 )

—(2+p)/(2+2p)

g') ——(2~) '/ [1+0((5p)')]
)
—(2+p)/(4+4p)

(4.39)

{4.40)

Thus, the MF results (3.3), (3.2), and (3.5) are recovered.
To leading order, (4.39) and (4.40) lead to

4i =k))/2 (4.41)

which is identical to the OZ relation (3.11) since go ———, in

d =2 dimensions and C(0)=g) via (3.13).

The numbers A,„&0 are the zeros of the Airy function:
Ai(A.„)=0. Their numerical values can be found, for in-
stance, in Ref. 69. The eigenvalues e„ for the linear po-
tential (4.44) are

e„=2 '
~

A,„~ (5p) (4.46)

Next, consider the difference correlation function b,C(x)
as defined by (4.6). It is obvious from (4.6) that bC(x)
approaches its limiting value gz exponentially fast for
x »g))=(E) E()) ' In —order to. discuss the behavior
for x «g~), it is convenient to use the spectral representa-
tion of H which gives

b, C(x ) =g') —(q)o
~

le ' l
~
q)o)+ l z

ao
( x )ttt

{qo I
l(0—eo) l

I qo) .
m!
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6C(x ) =xQ(x /g
i
i),

with g~~=(e& —eo) ' and the scaling function

ao
( 1)m+1

Q(z)= g, ) z"-'.I!

(4.49a)

(4.49b)

(4.47) holds for any H. For the linear potential con-
sidered here,

1d'
H = —— +5p I,

2 dh

which implies [H, l]= d/—dl and [H, [H, l]]=5p. Note
that [H, [H, l]] commutes with H. As a consequence,

[Hm 1] 2m —1 Hm —1+( 1)2m —25 Hm —2

dl

(4.48)

With the help of (4.48), one can calculate all expectation
values in (4.47). After some algebra, one finally finds

E„~2 '~
l

A,„ l(5p) ~, p)2 (4.53)

to leading order in 5p. Thus, the leading terms of the
critical singularities are found to be independent of p for
p )2.

In order to determine the next-to-leading terms, one
may use a quantum-mechanical perturbation expansion of
V(l) around U(l) in powers of W(1+lo) ~. To zeroth or-
der, E„=e„asgiven by (4.46), and g„(l)=y„(l) as given
by (4.45). To first order, one finds

E„=e„+(y„
l
8'(1+lo) t'q&„)

=e„[1+0((5p)')], (4.54)

E. Fluctuation-dominated regime (p )2)

The linear potentials U(l) and U(l) considered in the
preceding subsection have the property U(l) & V(l) & u(l).
As a consequence, the eigenvalues E„of (4.1) fulfill the
inequalities en &En &e» where en and en are given by
(4.46) and (4.51). It then follows from (4.52) that

14l
l~i I

—l~ol
I 3nt —+i[(—1) —1]I .

The coefficients are independent of 6p and given by where the exponent z is found to be

(p —2)/3, 2&p &3
(4.55)

In the same order, the eigenfunctions P„(l) of (4.1) are
(4.49c)

In the derivation of this expression, the identity
{yo l

(1 d/dl )yo) = ——,
'

has been used.
The linear potential U{l) discussed so far is always

smaller than the true potential V(l) as given by (2.24). It
is also useful to consider the linear potential

(tpk I
~(1+1o) 'm. )

g„(l)=y„(l)+ g yk(1)
k (+n) &n —&k

=y„(I)+(5p)' g B„krak(l ) .
k (~n}

(4.56)

oo, l &I
U(l)= '

V(l)+5p 1, 1)1
(4.50)

The coefficients B„k approach some constant values for
5p~O.

From (4.53)—(4.56), one obtains the following critical
behavior. The free energy f, is given by

where the hard wall has been shifted to 1=1. It is easy to
see that U(l) & V(l) for all l. The exact eigenvalues for
v(l) are

e„=e„+V(l)+5p 1, (4.51)

where e„ is given by (4.46). From (3.2) and (3.3), one
finds

V(1)+5p 1 ~ (5p) "+~' .

f, =2 '~'
l
Io l

(5p) ~'[1+0{(5p)') ], (4.57)

where A,o ———2.338 is the largest zero of the Airy function
Ai(x). The three diverging length scales have the
asymptotic behavior

1=
l Ao

l
(25p) '~ [1+0((5p)')], (4.58)

P((=2' '(
l

A, , l

—
l Ao l ) '(5p) ~'[1+0((5p)')],

(4.59)

As a consequence,

&n~&n~ P )2 . (4.52)

g, =bo(25p) '~'[1+0((5p)')] .

I
~i

I

—
I
~o

I
=2 75««m R«69 and

(4.60)

bo =—I dx(x —lkol) Ai(x —lA,ol) f dxAi(x —jXol).

b, C(x) =xQ(x/g'ii)[1+0((5p)')], (4.61)

with Q(z) given by (4.49b). For 0 «x « g'~~, leads to

Due to (4.56), the difference correlation function b,C(x)
is given by (4.49) to leading order in 5p. Thus, one finds
the scaling form

AC(x) =yeux = —,'x, (4.62)

where (4.49c) has been used for m = 1. Note that exactly
the same behavior for b,C(x) was obtained in the MF re-
gime with p & 2; see (4.43). As a consequence,
b,C(x)= —,x for 0«x «g~~ in d =2 dimensions, both in
the fluctuation-dominated regime and in the MF regime.
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F. The marginal case {p=2)

For p=2, the perturbation expansions used on Secs.
IVC and IVE break down. This is obvious from (4.36)
and (4.56) since the correction exponents z and z as given
by (4.35) and (4.55) vanish for p =2. On the other hand,
the lower and upper bounds derived from the harmonic
and the linear potentials still hold. Thus,

~(l) l~, l&l
l ~exp( —Pl'~ ), l ~ l

since

Pl' ' (5 )' '(5 )
' '=0(I)

(4.70)

V(l) &E„&V(l)+co(2n+ —,
'

)

from (4.31) and (4.32), and

E„&E„&e„+V( l ) +5p l

(4.63) From (4.70) and (4.69), it follows that

gi cc l cc (5p) ', p=2.
(4.64)

V. TWO DIFFERENT SCALING REGIMES

(4.71)

from (4.46) and (4.57). Since e„cc V(l ) cc co cc (5p) ~ for
p =2, these inequalities imply

(4.65)

As a consequence, the free energy is

In the two foregoing sections, a variety of critical ex-
ponents have been calculated in MF theory and for d =2.
Let us summarize what has been found to leading order in
5p. First, the free energy f, has the asymptotic behavior

f.=Eo

and the mean value of the interfacial distance is

l= ~ (5p)
85p

(4.66)

(4.67)

f, ~ (5p)

with

(2+p)/(1+p), MF; p & 2 and d =2
&s= '4 p)2 and d=2

(5.1)

(5.2)

to leading order in 5p also for p =2.
If the amplitudes Ho&A &

in (4.65), it follows that

C~~=(Ei —Eo) ~ (5p) (4.68)

In fact, (4.64) implies that Ao &A& for sufficiently small
Hamaker constant W since V(l)+5pl cc W'~, which
leads to

ki =(Po
I
(l l )'Po)— (4.69)

can be obtained from an asymptotic analysis for the
ground-state eigenfunction 1lo(l) of (4.1). For large l ~~l,
the potential V(l) is dominated by the linear term 5pl.
This leads to

fo(1) cc exp( —Pl ~ ),

co+ V(l)+5p l &e&

for small W. On the other hand, if Ao and A~ were

equal, it would follow that
g~~

cc (5p) ~~ with v~~& —, .
This is not to be expected since g~~

cc (5p) ~ for p ~2
and g~~

cc (5p) ' +~'~' + ~~ for p &2, which goes to
(5p) ~ as p~2 from below. Thus, I conclude that
(4.68) holds for arbitrary values of W.

The behavior of the interfacial roughness

from (3.3), (4.37), (4.57), and (4.66). Note that the corre-
sponding specific heat c, =B f, /B5p cc (5p) ', which
motivates the exponent notation.

The mean thickness l of the wetting layer was found to
diverge as

l (x (5p) ', (5.3)
—1/(1+p), MF; p &2 and d=2

1 p) 2 and d=2 (5,4)

from (3.2), (4.38), (4.58), and (4.67). The correlation
length

g~~
cc (5p)

with

(2+p)/(2+2p), MF; p &2 and d=2
—, , p &2 and d=2

(5.5)

(5.6)

gg cc (5p)

with

(5.7)

from (3.5), (4.39), (4.59), and (4.68), and the interfacial
roughness'

with P=——', (25p)'~ . For lo &&l &&I, on the other hand,
the potential V(l) can be approximated by Wl . This
implies

Po(l) cc l~,

with

0(log), MF, d =3
(3—d)(2+p)/(4+4p), MF, d &3
(2+p)/(4+4p), p&2, d=2

p)2, d=2

(5.8)

q—:—,
' [1+(1+4W)' ] .

If one matches both asymptotic expressions at l =l, one
finds

from (3.13), (3.10), (4.40), (4.60), and (4.71). Note that vj
depends already on d in MF theory.

In addition, the correlation function C(x) of the inter-
facial fluctuations has been calculated both within QZ
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theory and in d =2. For d )3, OZ theory yields the scal-
ing form

C(x) =x "Q(x/g'ii), (5.9)

where Q(y) is given by (3.8). For d (3, it is more con-
venient to consider the difference correlation function
AC(x. )—:C(0)—C(x). OZ theory gives

aC(x) =x' ~Q(x/g

=Ill 1 —g(x/k~() i; (5.10)

see (3.15). The same scaling form for b.C(x) is found in
d =2 dimensions to leading order in 5p both for p ~ 2 and
for p & 2; see (4.42) and (4.61). For intermediate x values,
i.e., for 0 (&x « g'~(,

C(x)=Qpx '" ', OZ, d &3 (5.11)

Assume, for a moment, that q were not equal to zero. As
a consequence, b,C(x) would have the more general scal-
ing form

and, thus, b,C(x)—+(~~'
+"' for large x. On the other

hand, hC( oo ) =C(0)=gq by definition, which leads to
vj = —,(3—d —g)v~~. Thus, the scaling relation (5.17) im-
plies that q =0. The same scaling relation has been found
previously for critical wetting transitions and for wet-
ting by critical layers. Thus, g=O holds also for those
transitions.

Additional scaling relations follow from hyperscaling
arguments. In order to determine the upper critical di-
mension (UCD) d'(p), one may employ the Ginzburg cri-
terion f, —

g~
~

'" " where both quantities are calculated
within MF theory. This leads to'

from (3.17), and

(1/4m)ln(x), OZ, d =3
~C(x)=. ~Qo~x' ", OZ, d(3

2X, d=2

d'(p) = (3p+ 2) /(p+ 2) .

For d (d*(p), the hyperscaling relation

2 —a, =(d —1)v~~

(5.18)

(5.19)

from (3.18), (3.19), (4.43), and (4.62).
If one defines the critical exponent q in the usual way

by

should hold. Equation (5.19) is indeed valid in d=2 di-
mensions for p &2; see (S.2) and (5.6). The UCD (5.18)
can also be obtained from the "contact relation"

C(x) ~ x '" +"',

b.C(x) x '" +"',
for 0 «x «g~~, (5.11) and (S.12) imply

g=O for all d .

(5.13)

(5.14)

(5.20)

This relation is also valid for d =2 and p )2, i.e., in the
fluctuation-dominated .regime; see (5.3) and (5.7). Since
(5.20) holds both in d =d*(p) and for those p values with
d'(p) &2, it is reasonable to assume that (5.20) holds for
all d & d" (p). This implies the additional scaling relation

Thus, the interface coordinate l(x) has no anomalous di-
mension. This is also true for a fluctuating interface in a
weak gravitational field. In the latter case, the effective
interface potential V(l) ~ l, i.e., the field theory for l is a
Gaussian model, and, thus, q=O is to be expected. On
the other hand, the results obtained above show that q =0
holds even for interface potentials which are strongly non
Gaussian.

The critical exponents a„p„v~I, vj, and g are not in-
dependent. First of all, p, is related to a, by thermo-
dynamics since l &x adsorption =Of, /85@. As a conse-
quence,

1 —as . (5.15)

This scaling relation has been obtained before for different
types of wetting transitions. ' Next, the length scales gz
and g~~ are related by

g(3 —d)/2 d (3 (5.16)

This holds both in OZ theory —see (3.13) and (3.11)—
and in d =2 dimensions for all values of p—see (4.41) and
(4.59), and (4.60). As a consequence, one has the scaling
relation" 4'

(5.17)

This relation is intimately related to the identity g=O.

vi= —P„d (d"(p) . (5.21)

a, =4/(d+ 1),
V~~=2/(d+1),

(5.22)

(5.23)

vg
———P, =(3—d)/(d+1), (5.24)

for d &d'(p). ' The expression (5.23) for v~~ can also be
obtained in two alternative ways. First, one may use
renormalization-group arguments to show that the scaling
index y~& of the scaling field 5p is given by
ys&

——(d+1)/2 if l has no anomalous dimension. Equa-
tion (5.23) is recovered from v~~

= 1/ys„. In addition, one
may give a heuristic argument similar to those used by
Fisher in Ref. 53. Consider an interfacial fluctuation in
the form of a droplet with "volume"

g~g~~
'. The energy

of this droplet is given by 5pg&P~ '. Such fluctuations
are likely to occur if

There is one exceptional case where vj ———p, although
g~&&l. This happens for short-range forces (p=oo) in
d =3 dimensions. In this case, l ~ ln(1/5p) and
gz ~ [in( 1/5p)]' from (3.11). Thus, vz ———P, =0. This
case is exceptional since the UCD d*(p = oo ) for wetting
coincides with the UCD d'* =3 for roughening.

If one combines the four scaling relations (5.15), (5.17),
(5.19), and (5.21), one finds that the critical exponents
may be expressed as explicit functions of d. As a result,
one finds



R. LIPOWSKY 32

5p gJ P~~
—kz T—const (5.25)

It then follows from (5.5) and (5.16) that v~~ =2/(d + 1).
For d &d*(p), MF theory should apply. In this case,

a„P„and v~~ are independent of d and have the same
value as in d =d*(p):

a, =4/[d*(p)+ 1],
vii =2/[d*(p)+1],

13.= [d'(p) —3]/[d'(p)+1] .

(5.26)

(5.27)

(5.28)

(a)

The exponent vj is somewhat special since it depends
on d even in MF theory; see (5.8). From (5.22)—(5.28),
one can deduce two additional scaling laws which hold
both for d & d*(p) and for d &d*(p):

as =2v))

Pg = 1 Zvii

(5.29)

(5.30)

VI. EXPERIMENTS

The approach towards complete wetting has already
been observed in three-dimensional systems. Two such
systems have been investigated, namely adsorbed liquid
layers' and gravity-thinned layers in binary mix-
tures. ' In both cases, the underlying microscopic in-
teractions are dispersion or van der Waals forces. As long
as retardation effects can be ignored, these forces have an
attractive long-ranged tail as given by (2.21) with
q =6.' ' For sufficiently large separations of the mole-
cules, retardation effects become important, and these
forces are described by (2.21) with q =7.' ' The length
scale for the crossover from the nonretarded to the retard-
ed form of the van der Waals forces is given by the
characteristic absorption wavelength of the particles,
and is typically & 10 cm. This crossover has been ex-
perimentally studied by direct measurement of the van der
Waals forces between two glass surfaces (see also Ref. 2).

For interactions with q =6 or q =7, one has an effec-
tive interface potential V(l) ~l t' with p =2 or p =3 in
d =3; see (2.22). It follows from (5.18) that the corre-
sponding upper critical dimensions d (p =2)=2 and

In fact, these relations are also valid at critical wetting
transitions, ' and for wetting by critical layers.

In summary, there are two different scaling regimes for
complete wetting. In the fluctuation dominat-ed regime
below the UCD d*(p) as given by (5.18), the interfacial
fluctuations are so strong that the two interfaces have fre-
quent contacts. This situation is shown schematically in
Fig. 4(a). In this case, the fluctuating interface probes the
whole region between /=0 and t=l. As a consequence,
the repulsive l ~ term of the effective interface potential
plays no role for the leading singularities of the critical
behavior, and the critical exponents are independent of p.
In the MF regime, on the other hand, above the UCD
d'(p), the interface fluctuations are confined to a small
fraction of the mean distance l between the interfaces, i.e.,
l »gz as shown schematically in Fig. 4(b). In this case,
the I ~ term determines I, and the critical exponents de-
pend on p.

1), (x}

(b)

FIG. 4. Typical interfacial configurations {a) in the
fluctuation-dominated regime where the two interfaces which
bound the wetting layer meet frequently, and {b) in the mean-
field regime where the mean distance between these interfaces is
much larger than their roughness.

d*(p =3)=—", are both smaller than d =3. As a conse-

quence, these systems should be correctly described by
MF theory as given by Sec. III above.

P,

28' ~(p* —p) ', (6.1)

with

nonretarded1

l3, = —4, retarded.
(6.2)

5p and W are given by (2 4) and (2.5). Note that both IV
and 5p contain a factor (pL —p~), which drops out in
(6.1). This cancellation occurs for any type of interaction,
as can be seen from the expression (2.23) for the general-
ized Hamaker constant. Note that the interface potential
V(l) is expected to be proportional to (pL —pz) since it
must vanish as soon as both phases L, and V become iden-
tical.

The chemical potential difference p —p is not easily
controlled in an experiment. However, p —p may be ex-
pressed in terms of the vapor pressure P and the tempera-
ture T. If the vapor is treated as an ideal gas of classical
particles, one has

p* p= k~ T ln(P*/P)— (6.3)

for an isothermic approach towards the liquid-vapor coex-
istence curve given by P=P*(T). For an isobaric ap-
proach towards coexistence,

A. Adsorbed layers

In this case, the effective interface potential V(l) is

given by (2.2), and the mean thickness of the wetting layer
ls
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p* p—, =k~T*g(P)t+O(t ), (6.4a)

10 ' & l & 10 ' cm . (6.5)

The experimental work done so far has been devoted to
the measurement of the thickness l of the wetting layer.
Another quantity of great interest would be the correla-
tion length gii. within MF theory, which is applicable
here, gii is given by (3.4c). For nonretarded van der Waals
force (p =2), (3.4c) leads to

1/2

I z
(

e
)
—2/3 (6.6)

,

68'

For o.-10 ergs/cm and W-10 ' erg, (6.6) gives

gii-(10 cm ')l (6.7)

Thus for the accessible range of l values given by (6.5)
one finds that

10 (gii & 10 cm . (6.8)

Of course, this is only a crude estimate. It can, however,
be easily improved if one inserts more precise values for o.

and W into (6.6). For 1=10 cm, retardation effects
would become important which lead to gii ~(p* —p)
see (3.5) with p =3.

One way to observe gii is via small-angle scattering of
light from the liquid-vapor interface which bounds the

with t—:( T*—T) /T*, where the coexistence curve is
described by T=T*(P). The prefactor g (P) is given by

g (P) =in[/(k~ T" ) ~/P] —c~, (6.4b)

where cz is the classical specific heat, and g is related to
the chemical constant of the vapor. For a monoatomic
gas, cz ———, and g=(27rh /m)

In the experimental work of Refs 1—. 3, 5, 7, and 8, P,
has been measured along an isothermic approach towards
coexistence. In Refs. 1, 2, 5, and 8, iP,

~

=—,
' has been

found, in agreement with the theoretical prediction (6.2)
for nonretarded van der Waals forces. In Ref. 3, a value

i /3, i
=—,

' was obtained from the adsorption isotherms for
ether and methanol adsorbed on gold. In Ref. 7,

i P,
~

=—', has been found for adsorption of propane on
graphite. Thus, a value

i P, i ) —,
' has been extracted

from these experiments, which means that the thickness
of the wetting layer seems to grow faster than expected
from (6.1). In the latter experiment, where the substrate
consisted of graphite, strong finite-size effects in the form
of capillary condensation could explain this discrepancy.
However, this explanation does not apply to the experi-
ments of Ref. 3 where the substrate consisted of gold. In
this case, some attempts have been made in the literature
to relate the apparent exponent

i 13, i
) —,

' to the hetero-
geneity of the polycrystalline substrate' and to the finite
thickness of the liquid-vapor interface. The largest
values for 1 which have been obtained in the adsorption
experiments just described were 60—70 layers or 200—300
A. ' Thus, the range of l values which seems accessible
to present experimental techniques is

wetting layer. This technique has already been used to
study the capillary waves on a free liquid-vapor inter-
face. In these experiments, the diffuse scattering of
light around the reAected beam has been measured. In the
plane of incidence, the intensity of the diffuse scattering is
given by

dI =(area) &&I&MC (q), (6.9)

k~T
C(q) =

~Lv q +~II +&
(6.11)

The additional term o.Lv~ ——8 Vz(l)/Bl due to gravi-
ty where Vz(l) is given by (2.12) has been included in
(6.11) for the sake of completeness. However, for the
range of accessible g'ii values given by (6.8), g'ii is much
smaller than the capillary length ~=10—' cm, which
means that the ~ term in (6.1) can be neglected. Thus,
near complete wetting, the intensity of the diffuse scatter-
ing is given by

dI kg T 1

dQ cTLv q +gii
(6.12)

The small-angle scattering just described measures the
spatial distribution of the interface fluctuations. Another
interesting experiment would consist in the measurement
of the dispersion relation for the capillary waves. The
theoretical prediction for this relation is derived in Sec.
VI C below.

For three-dimensional systems, the interfacial rough-
ness can hardly be observed since it is only logarithmically
divergent; see (3.13) and (3.11). For two-dimensional sys-
tems, on the other hand, gz diverges as a power law, i.e.,
gz ~(p' —p, ) ', see (5.7) and (5.8). This applies even to
wetting by two-dimensional "solids" since the roughening
temperature Tz is zero in d =2 dimensions. Consider,
for instance, the one-dimensional interface which
separates two (almost) coexisting phases within an ad-
sorbed monolayer. If the adsorbed particles interact via
van der Waals forces, the effective interface potential con-
tains a term Wl for nonretarded and a term Wl for
retarded forces; see (2.22). Such systems would probe the
fluctuation-dominated regime since the UCD d*(p =3)
and d (p =4) are both larger than d =2. As a conse-
quence, one would have

1 ~pi ~(6p) ', d =2 (6.13)

where Iz is the intensity of the reflected beam, and

d2
C(q)= f e'~'"([l(x) —l][l(0)—l]) (6.10)

(2~)

is the Fourier transform of the correlation function for
the interfacial fluctuations. The factor M in (6.9) depends
on the scattering geometry and is given by
M =kocos 0/(4m. ), where ko and 8 are the wave number
of the incident beam and the reflection angle; see Ref. 77.
The formula (6.9) holds for the diffuse scattering from
any fluctuating interface. Near wetting in d =3 dimen-
sions, the correlation function C(q) is given by (3.6):
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both for retarded and for nonretarded forces. These
length scales should show up in the diffuse scattering of x
rays as has been argued elsewhere. ' It has also been
conjectured that the behavior (6.13) has already been
observed at the freezing transition of Xe on graphite.

B. Cxravity-thinned layers in binary mixtures

As discussed in Sec. IIB, two types of gravity-thinned
layers have been experimentally explored. One type of
layer [see Fig. 2(a)j is bounded by a liquid-vapor and a
liquid-liquid interface. In the absence of gravity, the B
phase would completely wet the vapor. As a consequence,
the interfacial tensions satisfy o.&z

——o.t/&+o. zz, where
the subscripts refer to vapor, A phase, and B phase. Simi-
larly, one has o~~ ——osz+o.zz for the other type of
gravity-thinned layer [see Fig. 2(c)]. These equalities are
most likely to hold if o.zz is small. For this reason, most
experiments have been performed near the consolute point
of the binary mixture where o„~ goes to zero. From a
theoretical point of view, this is a major complication
since the bulk correlation length gb may become compar-
able to or even larger than the thickness I of the wetting
layer. As has been emphasized in Sec. II, the theory
described here is only applicable as long as gb « l. In the
following, this is always tacitly assumed. For gb —l, one
expects crossover effects between wetting and bulk critical
phenomena. The present understanding of those effects
has been discussed in the recent review by Sullivan and
Telo da Gama.

For gravity-thinned layers, the effective interface poten-
tial V(l) is given by (2.13) or (2.16). Since MF theory is
valid here, the thickness of the wetting layer is

r

5p
28'

pa —pw

pw —pa
(6.14)

with P, = ——, for nonretarded and P, = ——, for retarded
van der Waals forces just as in (6.2). Throughout this sec-
tion, the variable L, =1.~ or I.~ denotes the thickness of
the intermediate liquid phase; see Figs. 2(a) and 2(c). In
(6.14), the approximate expressions (2.15) and (2.16b) for
the Hamaker constant 8'has been used.

In order to have a gravity-thinned layer, the mass densi-
ties must satisfy p~ &p~. On the other hand, (2.15) and
(2.16b) imply that the particle number densities must ful-
fill pz )pz in order to have 8') 0. ' It is convenient to
express these, inequalities in terms of the mass densities p&
and p2 of the pure liquids 1 and 2. To be specific, let us
assume that the A phase consists mainly of liquid 1. It is
easy to show that, for a pure mixture, the inequalities
p~ &p~ and pq &p~ are equivalent to

10 &I &10 cm . (6.16)

Note that crossover length for retardation effects is ex-
pected to be & 800 A, which lies well inside this range of
l. Thus, one should be able to observe this crossover. In
particular, it should be possible to measure the I.
dependence predicted by (6.14) for retarded van der Waals
forces.

In the above experiments, the thickness I. of the inter-
mediate liquid phase was typically

10 '&L &10 cm (6.17)

are the masses of the molecules in liquid 1 and 2, respec-
tively. It seems that (6.15) indeed holds for most of those
binary mixtures where a reproducible wetting layer has
been absorbed. In particular, it holds for the pairs
methylcyclohexane/per fluoromethyl-cyclohexane, isopro-
panol/perfluoromethyl-cyclohexane, and nitromethane/
carbondisulfite, which have been studied in Refs. 10, 12,
and 14.

One mixture for which the inequality (6.15b) is violated
is methanol-cyclohexane. For this mixture, strong non-
equilibrium effects have been reported. "' No wetting
layer present in thermal equilibrium has been found.
Si~~~ p~&(m~/m2)p2 implies pg &pg, one finds W&0
from (2.15), i.e., the interfaces are attracted rather than re-
pelled by the 8'l term. Thus, one might speculate that
the nonexistence of a wetting layer in methanol-
cyclohexane is due to a negative Hamaker constant 8 .
From a theoretical point of view, 8'&0 implies that one
has to determine the next-to-leading terms of the interface
potential V(l). Whatever l dependence the leading
correction term might have, it certainly leads to a much
smaller value for the thickness l than one would find for
the case 8'~0. It has also been observed that a wetting
layer appears in the methanol-cyclohexane mixture if one
adds a small amount of water to it." This would hap'-

pen if W became positive for the less pure mixture. More
generally, one would expect that the sign of the Hamaker
constant 8' could be tuned in binary mixtures by the ad-
dition of impurities. In particular, one might be able to
obtain 8'=0 in this manner, which corresponds to criti-
cal wetting. Note that, for gravity-thinned layers, critical
wetting would mainly show up in a changed L, depen-
dence of l.

Let us now focus on those mixtures for which a stable
wetting layer has already been observed. For the V-B-A
geometry [see Fig. 2(a)j, wetting layers with a thickness l
up to —800 A have been found. ' For the 5-A-B
geometry [see Fig. 2(c)], on the other hand, a much larger
thickness I -6000 A was observed. ' Thus, the accessible
range of l values for gravity thinned layers seems to be

pl &p2 ~

P[ ) (m )/m2)p2,

(6.15a)

(6.15b)

irrespective of the mole fractions for the two liquid phases
if one neglects the volume change on mixing. m& and mz

Strictly speaking, these I values should be regarded as the
mean values I. for the distance between the two A-S in-
terfaces [see Figs. 2(a) and 2(c)]. For general interfacial
configurations, L will also fluctuate: L (x)=L+5L(x)
To be specific, consider the 8-A-8 geometry shown in
Fig. 2(c). One may estimate the magnitude of 5L by con-
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kBT
in(g')(/a)

AB
(6.18)

from (3.7) and (3.11), where a is some microscopic length
scale. For an interfacial tension ozz —1 erg/cm, (6.18)
leads to gq —10 cm. On the other hand, one may con-
sider the situation where the upper A-8 interface fluctu-
ates independently from the lower case. Such fluctuations
are governed by gravity. They lead to a roughness

sidering two extreme cases for the behavior of the upper
A 8-interface. First, assume that this interface does not
fluctuate at all. As a consequence, the variation 5L is
only due to the fluctuations of the lower A-8 interface:
5L(x)=l(x) —l=5(x). The typical values for 5 are given
by the interfacial roughness gz. In the present context,

1/2

~ -(10' cm ')X~'"cm (6.22)

dI ~ C)(q), (6.23)

in analogy to the estimate (6.7).
The length scale g

~ ~

may again be measured by small-
angle scattering of light as discussed in Sec. IVA. First,
consider the case of an S A 8-1a-yer. Since its geometry is
identical to the one for adsorbed layers, the scattering in-
tensity is again given by the formulas (6.9)—(6.12), where
o.L& has to be replaced by oAB. For the V-8-3 layer', on
the other hand, one would typically scatter from the 8- V
interface described by the interface coordinate l~(x) [see
Figs. 2(a) and 2(b)]. In this case, one will find a diffuse
scattering intensity

kBT
1/2

ln(iczz /a )
OAB

(6.19)

with

d2
C&(q) = f e'q'"(l, (x)l, (0)),

(2n)
(6.24)

for the upper A-8 interface, where KAB is its capillary
length. Since gj is comparable to g~ as given by (6.18),
these two extreme types of behavior lead to the estimates
5L &10 cm, and

10 &5L/L &10

for the range of L values given by (6.17). As a conse-
quence, one may ignore the fluctuations of L, and replace
L by its mean value. This was the second assumption
made at the beginning of Sec. II B.

As in the case of adsorbed layers, the experiments done
so far have focused on the thickness l of the gravity-
thinned layers. It would again be very interesting to in-
vestigate the correlation length g~~. The theory described
here predicts the behavior

1/2

~
(p+2)/2 (6.20)

with p =2 and p =3 for nonretarded and retarded van der
Waals forces. The interfacial tension cr=oz~ for the S

8geometry [s-ee Fig. 2(c)], and cr =o»cr&&/(o»
+catv) for the V-8-A geometry [see Fig. 2(a)]. The
Hamaker constant W is given by (2.14)—(2.16). If one in-
serts (6.14) and (6.20), one finds

where the definition l&=(l&):—0 has been used. This
correlation function can be expressed as the sum of two
Lorentzians, as will be shown next.

First, let us go back to the free energy (2.17) for the two
fluid-fluid interfaces described by 1~(x) and l2(x). In the
MF regime, considered here, the interface potential
V(l) = V(l2 —l

& ) may be replaced by the harmonic poten-
tial , op~~ (l —l) . —This leads to the Gaussian model

FI l„l2}= f d x[ —,'o.)(Vl, ) + —,'o2(Vl2)

+ —,op~~ (lq —l2 —li) + —,'crlicl ll]
(6.25)

where the additional term (2.20) due to gravity has also
been included. As before, o.1=o.By, o.2 ——o.AB,
cr=o&cr2/(cr&. +o2), and l& =0 by definition. Note that the
effect of gravity on the variable l2 is included in the inter-
face potential V(l) to the extent that L=Lz may be
treated as a constant. Additional terms due to gravity
arise from the fluctuations of L, . If one wants to include
those terms in a consistent manner, one has to treat all
three interfaces in Fig. 2(a) simultaneously.

It is not difficult to find a linear transformation from
l~, lq to new variables h&, h2 such that the free energy
(6.25) becomes diagonal, i.e.,

FI l), l2I = f d x[ —,
' (Vh ) ) + —,

'
co)h,

+ —,
' (Vh, )'+ —,

'
co,h', ] . (6.26)

nonretarded
V

Ietarded.

(6.21a)

(6.2 lb)
kB Ta11 kB Ta 12

2 2

C((q)=, +
+C01 g +C02

(6.27)

The correlation function C&(q) defined by (6.24) can now
be expressed in terms of the correlations of h1 and h2.
This yields

The prefactor (cr/W)'~ in (6.20) vanishes at the bulk
critical temperature T, of the consolute point. Since
cr

ccrc

and Woc/, , with r=(T, —T)/T„one has
(cr/W)'~ ac r~" ~~~, where the bulk, critical exponents p,
and f3 are p,= 4 and P=—,. This leads to the estimate

i.e., the sum of two Lorentzians. The coefficients a11 and
a &2 in (6.27) depend on cr~, o2, g~~, and Ic~. For the experi-
ments, discussed here, the correlation length g~~ will usual-
ly be much smaller than the capillary length K1. In this
case, one finds
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& ii =1/(~i+~2»

+ 12 ~2/f ~l (~1+~2) ]2
(6.28)

2 2 c) U(z)
~~aq +(p~ —pa)

'Bz

a11d

j —2
CO] = g, ((

co, =cr)a( /(cr, +cr,),—2
(6.29)

to leading order in g~~/a&. Since co& ——
g~~ ~~co2, the width

of C~(q) as given by (6.28) is mainly determined by g~~

Thus, this length scale should also show up in the diffuse
intensity (6.23) from a fluctuating liquid-vapor interface
on top of a gravity-thinned layer as shown in Figs. 2(a)
and 2(b).

X
tanh(ql )

P„+pz tanh(ql )
(6.31)

for capillary waves with wave number q.
c)U(z)/Bz ~, I may be expressed in terms of the inter-

face potential V(l). Consider the work per unit area re-
quired to shift the interface from its equilibrium position
l =l to l =l+5. This work is

T+sI dz(p„—pg)[U(z)+O(5)] .

On the other hand, this work is also given by the free-
energy difference V(l+5) —V(l). As a consequence, one
finds

C. Dispersion relation for capillary waves
c) U(z)

(p~ —pa)
Bz

c) V(l)
~AS (6.32)

In the preceding sections, the capillary waves have been
treated as "static" interfacial configurations. In this final
section, their dynamical properties will be briefly studied
in the framework of classical hydrodynamics. Let us first
consider the gravity-thinned layer shown in Fig. 2(c).
Both liquid phases A and 8 are taken to be incompressi-
ble and their viscosities are neglected. Their motion is
then governed by the Navier-Stokes equations

p v= —Vp+p VU,
dt

(6.30)

where +=A,B. v and p are the velocity and the pressure.
As before, p and p denote the mass and the number densi-
ties. VU is the force which acts on one fluid particle due
to the interactions with the solid and with the rest of the
fluid. At the solid surface [see Fig. 2(c)], one has the
boundary condition that the normal component of v is
zero.

As usual, it is assumed that the deviations
5(x)=l(x) —l of the interface from its equilibrium posi-
tion are small. This assumption is justified for the three-
dimensional systems considered here since the interfacial
roughness g'z is small compared to l; see (6.18). For 5=0,
the potential U which acts on the fluid molecules depends
only on the distance z from the solid surface since the un-
perturbed system is translationally invariant parallel to it.
Thus, one has U(x) = U(z)+O(5). Following standard
arguments, one then finds the dispersion relation

where (3.4c) has been used in the last equality. If (6.32) is
inserted in (6.31), one obtains the dispersion relation

2 2 2 tanh(ql )~ (q) =~~aq(q +k~~ )
p~ +p~tanh(qT)

(6.33)

for capillary waves on the A-B interface which bounds
the gravity-thinned wetting layer [see Fig. 2(c)].

Exactly the same arguments may be used to derive the
corresponding relations for capillary waves on the liquid-
vapor interface of adsorbed hquid layers (see Fig. 1). In
this case, the vapor density p~—0 may be neglected,
which yie1ds

co (q) =(crJ v/pL )q(q +g~~ )tanh(ql) . (6.34)

The dispersion relations (6.33) and (6.34) could be studied
by techniques similar to those which have already been
used for free fluid-fluid interfaces. In summary, the
correlation length g~~ should be observable both in the
small-angle scattering of light and in experiments which
measure the dispersion relations (6.33) or (6.34).
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