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We report the results of an experimental investigation of the nature of the vortex-boundary in-

teraction and its role in the spin-up problem of superfluid He. We find evidence for two indepen-

dence vortex-drag mechanisms —a drag associated with vortex lines pulling against pinning sites

with a force equal to the line ' tension" and a viscous drag associated with vortex motion through
the normal-fluid Ekman layers.

I. INTRODUCTION

Probably the most straightforward experimental test of
any dynamical model of rotating superfluid helium is the
classic spin-up problem in which a freely rotating bucket
of superfluid is impulsively spun up and allowed to relax
back to solid-body rotation. The transient behavior of the
container as it transfers angular momentum to the fluid
not only probes the nature of the internal fluid dynamics
but also the interaction of the fluid with the walls of the
container. It is the latter problem that this paper ad-
dresses. Specifically, an experimental study of the nature
of the vortex-boundary interaction and its role in the tran-
sient behavior of rotating He II is presented.

The investigation of the spin-up problem of He II is not
new. In the early seventies Tsakadze and Tsakadze'
performed several spin-up experiments, both below and
above T~, in which they attempted to simulate the "spin-
up" behavior observed in some pulsars (Crab, Vela,
etc.) and to characterize superfluid relaxation in general.
They observed exponential-like decay in He I and in He
II, the major difference between the two being that He II
relaxation was slightly quicker. When they roughened the
container s inner walls in order to investigate their in-
teraction with the superftuid they observed much shorter
relaxations times ( ——,v, «,h), which were independent of
temperature through T~. This curious result was thought
to be a consequence of normal-fluid turbulence.

More recently Campbell and Krasnov have attempted
to explain the results of some early experiments of Reppy
and Lane ' and Reppy et al. " in which He II was spun
up from rest. In these experiments it was found that after
an initial normal-fluid relaxation the superfluid com-
ponent induced a relaxation characterized by

Q, (t)=A 1— 8
1+8+Ce

(0, =container angular velocity), qualitatively very dif-
ferent from the typical exponential decay of a classical
fluid. Campbell and Krasnov have produced a model of
these experiments which incorporates a viscous vortex-
boundary interaction in which the vortex-drag force is
simply proportional to the relative vortex-surface velocity.
By varying the strength of the interaction they were able

to fit the data of Reppy and Lane quite well, giving fur-
ther evidence to the widely held assumption that a moving
vortex line is indeed subject to a viscous force at the
fluid-boundary interface. The quality of their model's
predictions does not, however, make a compelling case for
a viscous interaction. They only considered spin up from
rest in which necessarily large fractional changes in vorti-
city occur. Clearly, in such cases vortex nucleation at the
outer walls of the container becomes an important, if not
the primary, superfluid relaxation mechanism. Further-
more, as Campbell and Krasnov point out themselves,". . . there is some difficulty in understanding how the al-
ternate attachment and release (after some stretching) of a
vortex line on surface irregularities could result in a dissi-
pative force proportional to the relative velocities. "

A series of rotating counterflow experiments initially
performed by Yarmchuck and Glaberson' and later con-
tinued by Hegde and G-laberson' have provided some ten-
tative evidence that the vortex-boundary interaction is in
fact not viscouslike. They indirectly measured the trans-
verse vortex line velocity in a counterflow channel as a
function of flow velocity. When measurements were
made in "smooth" channels they found a linear depen-
dence upon flow velocity with nearly zero intercept.
However, when the channels were roughened they ob-
served that below a certain critical flow velocity the vor-
tices were absolutely pinned and above this critical veloci-
ty the dependence was again linear with approximately
the same slope as before. Hegde and Glaberson numeri-
cally solved the two-fluid hydrodynamic equations for
finite-height channel flow and were above to show that
the observed critical velocity could be interpreted as that
necessary to bring the average vorticity at the surface
parallel to the surface.

The present pap'er reports some recent experimental evi-
dence for a "static-friction" type of vortex-boundary in-
teraction in which the vortices appear to move along a
surface exerting a force equal to the vortex-line tension.
In Sec. II, this interaction, along with the viscous interac-
tion of Campbell and Krasnov, is incorporated into the
standard vortex-line equations for rotating He II. In Sec.
III, a description of the experimental apparatus and pro-
cedure is given. In Secs. IV and V, the experimental re-
sults along with the corresponding numerical solutions to
the equations of motion are presented and discussed. Fi-
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nally, a low-temperature approximation to the characteris-
tic superfluid relaxation time is derived in the Appendix.

II. EQUATIONS

The equations of motion stated in this section are essen-
tially the same as those used by Campbell and Krasnov,
except for the form of the vortex-boundary force. Since
the experiments considered consist of spinning up a
cylindrical container of He II, the equations are presented
in their cylindrically symmetric form. For simplicity, it is
assumed that the superfluid velocity has no z dependence
and that all equilibration processes are isothermal. Under
these conditions the normal-fluid, superfluid, boundary,
and vortex line velocities are of the form

V„=(0,V„p,O),

V, =(0, Vp, O),

Vb ——(O, r Q„O),

VL ——( VL„VL p, O),

and satisfy

where R, L, and I, are the container's radius, height, and
moment of inertia, respectively. The last term represents
the superAuid torque arising from the vortex-boundary in-
teraction, where —Fb is the force per unit length applied
by a vortex line to the top and bottom of the container.

Equations (3)—(6) are complete once VL is related to
V„V„, and Vb. Following Hall, '

VL is determined by
requiring that all the forces acting on a given vortex line
sum to zero. These forces include the superfluid force
(Magnus force) given by

F =p, rX(VL, —v, ), (7)

—(Fn+F~)
~ p~ v for (F„+F

~ (fthm,

where I =I z is the vortex-line circulation, the normal-
fluid friction force,

F„=—yo( VL —V„)—yo I )& ( VL —V„),
where y0 and y0 are phenomenological constants arising
from roton scattering cross sections, and the vortex-
boundary force which is taken to be the sum of a "static"
and a viscous boundary force,

8Vb

BP

(2)

Fb ——'

—f ( VL Vb) k—p.r(—vt. —v»

for ~F„+F
~

)f
ov, av, =0.
Bz Bz

The superfluid velocity is given by

(3)

BV„p
Pn ~

= 'g
02V„~ ) av„~ V„~ 82V„~

r r ~r r Bz

n(r, t)(F„)~, —

where g is the normal-fluid viscosity.
Finally, the acceleration of the container is obtained by

summing the internal superfluid and normal-fluid
torques,

8VnpI,Q, (t) = 2rtRrt V„y r——L/2 Qr
dz

R

where n(r, t) is the vortex-line density and I —=hlmH, .
Conservation of vorticity requires that n (r, t) satisfy

Bn
(rnVL„) .

Bt r Br

The normal-fluid relaxation is governed by the usual
Navier-Stokes equation along with an additional vortex-
drag term,

where f~ is the minimum force per unit length required to
break loose a pinned vortex, and g is the dimensionless
viscous interaction strength. Though f~ and g are treated
as adjustable parameters, f&L is assumed to be of the or-
der

p, I
ln4' a

(10)

where TL is the line "tension" of an isolated vortex, a is
the vortex-core parameter, and b is the intervortex line
spacing.

Splitting the vortex-force equation,

Fn+F~+Fb =0
~

into components, we obtain two independent nonlinear
equations and two unknowns ( VL„, VL~), for r:

—p, r( VLy —V,y)+ yo( VL, y
—V,p) —yovL, „

—ZP, I VL„——0,
[ v' +( v —rn, )']'"

and for P:

(p, r y,') v,„+y—,(v„~ v„)—
~(vtp rQ,)——p, I (VL —rQ, ) =0 .

3 Vnp—4m' r
Bz

dr
z =L/2

+2nL J n (r, t)r ( Fb)~dr, —(6)

(13)

In principle VL, and VL& can be determined from the
above two equations and then substituted into Eqs. (3)—(6)
in order to find a solution subject to the following boun-
dary conditions, '
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V„p(R,z) =RQ, ,

V„p(r, +L/2) =rO, .

III. APPARATUS

(14)
rotation-dependent compensation torques could easily be
produced. The angular velocity of the container was mea-
sured by a dual photodetection system, I, and a computer
(Omnibyte OB68K) monitored clock.

IV. EXPERIMENTAL RESULTS

(a) (b)

to pump

A schematic diagram of the experimental apparatus is
shown in Fig. 1(a). The helium cell consisted of a hollow
lead-coated magnesium cylinder, 3, 5 cm high and 2.8 cm
in radius. The cylinder contained a set of thin aluminum
disks and spacers which formed eight cylindrical cells, B,
each with a typical height to radius ratio of 0.21. The
cylinder was sealed with a magnesium cap into which a
small hole had been drilled, thus minimizing film flow
out of the container during a run. After submerging the
container in He II for a time sufficient to fill through the
cap hole, the inner jar, C, was emptied via a fountain
pump, D.

The container was levitated via a superconducting mag-
net, E, surrounding its base. Axial stability was provided
by a second superconducting magnet, F, positioned over
the top portion of the container.

Once levitated, the container was accelerated by a non-
contacting induction motor consisting of a thin copper
sleeve, G, surrounded by four superconducting drive coils,
H. Typical maximum angular accelerations were on the
order of 0.15 rad/s . The induction motor drive was pro-
vided by a computer-controlled Wavetek waveform syn-
thesizer which allowed precise control of the spin-up
torque's magnitude and duration. Computer control of
the drive was also useful in nulling external drag since

The experimental procedure involved impulsively spin-
ning up (and spinning down) the container of He II from
0,, =coo to 0, =co& ——coo+Aco. The container's angular
velocity Q, (t), was then monitored as a function of time.
The experiments were performed at T=2. 1 and 1.3 K
with both smooth disks and roughened disks, coated with
No. 320 aluminum-oxide powder.

Shown in Fig. 2 is the response of the container when
empty. As expected, since there was no source of internal
torques, no transient behavior was observed. It should be
pointed out that the line in Fig. 2, as with all of the decay
curves presented in this section, is actually the average
response of many (-20) computer controlled repetitions
of the same experiment. This signal averaging technique
enabled us to produce signal-to-noise ratios that were
unobtainable in a single sweep.

For the helium-filled cell, the character of the T =1.3
K relaxations depended dramatically on the disk surface
roughness. Figure 3 shows a typical response of the
smooth-surfaced cell to an impulsive torque and Figs. 4
and 5 are typical responses for the rough-surfaced cell.
Note the exponential-like behavior of the former and the
nearly linear response of the latter. Substantial departure
from exponential-like behavior was characteristic of all
the low-temperature rough-disk relaxations for which
coo&1.5 rad/s. The remarkable linearity of these decay
curves, observed to be symmetric with respect to spin up
and spin down, indicates that the superfluid applied a
strong, relatively constant, internal torque throughout
most of the relaxation. In light of our model, we attribute
the source of this torque to a "frictional" type of force re-
sulting from the alternate pinning and depinning of vor-
tices as they move across surface protuberances during the
superfluid relaxation. The magnitude of this force is
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FICi. 1. (a) Schematic diagram of the experimental ap-

paratus. (b) Arrangement of photodetector marks on the top of
the cell.

t (s)
FIG. 2. Response of the cell when empty, following an im-

pulsive torque (coo ——2.36 rad/s, h~ =0.283 rad/s).
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FIG. 3. Angular velocity of the smooth-disk cell after an im-
pulsive spin-up torque (cop ——8.54 rad/s, hen =0.283 rad/s,
T=1.3 K). The solid line represents the prediction of our
model for / =0.005 and f~ =0.0.

t (s)
FIG. 5. Angular velocity of the rough-disk cell after an im-

pulsive spin-down torque (cop=3. 35 rad/s, Ac@= —0.283 rad/s,
T =1.3 K). The solid curve is the prediction for /=0. 005 and

f~ =0.53 X 10 dynes/cm.

represented by the "static" interaction parameter, f~.
Simulations of the experiments were made in which g

and fz were independently adjusted to fit the low-
temperature data. The exponential-like behavior of the
smooth-disk data suggests that viscous drag was the dom-
inant superfluid-container interaction. The smooth disk
decays were therefore fit by setting f~ =0 and varying g.
This is equivalent to the approach taken by Campbell and
Krasnov. The numerical fit is shown in Fig. 3 as the solid
line. The slight linearity of the data is probably a conse-
quence of not having perfectly smooth disks. Reasonable
fits were obtained with g ranging from 0.005 to 0.007 for
all of the smooth-disk data, g increasing with decreasing
rotation speed. As discussed in the next section, these

values of g are consistent with treating the drag as arising

I.O

TL —, Lf~ = 1.59 X 10 —dynes,

in good agreement with the expected value,

2
p, I

TL,
—— ln —=1.5X10 dynes .

4m a

(15)

from mutual friction in the Ekman layer.
The rough-disk relaxations were fit by simply "turning

on" the static interaction. It was assumed that g was in-
dependent of surface roughness, thus leaving fz as the
only adjustable parameter. Excellent fits to all of the
rough-disk data for which coo~ 1.5 rad/s, were obtained
with fz ——0.53X10 dynes/cm and were relatively in-
sensitive to the values of g. Examples of such fits are
shown as the solid lines in Figs. 4 and 5. This value of f~
corresponds to a maximum line "tension, " assuming a
vortex line cannot apply a force to the boundary greater
than its tension, of
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Note that the approach we have taken suggests that obser-
vation of the spin-up rate of the superfluid yields a
reasonably direct measure of the quantum of circulation
(see Appendix).

At T=2. 1 K, where p„/p=0. 88, we observed expo-
nential-like behavior that was independent of disk rough-
ness. Simulations of these relaxations yielded poor
results —predicting decay times much longer that what
was observed. It seems likely that the poor quality of our
fits at these higher temperatures was due to normal-fluid
secondary flow.

I
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60 V. DISCUSSION AND CONCLUSION

FIG. 4. Angular velocity of the rough-disk cell after an im-
pulsive spin-up torque (cop ——2.21 rad/s, he@=0.283 rad/s,
T =1.3 K). The solid curve is the prediction for /=0. 005 and
j~=0.53X10 dynes/cm. The dashed curve is the prediction
for /=0. 005 and f~=0.0

The lowest temperature we were able to investigate was
1.3 K.. This in conjunction with the fact that the normal-
fluid components of our equations are incomplete,
prevented us from realistically investigating the tempera-
ture dependence of g' and f~. In principle, the complete
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Navier-Stokes equation could have been included in the
equations of motion, thus enabling us to perform simula-
tions at higher. temperatures. This, however, would have
presented formidable numerical difficulties beyond the
scope of this investigation. Nevertheless, inferences can
be made about the temperature dependence of the interac-
tion parameters.

In our model of pinning, a vortex line is absolutely im-
mobilized on a surface protuberance until external forces
stretch it to the point where it bends parallel to the sur-
face at the surface. At this depinning threshold the vor-
tex line can apply a maximum force, antiparallel to the
sum of the forces acting upon it, equal to its energy per
unit length. Thus, fz has a well-defined theoretical
value,

2 Tg

L
(17)

7l

pn~o
(18)

The total normal-fluid friction force on a vortex line due
to its motion through the top and bottom Ekman layers
(assuming that in the layers V„=Vb ) is

I'a=2(dE)yo(VL, —Vb) .

After equating I'~ to the viscous interaction of our model
and solving for g, we obtain

which scales with temperature as p, . An experimental
verification of this temperature dependence is needed to
guarantee that the agreement between simulation and
theory was not fortuitous.

The case for g is not clear since it is not understood
how a vortex line can apply a viscous force to the boun-
dary. In fact, it is aesthetically displeasing that a boun-
dary interaction- of unknown origin had to be included
into the model in order to fit all of the data. Though the
rough-disk data could be fit reasonably well with /=0
and f~ =0.75 X 10 dynes/cm, we were unable to obtain
the exponential character of the smooth-disk relaxations.
Furthermore, the value of fz determined with /=0 was
somewhat too large considering our model of pinning.

A possible explanation for the necessity of including a
viscous interaction in our model, lies in the aforemen-
tioned inadequacy of the normal-fluid equations. By
neglecting the axial and radial components of the normal
fiuid velocity we have implicitly assumed that the normal
fluid relaxes via viscous diffusion. However, it is well
known that secondary flow is the primary relaxation
mechanism' in all contained (Newtonian) spin-up flows. '

Secondary flow is characterized by a quasisteady Ekman
layer at each disk surface through which fluid is pumped
radially by centrifugal action. We believe it is this viscous
layer, unaccounted for in the simulations, that requires
the ad hoc addition of a viscous vortex-boundary interac-
tion to our model.

For a typical T =1.3 K spin-up experiment in which
coo ——3 rad/s, g= 16X10 P, and p„=0.007 g/cm, the
thickness of the Ekman layer on each disk is

1/2

dE ~ =0.03 cm .

2dEpp =3.3&&10 ',
Lp, I

(20)

a value surprisingly close to that used in the simulations.
Equation (20) is also qualitatively consistent with the ob-
served coo dependence of g. This lends strong evidence to
our suspicions that the viscous part of our vortex-
boundary interaction is associated with the mutual fric-
tion exerted by the vortices moving through the Ekman
layers.

At low temperatures, the normal-fluid friction parame-
ter yo is approximated by

p,p„I 8
yo- (B—l.5),

2p

which, when plugged into the expression for g, gives
1/2

B Pn'9

PL coo

(21)

(22)

If g does indeed represent vortex drag through normal-
fluid Ekman layers, it should scale with temperature as
p„at low temperatures.1/2

As a final note, the value of g used to fit our data is
four orders of magnitude smaller than typical values used
by Campbell and Krasnov. It can easily be shown (see
Appendix) that at low temperatures the smooth-disk

(fz ——0) relaxation time r, is proportional to (g +1)/g, so
that r, (g =0.005)=r, (g =200). Although the smooth
data could be fit with either )=0.005 or /=200, the
rough data restricted g to small values.
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APPENDIX

' 1/2

VL„(r)=+y 1—
g2 (A1)

VL (r) =B 1 — +rQ, ,
'V

g2 (A2)

where

The hydrodynamic equations of Sec. II are greatly sim-
plified in the low-temperature limit where their normal-
fluid components can be neglected (p„=yo——yo ——0).
Under this simplification, a relaxation time ~ can be de-
rived for two separate cases. The first corresponds to the
rough-disk relaxations which we assume to be dominated
by the "static" vortex-boundary interaction so that g can
be set to zero. In the second case f~ will be set to zero
and r will be derived in terms of g. This last derivation
closely follows that of Campbell and Krasnov.

After setting (=0 and neglecting the normal fluid, ana-
lytic expressions for VI „and VL, ~ are easily obtained from
Eqs. (12) and (13),
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and

8= V,~(r) rQ—, .

Using (Al) in Eq. (6), we have
1/2

I,Q, = 2s—rL r n(r)fz 1 — dr .
po ~ g2 (A3)

is nearly complete. Assuming that unpinned outer vorti-
city dominates (A3) throughout virtually all of the relaxa-
tion, we find that the solution to (A4) leads to linear de-

cay,

2trfpLR no 4trf~LR coo
Q, (t) = — t +coi ——— t +coi .

3I, 3I,I

If we now consider a specific experiment in which the
container is impulsively spun up from angular velocity coo

to angular velocity ~~, then the minimum radius r0, at
which vortices will be unpinned by the Magnus force, is
given by

(A5)

The final angular velocity of the container is obtained
by conservation of momentum,

I,co&+IH, coo (I, +——I~, )cof

p, I [Vp(ro) —Q, ro]+f~ =0 .

Since

I~CO I +IHC 070
Ct7f = I, +IH,

(A6)

Vp(r o)
—Q, ro ——ro(coo —cot) = rob, co, —

we find that

JJ

P, rx

If we define the relaxation time w as the time for the con-
tainer to decay from co& to (co&+coI )/2, then

co)+coI 4trfpLR coo
Q, (r) =

2 3Ie I
'7+6) ) (A7)

Assuming 5~ &&F0, r0/R &&1, and that the superfluid
relaxation is approximately uniform, we can replace
n (r, t) by

I,
7 =

Ic +IHe

3I p, R g~
16' coo

(A8)

26)0
no ——

I y

and B(r,t) by

Replacing fz by its theoretical value 2TL /L, we obtain a
simple expression relating the relaxation time to the phys-
ical dimensions of the system,

&o rb, co(t), ——
in the integrand of Eq. (7),

3~RI Ie
81 ln(b/a) I, +IH, coo

(A9)

1/2

I Q ——2srL r nof 1—2 'V

C C 0 g20

2trLnofpR y
3 R b,co(t)

1+0
2

Equation (A4) remains a valid approximation to the re-
laxation as long as the outer vorticity which dominates
the torque in (A3) remains strongly unpinned. For
f~ —10 dynes/cm and r o =1 cm, the relative
superfluid-container angular velocity at which repinning
begins is

Similarly, Eqs. (12) and (13) can be solved for the case
where f~ =0 and $~0,

VL„(r)= 8,
1+$2

V,p+( rQ,
g'+1

(A 10)

(Al 1)

Q (t) —cl)f +e '(co& —coI)

where

(A12)

As before, using (All) in (4) and replacing n(r, t) by
no ——2coo/I and then solving the resulting linear first-
order differential equation, we find

Aco = ~ 10 Iad/s,
P, rr0

indicating that vorticity does not repin until the relaxation
7 S

I,
I, +IH,

ln(2) 1+g'
2coo

(A13)
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