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Brillouin scattering study of the elastic properties of incommensurate barium sodium niobate
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The elastic properties of incommensurate barium sodium niobate (BSN) are investigated with
Brillouin scattering. The velocities, linewidths, and related elastic constants of the main acoustic
modes propagating in the (001) plane are measured between 20 and 500'C across the normal-
incommensurate transition and the lock-in transition. The main anomalies are observed for the elas-
tic constants C» and C22. They exhibit a complex temperature dependence dominated by a large
thermal hysteresis of a specific type and a high sensitiveness to the experimental procedure. A
memory effect similar to the one observed by optical birefringence is described. From a theoretical
point of view, the elastic behavior of BSN is derived in the framework of the standard Landau
theory. This theory does not provide a good description of the experimental data. Instead, one ob-
tains a good quantitative agreement in the normal phase and semiquantitative agreement in the in-

commensurate phase by considering three' types of corrections: a coupling between the strains and
the fluctuations of the order-parameter modulus, a dispersive coupling between the strains and the
amplitude mode, and the influence of the defects. In particular, we show that the elastic anomalies
induced by the defects are correlated to the anomalies observed with optical birefringence.

I. INTRODUCTION

In the last few years several experimental and theoreti-
cal works have been devoted to the study of the elastic
properties of insulating materials undergoing incommen-
surate transitions. According to the symmetry properties
of the incommensurate order parameter (OP) and of the
elastic strains, various types of acoustic anomalies can be
observed at the normal-incommensurate transition (NIT)
and at the lock-in transition (LIT). A review of this topic
can be found in Refs. 1 and 2.

In this paper we report on a detailed Brillouin scatter-
ing study and a phenomenological interpretation of the
acoustic properties of barium sodium niobate,
BazNaNb~O~& (BSN), on both sides of its NIT and LIT.
It is interesting to consider this material since it possesses
two important peculiarities with respect to other insulat-
ing incommensurate materials. On the one hand, it is the
only confirmed example displaying a point symmetry
change at the NIT, while such a change only occurs at the
LIT in other known systems. This characteristic is a
consequence of an unusual, but not unique, circumstance:
the four dimensionality of the OP related to the incom-
mensurate phase (INCP). On the other hand, BSN shows
a set of phenomena related to the presence of the INCP,
but departing from the standard behavior expected for in-
commensurate systems. These phenomena, ' which in-
clude a large thermal hysteresis of a specific type, slow
time-relaxation processess, and a "memory effect, " are
currently assigned to the occurrence of an interaction be-
tween the incommensurate modulation and mobile point
defects. Similar phenomena have been pointed out in oth-
er substances, "but in BSN their amplitude is larger by
an order of magnitude.

BSN belongs to the family of mixed oxide compositions

which crystallizes with the tetragonal tungsten-bronze
structure. ' An intricate pattern of structural transitions
has been observed in it. A standard ferroelectric transi-
tion' (P4lmbm ~I'4bm) occurs at about 580'C. The
NIT and the LIT are located ' near 300 and 270'C,
respectively, and surround an INCP possessing an average
orthorhombic mm 2 point symmetry; however, the precise
range of stability of this INCP varies widely with the con-
ditions of the measurements. The orthorhombic symme-
try persists down to —160'C, at which an other transfor-
mation restores a tetragonal symmetry. '

The main static and dynamic characteristics of the
INCP have been determined using x-ray and neutron mea-
surements. ' The NIT is continuous and is induced by
the condensation of a soft optic mode whose wave vector
1s

k, =(1+5)
4.

C+2
with 6-0.125, a*, 1*,and c* being the reciprocal-lattice
vectors of the tetragonal normal crystalline phase (NP)
stable above T;. Structural data' suggest that the atomic
displacements related to this displacive transition consist
of a collective shearing of the oxygen octahedra which
form the skeleton of the BSN structure.

In the INCP the wave vector of the incommensurate
modulation is also given by (1). On heating, 5 linearly in-
creases from 0.08 at TI to 0.125 at T;. Unlike the situa-
tion in most other substances, the lock-in of the modula-
tion on a simple surstructure at TI is incomplete; the
phase stable below TI possesses a small residual incorn-
mensurability (5-0.01). It will be designated hereafter as
the quasicommensurate phase of BSN (QCP).

The onset of the incommensurate modulation, directed
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along one bisector of the tetragonal a and b axes, breaks
the macroscopic equivalence between the two bisectors
and sets in the system an "average" mm 2 point symmetry
in which the orthorhombic axes (a, b) are turned by 45'
with respect to the tetragonal ones of the NP. Hence, the
NIT is also a ferroelastic transition. Accordingly, ferro-
elastic domains' and macroscopic quantities such as the
birefringence n, —nb, the shear strain e

&

—ez, and the
elastic anisotropy' '

( C2z —C» ) spontaneously occur at
TL ~

Several studies' of the elastic properties of BSN
near 300'C have been performed between 1970 and 1976,
before the discovery of the INCP. More recently, Young
and Scott ' have measured the wave-vector dependence of
the longitudinal-acoustic modes propagating along the
orthorhombic a and b directions. They found a disper-
sion of the elastic constants c ~] and c2z in the range 5—65
GHz on both sides of the NIT. In the INCP, they as-
signed its origin to a coupling of the acoustic modes with
the amplitude mode and the phase mode, but they did not
explain the dispersion in the NP.

In this paper we reexamine in a more complete way the
elastic properties of BSN with an improved accuracy and
with special care regarding the thermal history of the in-
vestigated samples. Unusual effects related to the interac-
tion between the modulation and mobile defects are
shown. The experimental procedure is described in Sec. II
and our results are presented in Sec. III. In Sec. IV we
present a phenomenological Landau theory of the elastic
constants of BSN. The predictions of this standard
theory only account for the broad features of the experi-
mental data relative to several e1astic constants and do not
provide a detailed description of their behavior. There-
fore to obtain a better agreement, in a second step, we
describe in Secs. V and VI the influence of three types of
effects: the fluctuations of the OP at the NIT, the disper-
sive coupling ' between the OP and the overdamped am-
plitude mode, ' and the role of the defects.

II. EXPERIMENTAL PROCEDURE

A. Instrumental setup

The main features of a Brillouin scattering experiment
have often been described. Our setup is schematically
represented in Fig. 1. The excitation was provided by a
300-mW, linearly polarized, single-mode line of a CR8 ar-
gon laser emitting at 5145 A, focused on the sample with
a beam diameter of -60 pm. To improve the consistency
of different measurements, acoustic modes propagating
along perpendicular directions were sometimes simultane-
ously observed using a 10-cm-focal-length spherical mir-
ror which reflected the beam emerging from the sample
(Fig. 4). Thus, the sample could be excited by two col-
linear beams propagating in opposite directions. '

The light scattered at a right angle by a volume of size
-60&60~150 pm was collected with a 17-rnrad accep-
tance and analyzed by means of a three-pass, pressure-
scanned, Fabry-Perot interferometer (free spectral range:
75 Ghz; finesse: 95; contrast: 10 ). In BSN one has in-
tense Raman scattering lines which cannot be sufficiently
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FICz. 1. Experimental setup. The spectral analysis is per-
formed with a three-pass, pressure-scanned Fabry-Perot inter-
ferometer. Brillouin shifts are deduced from the measurements
of the pressure in the Fabry-Perot tight cell.

suppressed by a mere interference filter. For this reason,
we have used as a filter a Jarrell-Ash grating monochro-
mator with a bandwidth of +10 cm '. The analyzed
light was then detected with a R649 Hamamatsu pho-
tomultiplier (S20 photocathode) cooled to —60'C by a
gaseous nitrogen flow, followed by a 9511 Brookdeal pho-
toncounter. The background signal was about 5
photons/sec and the fluctuation signal-to-noise ratio was
reduced to 2% using a 1-sec time-constant integrator.

Brillouin spectra were linearly frequency-scanned with
a 4-Ghz/min rate using a gas-flow regulator. Brillouin-
shift frequencies were deduced from the measurement of
the pressure in the Fabry-Perot tight cell performed with
a Sensotec pressure transducer with an accuracy of +0.5
mbar corresponding to +80 MHz.

We used three parallelepipedic samples of approximate
size 3&&3&(5 mm, grown by the Czochralski method.
The two first samples were cut from commercially pur-
chased boules grown by the CGE Company (France) and
the third one was grown in our laboratory. Like all real
samples of BSN, their chemical compositions depart from
the stoichiometric formula Ba2NaNb5O&5. The composi-
tion, the density at room temperature, and the orientations
of the three investigated samples are listed in Table I.

The two chosen orientations permitted measurement of
the sound velocities of the Brillouin-active modes propa-
gating along the [100], [010], and [110] directions (re-
ferred to the orthorhombic axes). The scattering
geometries are indicated in Table II, where we label the
acoustic modes with the y; notation previously defined by
Vacher and Boyer. The transverse modes y2, y6 (in both
phases), and y i & (only in the quadratic phase) are inactive
in the investigated geometries.
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TABLE I. Characteristics of the investigated samples. Chemical compositions have been measured
using a Castaing microsonde. Directions are referred to the orthorhombic axes.

Samples Composition

Bag 07Nao. 88Nb5 OOO15

Ba2 1ONao 87Nb4 99015
Ba2 06Nao 83Nb4 99015

Room-temperature
density

5.30+0.03
5.30+0.03
5.35+0.01

Face
orientation

[110], [110], [001]

[100], [010], [001]

The samples studied contained both ferroelectric and
ferroelastic domains. The two types of ferroelectric
domains' (which differ by the orientation of the fer-
roelectric polarization along [001] or [001]) possess the
same elastic and photoelastic properties and cannot be dis-
tinguished by Brillouin scattering measurements. Sirnilar-
ly, the [110] and [110] sound-propagation directions are
equivalent for the two types of ferroelastic domains
(whose respective orientations are perpendicular). By con-
trast, the [100] and [010] directions correspond to dif-
ferent Brillouin spectra which can be mixed when the
scattering volume contains the two types of ferroelastic
domains. Fortunately, we were generally able to find
some areas in the samples containing a large proportion of
only one type of ferroelastic domain, whatever the tem-
perature (it had been noted previously that the domain
pattern is insignificantly altered in BSN after each incur-
sion in the tetragonal phase on crossing the ferroelastic
transition).

The instrumental linewidth (full width at the middle
height) measured for the Rayleigh line was 800 MHz, but
the nonzero value of the collection solid angle induced an
additional cause of widening of the Brillouin lines. This
widening was negligible for the transverse-acoustic mode
of BSN. It increased the apparent instrumental linewidth
in the spectral range of the longitudinal modes to 1.2
0Hz.

Samples were heated in a silver furnace provided with
four apertures in the directions of the exciting and
analyzed beams. The temperature of the samples was
regulated with a stability of +0. 1 'C ( b, T /T,
=+1.5&&10 ") and measured with a 7-mm-long, 100-Q
platinum resistor in contact with the crystals. Sample
heating by laser beam was found to be negligible since the
measurements of some Brillouin-shift frequencies having
a pronounced dependence on temperature were found to
be reproducible on lowering the laser-beam power' from
300 to 100 mW.

B. Yelocity measurements

Birefringence and x-ray measurements ' have shown
that the physical properties of BSN are very dependent on
the experimental procedure. In particular, the results
were shown to depend on the heating or cooling rates of
the sample's temperature. Besides, a strong hysteresis has
been evidenced in the INCP. As a consequence, most of
our measurements were performed with the following pro-
cedure: the trend of variations of the temperature was

never reversed between 20 and 350'C; the temperature
was kept constant during the time of the measurements
(20 min) and varied with a rate of 2. 5 'C/min between two
measurements. Hence, we estimate the average rate of the
temperature variations to be approximately 0.3 'C/min.

Sound velocities v were deduced from Brillouin shifts
Av using

U =c (n; +nd)2 2 —1/2

Vi
(2)

where vL is the frequency of the incident light, c is the
light velocity in vat."uo, and n; and nd are, respectively, the
refractive indices for the incident and scattered beams (the
scattering angle is 90'). We used the values of the refrac-
tive indices measured by Singh' at 5145 A: n~ =2.3786,
n~ =2.3767, and n, =2.2583 at room temperature, and we
took into account the relatively large temperature depen-
dence of these indices (b.n, /n, =3% between 20 and
500'C) which is known for this material.

C. Derivation of the elastic constants

3

det g C;*Jk( —pu 5;I
j,k=1

(3)

where p is the density of the sample, 6;I is the Kronecker
symbol, and the C,*jkI are effective elastic constants.

We used the room-temperature values of the densities
listed in Table I and estimated their temperature depen-
dences with the help of the available dilatometric data of
Abell. The C,zk~ constants correspond to the electric
neutrality (divD=0) and to adiabatic conditions, while
the phenomenological theories of phase transitions refer
to the isothermal elastic constants at constant electric
field, or at constant electric polarization. Piezoelectric
and adiabatic-isothermal corrections have to be taken into
account to derive the latter quantities from the experimen-
tal data.

The piezoelectric correction is given by

From the measurements of the velocities of the ob-
served acoustic modes, we can deduce the values of
several elastic constant of BSN: C&~, Cz2, C4q, Cq& (re-
ferred to the orthorhombic frame of BSN), and C» (re-
ferred to the tetragonal frame, deduced from the
orthorhombic one by a 45' rotation around the c axis),
with the help of the eigenvalue equation:



G. ERRANDONEA, M. HEBBACHE, AND F. BONNOUVRIER

O

N

g CCt

0

6.&
CCt

O

ch

CCt

~ ~
6
C$

0

~ W Q
rA

O o
Q
CCt

g

0 Q
V

0 m

Ct
rA

O V

IQ

8

O~

8"c
ch
c5

~ o"

~
0
X
Q

0
CCI

c5

tg
4) ce

Ci6

bQ
Q

C g

cri

c5

~ ~
& 8

O

0
~ W

0

bQ

~ W

0

bQ
~ W
Y)

C5

a

5
0
E

c5

yW

cj
U'

0

a5

5'a0
8
c5

bQ

0
0

O

c5

g
05

0
cn

0
g
O

~ W

bQ 0
0
w Q

0 O

0 0
CCt

ce

Q

vH0

0

~ 1W

55

a
05

C5

S

0

C

5
O

~ 6

' 0
U

't

E0
bQ

g5.

c5

~ IK

V
+
V

+

+&+
+&+

+V

II

+

fV CV

+

+
+

I +
+

I ~ +



32 BRILLOUIN SCATTERING STUDY OF THE ELASTIC. . . 1695

3

em lj nkl m n

m, n =1
(4)

ij kl Cij kl
3

&mn m n

m, n =1
where e " e d C"iJ 9 6mm p

an" C;Jkl are the respective components
of the piezoelectric-, dielectric-, and elastic-stiffness- (at
constant electric field) constant tensors. Throughout this
paper, we shall omit the superscript E for simplification,
and we shall write C;kl instead of C"

The
ij kl.

e expressions of pU for the observed acoustic modes
in the orthorhombic and quadratic phases, deduced from
the Eqs. (3) and (4), are given in Table II. The piezoelec-
tric corrections only affect the elastic constant C d
C

ans 44 an
On the basis of the consistent piezoelectric d

~ ~

dielectric results of Warner and of Yamada, we found
that e24/aqua decreases from 4X10 to 2X10 N/m be-
tween 20 and 500'C, while e»/E~& is always included be-
tween 2 and 2.5 & 10 N/m . These corrections contribute
to 6—3 % of the values of C44 and C~5.

The adiabatic-isothermal correction is given -by the re-
lation
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III. EXPERIMENTAL RESULTS

A. Acoustic-mode frequencies and linewidths

(5)
where C, is the specific heat (at clamped strains) and the
dekldT are the expansion coefficients. C44 and C55 are
not affected by this correction. For C~&, C22, and C~&,
this correction cannot be accurately calculated since, to
our knowledge, the specific heat of BSN has never been
measured. On the basis of the Einstein model of the
specific heat and of the known Raman spectra, we esti-
mate an order of magnitude of C, /T=5&10 Jm K
We use the room-temperature values of C&z, C&3, and C23
measured by Warner (see Table VII), and we neglect
their unknown temperature dependences. We found that
AC», AC&2, and AC&& are, respectively, close to 4.4)& 10,
3.4X10, and 3.9X10 N/m ( —1.5% of the values of
C», C2z, and C» ) between 20 and 220'C. In the INCP
these quantities vary more strongly with the temperature
because of the pronounced temperature dependence of the

8 9 2
expansion coefficients. They are always smaller ther an

)&10 N/m . However, the accuracy of Abell's data is
not sufficient to deduce a good estimation of the correc-
tions in this phase. In the quadratic phase the three
adiabatic-isothermal corrections are equal and slowly de-
crease from 3.1X10 to 1.9X10 N/m between 310 and
520 C.

BRILLOUIN SHIFTS ( GHz )
FI~G. 2. Temperature dependence of the Brillouin spectra rel-

ative to the y &
mode in the y —x (z,z)y +x scattering geometry.

yl is the anti-Stokes line. One can note a minimum of the y~-
mode frequency near 276'C and an increase of the background
intensity on heating.

mental conditions, and (3) the properties of the other in-
vestigated modes.

1. Characteristics of the y& and y4 modes

N 43
C9

I—
~42T
cA

42

41

F&rst, we have measured the temperature dependence of
the frequencies and the linewidths of these two modes on

cycling thermally sample 1 between 20 and 480'C at an
average heating-cooling rate of nearly 0.3'C/min as dis-
cussed in Sec. IIB. Typical Brillouin spectra relative to
the y& mode are shown in Fig. 2.

The temperature dependences of the y&-mode and y4-
mode frequencies are plotted in Fig. 3. On the heating
run, these frequencies reach a minimum at 273 and
298 C, respectively. On the cooling run, the temperatures
at which the minima occur are shifted down to -220 and
275'C. The ferroelastic transition (NIT) temperature can

We have mainly focused our attention on the longitudi-
nal y& and y4 modes, related to the C» and C22 elastic
constants of BSN. In this section we shall successively
present (1) the characteristics of these two modes mea-
sured during a typical heating-cooling cycle, (2) unusual
effects showing the sensitivity of the results to the experi-

CQ 40 I I I

0 100 200 300 400 500 200 250 300 350
TEMP ERATURE(' C)

FICx. 3. Temperature dependences of the frequencies of the
y& and y4 modes.
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of the y~ and y4 lines (see Fig. 4). On heating, we locate
the NIT at 309+1'C. On cooling, a clear separation of
the two lines occurs only near 275'C. The localization of
the LIT temperature cannot be determined on the sole
basis of the present experimental data. Birefringence and
x-ray measurements ' performed with a comparable
temperature-variation rate show that they are, in fact, lo-
cated near 275 'C on heating and near 225'C on cooling.

The behavior of the y&- and y4-mode frequencies is
dominated by a large thermal hysteresis ( —100'C). It be-
gins very unusually in the tetragonal phase near 325 C,
some 16'C above the continuous NIT, and ends at about
215 C.

The temperature dependences of the y, - and y4-mode
widths are plotted in Fig. 5. Far from the incommensu-
rate transitions ( T & 200 C or T ~ 400'C), the measured
widths are equal to the instrumental linewidth (1.2 GHz).
On heating up from room temperature, they increase to
reach a maximum (-2.75 GHz) near 288'C, inside the
stability range of the incommensurate phase, some 20'C
below the NIT. On cooling, we could not perform accu-
rate measurements of the y4-mode width since the exam-
ined scattering volumes always contained some domains
of perpendicular orientation, leading to a contamination
of the y4 line by the much stronger y& line. The behavior
of the y&-mode width is less sharp than on heating with a
maximum at 2.3 GHz reached near 275'C.

2. Influence of the experimental conditions

I
280

I

290 300 310
l

320
TEMPERAT URE ('C)

FIG. 4. Localization of the NIT temperature. Upper: the y~
and y4 modes are simultaneously observed with the help of a
mirror located behind the sample. Lower: temperature depen-
dences of the frequencies at which the intensities of the y& line
(alone) and of the y~ and y4 lines (observed together) are max-
imum. These frequencies merge at T; =(309+1)'C.

be determined as the temperature where the frequencies of
both modes become equal' (C» ——Czz). This tempera-
ture has been carefully measured using the backreflector
mirror which permits accurate observation of the merging
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FIG. 5. Temperature dependences of the apparent linewidths
of the y& mode (crosses) and the y4 mode (dots). The instrumen-
tal linewidth is 1.2 6Hz.

The temperatures and the amplitudes of the different
anomalies discussed above are not reproducible in the
sense that they are dependent on the experimental pro-
cedure. Such a sensitivity on the experimental conditions
has already been observed - in the measurements ' of
several physical quantities of BSN (spontaneous
birefringence, dielectric constant, incommensurate satel-
lites). It has been interpreted in terms of a strong interac-
tion between the incommensurate modulation and mobile
defects, inducing the slow diffusion of defects which form
a defect density wave patterned after the modulation. As
a consequence, birefring ence and x-ray measurements
have showed a large and unusual thermal hysteresis in
BSN, a relaxation effect (consisting of a slow evolution
with respect to time of some physical properties), and a
memory effect. We have looked for such effects in the
behavior of the y& and y4 modes of sample 1.

A first unusual feature of the hysteresis was already no-
ticed above: the hysteresis begins in the tetragonal phase
above the continuous NIT. A second nonclassical proper-
ty was evidenced on the measurements of the y4-mode fre-
quency by reversing the variation trend of the temperature
in the range of stability of the INCP (points A, B, and C
in Fig. 6). For a usual hysteresis (related to a first-order
transition), we expect that this procedure would lead to an
exact coincidence of the measurements performed on the
heating and cooling runs and, therefore, to an apparent
suppression of the thermal hysteresis. By contrast, we ob-
tain the intermediate dashed AA', BB', and CC' curves,
which reveal the existence of a variety of metastable states
in this temperature range.
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FIG. 6. Temperature dependences of the y4-mode frequency
measured on various thermal hysteresis cycles. Solid lines:
variations related to a heating-cooling cycle between 20 and
4SO'C; AA', BB', CC' dashed lines: variations observed after an
inversion of the temperature trend at points 3, B, and C.

In a second type of experiment, we kept the sample
temperature fixed (between 250 and 300'C) and looked for
a time evolution of the Brillouin spectra over several days.
We could only observe in some of these experiments a
small shift ( —160 MHz) of the y&- and y&-mode frequen-
cies lying within the limit of the experimental uncertain-
ties (+80 MHz). Hence, an improvement of the accuracy
of our measurements would be needed to confirm the
direct observation of a relaxation effect in the elastic
properties of BSN.

However, such a relaxation can be indirectly revealed
by the occurrence of a "memory" effect. In a third exper-
iment, after a 24-h annealing of the sample at 275'C (2
point of Fig. 7, left side), we observed the temperature
dependence of the y&-mode frequency on a cooling run
down to 20'C followed by a heating run up to 270'C.
The variations of this frequency do not follow the usual
solid ABCBD curve shown in Figs. 2 and 7(a), but the
dashed A'B'CD'E' curve. Hence, the elastic properties of
the investigated sample have been modified by the anneal-
ing at 275'C. In particular, the anomalies relative to the
B and D points occurred some 20'C below.

Such a behavior confirms the observations carried out

with a similar procedure on the spontaneous
birefringence of BSN [Fig. 7(b)]: relaxation inside the
INCP induces an increase of the stability range of this
phase and therefore a decrease of the lock-in transition
temperatures. The comparison between the results of
Figs. 7(a) and 7(b) shows that the same phenomena are ob-
served in both cases.

Though they are not exhaustive, all these results are
sufficient to demonstrate that the interaction between the
incommensurate modulation and the defects revealed by
x-rays and birefringence measurements strongly influences
the elastic properties of BSN as well.

3. Other modes

The temperature dependences of the frequencies of the
other investigated acoustic modes are plotted in Fig. 8.
The behavior of the longitudinal y &o-mode frequency
looks like those of the y4 mode, but with smoother varia-
tions in the stability range of the INCP. Its thermal hys-
teresis has not been investigated. The frequencies of the
p3 j 5, y», and y &z transverse modes are nearly constant
and equal between 20 and 500'C. We do not detect any
anomaly at the transitions. We could not measure the in-
trinsic linewidth of all these modes since their apparent
linewidths are always equal to the instrumental resolution
(1.2 or 0.8 GHz).

However, the identification of the y&& mode in the
x(y, z)y Brillouin spectra is questionable. Actually, the
selection rules given by Vacher and Boyer indicate that
this mode is inactive in the tetragonal phase, while we ob-
served it with comparable intensities in all three phases.
This problem —which does not seem to be related to the
incommensurate feature of the investigated transitions
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(since the y»-mode observation only violates the rule
selection in the NP)—has been discarded.

Besides these acoustic modes, we also observed another
excitation on all the (zz) Brillouin spectra obtained when
the incident and scattered electric fields were polarized
along the [001] directions. Actually, the background of
these spectra is not frequency dependent, but its intensity
is much larger than the value (5 cps) we can estimate from
the known contrast of the Fabry-Perot interferometer (see
Fig. 2). It increases from about 25 to 1000 cps between
20 C and Tf =580'C (the ferroelectric transition tem-
perature of BSN) and rapidly falls down above 580 C, in
the paraelectric phase. A preliminary Raman scattering
study has shown that this signal can be attributed to the
low-frequency responses of two different excitations: an
amplitude mode related to the INCP and the soft mode of
the ferroelectric transition. By contrast, no signal has
been detected which can be assigned to a phase mode.

B. Sound velocities and elastic constants

The sound velocities of the observed acoustic modes
and the isothermal and adiabatic elastic constants of BSN
have been calculated as explained in Sec. II. Their values
at 20, 309 (in the normal phase), and 450'C are listed in
Table III.

The temperature dependences of the adiabatic and iso-
thermal C», C22, C», C44, and C» elastic constants (at
fixed electric field) are plotted in Fig. 9. C44 and C»,
which are not affected by the isothermal-adiabatic correc-
tion, present an anomaly neither at the LIT nor the NIT.
The variations of C& &, Cq2, and C» look like those of the
frequencies of the yi, y~, and y, o modes (Figs. 3 and 8),

20'C 309 'C 479 'C

gl
y3

ys
f10
f11
&12

Sound
6741+ 12
3643+6
6842+12
3601+6
6809+ 12
3649+ 12
3631+12

velocities (m/s)
6591+18
3620+9
6591+18
3627+9
6697+ 18
3617+9
3619+9

6770+18
3580+9
6770+ 18
3582+9
6754+ 18
3549+ 18
3576+9

CS
Elastic constants (10 N/m )

241+ 1 228+ 1

236+ 1 225+ 1

240+ I
238+1

C22
S
T

248+ 1

245+ 1

228+1
225+ I

240+ 1

238+1

TABLE III. Sound velocities and adiabatic and isothermal
elastic constants of BSN at 20, 309 (in the normal phase}, and
479'C. The meaning of the y; notation is given in Table II and
in Ref. 24.

) 2.52.5 I I 1 I I I I
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FIG. 9. Temperature dependences of the adiabatic (on

and isothermal (on right) elastic constants.
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except above 430 C, where these elastic constants de-
crease. This softening is related to the existence of the
ferroelectric transition of BSN at 580'C. This effect is
not apparent on the variations of the frequencies, since for
these quantities it is compensated for by the relatively
large increase of the n, refractive index.

As discussed in the last section, the adiabatic-
isothermal correction is slowly temperature dependent in
the NP and in the QCP. Therefore the variations of C»,
C22, and C» nearly reproduce those of the respective adi-T T

abatic constants in both phases. In the INCP, because of
the large uncertainty on the adiabatic correction, the vari-
ations of C» and of C22 cannot be determined with good
accuracy. On the basis of the dilatometric measurements
of Abell, it seems that these constants do not undergo
jumps either at the NIT or the LIT. Besides, it is possible
that the slight anomalies, observed on the variations of
Ci ~ and of C22, at, respectively, 220 and 275'C on cooling
runs, are not intrinsic features of the isothermal elastic
properties of BSN, but are induced by the anomalous
behavior of the expansion coefficients.

Our results can be compared to those previously avail-
able for BSN. On one hand, the room-temperature values
of the adiabatic elastic constants (at constant electric field)
C», C22, C44, and C55 measured by Warner, Yamada,
and Busch' are listed in Table IV. They are in good
agreement with ours. The slight discrepancies can prob-
ably be attributed to composition differences of the non-
stoichiometric samples investigated. On the other hand,
the temperature dependences of the y &- and y4-mode
sound velocities and of the related Brillouin linewidths
have been measured by Young and Scott at various fre-
quencies (5.6, 45, and 63 GHz). The measurements per-
formed at 45 GHz qualitatively resemble those obtained
here for the heating runs, but with smaller variations of
the velocities and linewidths in the INCP. However, these
authors do not specify their measuring procedure, the im
portance of which we have stressed above, nor the sample
composition, so that their data cannot be clearly analyzed.

gS 237+1
235+1

241+ 1

239+1
IV. THE LANDAU THEORY OF THE ELASTIC

ANOMALIES OF BSN

S TCss =Css
66.5+0.5
66.5+0.5

66.5+0.5
66.5+0.5

66.5*0.5
66.5+0.5

Let us now discuss these experimental results from a
phenomenological point of view.

The most natural step consists in the derivation of the
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TABLE IV. Comparison between the measurements of several adiabatic elastic constants.

Authors

W'amer

References
Experimental

technique

Electromechanical
resonance

CE,S
11

239

CE,S
22

CE,S
44

(10 N/m )

247

CE,S
55

Yam ada 20 Electromechanical
resonance

71.4

Busch Brillouin scattering
(6328 A)

245 258 68.5 64.7

Errandonea This work Brillouin scattering
(5145 A}

241+ 1 248+ 1 66.5+0.5 66.5+0.5

anomalies of the elastic constants of pure BSN (without
defects) in the framework of the Landau theory in a for-
mulation adapted to incommensurate transitions. ' The
explicit form of the BSN free-energy expansion as well as
its qualitative consequences on its static properties have
already been given by Toledano et al. and Schneck
et al. In this section, first, we shall recall their main re-
sults. Second, we shall study the temperature dependences
of the elastic constants, with special emphasis oo the cou-
pling between the amplitude arid the wavelength of the
modulation near the LIT. Third, :the predictions of the
Landau theory ei11 be compared to the experimental re-
sults.

A. Static and elastic properties

Following Toledano and Schneck, the OP of the BSN
incommensurate transition has four components p, P and

I

k; =(1+5)
4

c+

+'
2

In the reference frame constituted by the principal crys-
tallographic axes of the orthorhombic phase, the free en-
ergy is

F= J(fi+fz+f3)«
where

p', P', respectively, related to the wave vectors +k; and
+k,':

+Sr, p' B&
Bx

2 2

Bp + iz
Bx By

2
Bp+
By

B~2
By

2 ~2 Pi 4 i4 P2 4 P3 2, zf i
=—(p +p' )+ (p +p' )+ [p cos(4$)+p' cos(4$')]+ p p'

2 4 2

2

2B4 +'Bx '
By

2 '2
Bp +

Bx
Bp
Bx

+Z, p' B&
Bz

+ Bl +, 2

Bz Bz

2
Bp
Bz

2

3 6
1 0 & 0f~= 2 g C/J~l~J+

k=4

ml —m2 m4 —m5f3=(p —p' ) (ei —e2)+ (ez —e~)
2 2

ml+m2 w4+m5 2+(p +p' ) (ei+e~)+m3e3+ (e4+e&)+m6e6
2 (10)

fi is the usual free-energy expansion related to the bare
OP. f2 is the elastic energy in the form adapted to the
quadratic phase (but referred to the orthorhombic axes).
f3 contains the lowest-order coupling terms between the
strains and the Op components.

Among the various solutions minimizing I', the case
realized in BSN corresponds to the freeiing, in the INCP,
of one pair of Op components, i.e., to either of the condi-

tions (p&0, p'=0) or (p=0, p'&0) which, respectively,
define two domains with mutually perpendicular modula-
tion directions. This case occurs if we assume that

3

P3+2 g ~~'lm;m, )P'»
I P2 I
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/3z (0,
where

3

P) =P) —2 g s,jm(m~
E,J =1

(s; )=(c; )
' (ij =1, 2, or 3),

in addition to the usual conditions

a=a (T —Tp), a,K„Kz,K»0 .

(12)

(13)

The striking characteristics of the coupling between the
OP and the strain components, which plays the prominent
part in the specific mechanical properties (strains, elastic
constants) of BSN, is that the strains are only coupled to
the moduli of the OP and not to their phases. Therefore,
below the NIT (where p&p'), the macroscopic symmetry
of BSN is broken through the onset of a spontaneous
value for (e~ —ez), and an orthorhombic symmetry is es-
tablished both in the INCP and QCP. This situation con-
trasts with the cases of all the other incommensurate
phases studied up to now for which the average point
symmetry of the INCP was identical to that of the high-
temperature phase.

Within the phase-modulation-only (PMO) approxitna-
tion ' (homogeneous moduli), the derivation of the static
properties from the free energy (7)—(13) leads to a situa-
tion similar to that of a two-component Op, which has
been thoroughly investigated by various authors. '

Therefore, the standard sequence of events predicted for
an INCP with a two component OP [variations of 5(T),

modulation shape, LIT characteristics] remains valid for
BSN.

B. Elastic anomalies
As shown in the Appendix, the temperature depen-

dences of the elastic constants can be deduced from the
variations of the OP amplitude p through the relations
(A7) and (A12). The derivation of these dependences is
straightforward in the three phases (NP, INCP, and LP),
except just above the LIT. Actually, in this temperature
range the free-energy minimization equations cannot be
rigorously solved, even in the PMO approximation.
Moreover, De Pater et al. showed that the characteris-
tics of the solution strongly depends upon the way the
coupling between p and the modulation wave vector q is
handled. Hereafter, we shall consider three successive
steps of approximation leading to different temperature
dependences of the elastic constants above the LIT.

(a) As a first approximation, we may neglect this cou-
pling. In this case the LIT is continuous and p smoothly
varies above the LIT according to the same law in the
locked phase. The temperature dependences of p, q, and
the elastic constants in the three phases are given in Table
V and are schematically plotted in Fig. 10 with solid lines.

The elastic behavior at the NIT looks like that obtained
for an ordinary structural transition of the improper fer-
roelastic type (characterized by p e; and p ek coupling
terms as in BSN); hence, the incommensurate nature of
BSN does not induce any specific elastic behavior at the
NIT. At the LIT the elastic constants behave above TL
as in the LP and do not undergo any anomaly.

(b) As a second step of approximation, we take into ac-
count the coupling between p and q. In this case numeri-

TABLE V. Theoretical expressions of the modulation wave vector q, OP amplitude p, and elastic constants of BSN derived in the
framework of the Landau theory, within the phase-modulation-only approximation. We get T; =Tp+ I, /aK

&
and

Tz & Tz ——Tp+(H/8)(1+i3~ /Pz)(k /aK~ ). The other coefficients are defined in the free-energy expansions (7)—(15).

Normal phase
Near the

NIT

Incommensurate phase

Near the LIT
Approximation (a) Approximation (b)

T) Tl T) TL

Locked phase

T & TL or T ( TL

~ [1n(T —TL)] cc [ln( T —TL ) ]

P
a(T; —T) a (Tp —T)

i3I +Pz

a (Tp —T)

PI +02

Aq[a (Tp T)]'~—
(P'+0 )' '

a (Tp —T)

i3t +f3z

CJ (i j =1,2, 3) p
C;J

p 2mi mj
lj
—

p
Cij-p 2mimj

Pi+ 13z

p 2mi mj
Cij p2+s;, m;mj

—u [1n(T —Tz, )]

C;J—p 2mi mj

Pi+Pz

Ckk (k =4, 5, 6) Ckk
p amk(T; —T)

Ckk +
Pi

CP amk(Tp —T)

Pi +fjz
CP amk(Tp —T)

Pi+Pz
CP amk{ Tp —T)

Pi+Pz

Aq[A (Tp —T)]'
(i3' +is )' '
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V. EFFECT OF THE CRITICAL
FLUCTUATION OF THE OP ABOVE T;

In this section we quantitatively show that the elastic
anomalies in the high-temperature phase (namely, the
rounding of C~& and the decrease of the related Brillouin
linewidth) can be induced by the thermodynamic critical
fluctuations of the OP. (We shall not consider the influ-
ence of the defects, ' which can sometimes have an effect
similar to the thermodynamic fluctuations. )

The most simple treatment of the effect of the OP Auc-
tuations of a displacive phase transition on the acoustic
properties was first given by Levanyuk within the
mean-field approximation, by solving the motion equa-
tions of the coupled soft-optic —acoustic-mode system, one
degree of approximation beyond the usual linear approxi-
mation.

This theory has been applied by Yao et al. in the case
of terbium molybdate (TMO), which is very similar to
ours. Actually, neither the incommensurate nature of the
OP nor its dimensionality (2 for TMO, 4 for BSN) play a
specific role in the derivation of the elastic anomalies in-
duced by the fluctuations. A straightforward calculation,
starting from the BSN free energy (7)—(10) and closely
following the line of the method of Yao et al. , leads to
the following results for the y~ mode above T;:

C) ) (q, co) = C)) — (m ) + m 2)ks To

(27r )'

(18)

y(q, co)=yp+ (m )+m2)kg T8 q
(2~)' p

1 (Q)dQ
n'(Q) [4n'(Q)+~'r'(Q) j

' (19)

where yp is the bare damping coefficient related to the y~
mode in the absence of coupling between the strains and
the OP, q and m are the respective wave vector and fre-
quency of the investigated acoustic mode, and Q(Q) and
I (Q) are the frequency and the damping coefficient of
the optic mode belonging to the soft-mode branch. The
triple integration is performed in the Brillouin zone of the
quadratic phase.

These equations show that the knowledge of the soft-

C» and C22 only very roughly account for their mea-
sured temperature dependences (Fig. 9). From a qualita-
tive point of view, three features of the experimental vari-
ations are in disagreement with the Landau theory: the
rounding of C~ &

——C22 in the normal phase, the absence of
jumps at the NIT and the LIT, and the large thermal hys-
teresis in the 200—300 C temperature range. (The har-
dening of C& ~ and C22 in the locked phase can be ex-
plained by the introduction of terms of degree higher than
four in the free-energy expansion. ) Therefore, we need to
consider several effects which are not taken into account
by the above theory to obtain a better description of the
behavior of C» and Cq2. This is the purpose of the next
two sections.

optic-mode dispersion curve allows the determination of
the fluctuations' contribution to the elastic anomalies.
Because of the presence of II and II terms in the denom-
inators, this contribution increases rapidly in the proto-
type phase close to the transition when the optic branch
softens. It induces a downward bending of the elastic
constants as well as an increase of the damping coeffi-
cients.

A. Data analysis

Equations (18) and (19) have been used to analyze the
elastic properties of the y& mode in the prototype phase.

The characteristics of the soft-optic dispersion curve of
BSN can be deduced from the neutron scattering data of
Schneck et al. Though their measurements are not corn-
plete in this aspect, they are sufficient to calculate the
values of both integrals. Actually, these values are not
sensitive to the details of the dispersion curve except to
the form of this curve in the vicinity of its minimum
which occurs at the incommensurate wave vector k;.
However, a difficulty arises from the fact that the soft-
optic branch interacts with a central mode. Hence, the
apparent frequencies 0 (Q) and linewidths I (Q), mea-
sured by Schneck. et al. , are renormalized by this
frequency-dependent interaction and are not the effective
frequencies Q(Q) and linewidths I (Q) appearing in Eqs.
(18) and (19). Neglecting a direct coupling between the
central mode and the y& mode, we assume, as usual for an
optic-mode —central-mode coupled system, that the ef-
fective optic frequencies and damping coefficients are
given by

2

]+M 7

+2~r=r„+
1+& V

(20)

(21)

(23)

C is the bare elastic constant, and A~ and y~ are the fre-
quency and the damping coefficient of the overdamped
ferroelectric soft mode.

The parameters 0 (Q, T), I (Q, T), and b.(Q, T) have
been deduced from the neutron data of Schneck, 3 P, (T)

where 6 is the strength of the coupling, co is the Brillouin
frequency of the y& mode, and ~ is the characteristic re-
laxation time of the bare central mode.

Besides, we also need to know the background elastic
constant C» in the absence of coupling to the soft mode.
Owing to the presence of the ferroelectric transition of
BSN at T) -580'C, we cannot consider that C» slowly
decreases on heating as usual. " We assume that the long-
itudinal strains and the ferroelectric polarization P are
coupled through a term g, g;e;P, where g; .measures the
strength of the coupling. Hence, the temperature depen-
dence of the elastic constant C~~ below T~ is given by

Qp Ap/yp

with
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TABLE VI. Values of the various parameters used to fit the variations of C]] and y] above the NIT.
The experimental wave-vector and temperature dependences of 0„,I, and Q~/y~ have been fitted to
the empirical laws listed below. In these expressions, the components of the wave vector Q are referred
to the quadratic axes. O, „(Z) is the experimental frequency of the optic mode at the Z point (0,0,0.5) of
the Brillouin zone, and GO{k; ) the frequency of the bare soft mode at k; in the absence of coupling with
the central mode. We assume that Q„(Q) saturates to a value Q,„when the modulus of Q —k; in-
creases. (A,„ is the average frequency of the optic mode belonging to the soft surface far from k;.)

Since no neutron data are available, we estimate its value on the basis of the Raman data of Boudou
et al. (Ref. 30) by looking for the frequency of the softest optic mode located at the Brillouin-zone
center, the symmetry of which (~&, ~4, or ~5 of the 4mm point group) is compatible with the symmetry
of the OP [I ~(k;*) of the I'4bm space group]. The wave-vector dependence of 6(Q, T) has been
neglected since the interaction of the optical modes with the central mode do not significantly decrease
the experimental frequencies Q„(Q), except in the vicinity of k, . The uncertainties on the fitted values
of the free parameters correspond to a degradation of the quality of the fit by a factor of 2, according to
the least-squares criterion.

Fixed
parameters

Q„(Q, T)=

Experimental
data

Q„(k,T)+ [Q„(Z)—Q„(k, T)]sin2

2 2

+() 78
a, C

when the quantity is smaller than
otherwise.

2 Q'+ Qy'

1+6 a*
2

+max~

Reference

with

Q„(k;,T)=QO(k, T)+5 (k;, T)

Bo(k;, T)= 1.5 )& 10 ( T —TI ) Thz

b, (Q, T) =0. 12S exp[ —(T —T; )/90] THz

Q „(Z)= 1.1 Thz, 0, „=1.45 GHz
30

Tg ——309 'C

277
A I g 2~ A —f

Q 0
12.48 4

I „(Q,T)

P, (T)

065 Thz

[(0.267+ 0.0064( Tf —T)' ] Cb/m, Tf ——S80'C

Qp

'Vp
3.43(Tf —T) Ghz

Free
parameters

Co

Fitted
values

(16.5+3) )& 10 ' s

(254+3.5) X 10' N m-'

(2+0.45) Q 10 s

(8.3+2)~10 ' N m Cb s

Po (80+30) MHz

from the polarization measurements of Singh, ' and
Ap /pp from the Ram an data of Errandonea. Their
values are listed in Table VI. The other coefficients

C, I=m ] +I2, X, and y0—are taken as free parame-0 2 2

ters whose values must be fitted to account for the experi-
mental data.
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—260

I

250- '

l

I

I

I-
I

240- ~~

m

O
O

230—

V)

ferroelectric
coupling

in Eq. (19) has been calculated using the above-fitted
values of M and ~. We have corrected the theoretical
value thus obtained by taking into account the broadening
introduced by the convolution between the intrinsic
linewidth and the instrumental response: we assume that
the experimental linewidth is given by

2 2 I /2
1'expt = () + ) res )

where y is the damping coefficient given by (19) and

y„,=1.2 GHz is the instrumental linewidth. The experi-
mental data can therefore be fitted directly to the y,„~,
value resulting from Eqs. (19) and (24) with only one free
parameter, yo, the damping coefficient of the bare y~
mode. The best fit, shown in Fig. 12, is obtained for
yo ——80+30 MHz

I~ 220
300 350

1

400
t

450 500

We show in Fig. 11 the best fit (using the values of the
first four free parameters given in Table VI) to the mea-
surements of the isothermal elastic constant C~~ (per-
formed on an heating run) obtained by a least-squares
method. The variations of the background values C and
C~~ are also plotted on this figure. On heating from T~ to
480 C, the fluctuations' contribution decreases from
24X10 to 6X10 N/m, while the ferroelectric contribu-
tion increases from 4.9X 10 to 10.6X 10 N/m . A com-
parison with the results of Yao shows that the ratio of the
fluctuations' contribution at T~ to the background value
Co is 3 times larger in TMO (27%) than in BSN (9.4%).
This quantitative difference can be explained if one no-
tices that the soft dispersion curve is more anisotropic in
BSN than in TMO. In particular, the curvature along the
[001] direction is very pronounced in BSN (see Table VI),
so that there is a small contribution of the fluctuations
whose wave vector is parallel to [001]: the relevant fluc-
tuations are quasi-two-dimensional (except very close to
Tg ).

We also examined the influence of the various physical
parameters, which define the form of the soft dispersion
curve, on the values of the free parameters. As mentioned
above, the values of the fluctuation integrals in (18) and
(19) do not depend significantly on the curvature coeffi-
cients or on the frequencies Q (Z) and Q,„. A 10%
variation of these coefficients induces a variation of the
fitting parameters smaller than I%. By contrast, the pa-
rameters which determine the value of the effective
minimum frequency Qo(k;, co) of the soft dispersion curve
have a much larger influence on the results, mainly on M
and ~. However, their variations always stay in the uncer-
tainty range given in Table VI as long as the variations of
Qo(k;, co) are smaller than 20%.

Let us now examine the temperature dependence of the
width of the y& mode in the quadratic phase. The integral

TEMPERATURE {'C )
FIG. 11. Temperature dependence of C» in the normal

phase. Crosses: experimental measurements. Solid line:
theoretical fit to formula (17). C and C» are the background
elastic constants defined in the text.

B. Discussion

Among the five free parameters determined above, two,
M and ~, can be compared with available experimental
data.

First, we can calculate the M coefficient with the help
of formula (A2):

1 oC- e2 VJ.
p

Using the values listed in Table VII, we obtain

(25)

2,5,

1,5

0 1

I-
Cl

sponse

l-tT -------——0, I I I

300 350 400 450 500
TEMPERATURE {oC)

FIG. 12. Temperature dependence of the linewidth of the y&

mode. Crosses: experimental measurements (convoluted with
the instrumental response). Solid lines: theoretical fit to Eqs.
(18) and {24).
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Elastic constants
50
52 &(10 N/m
135

Ref. 27 and Sec. III
of this work

TABLE VII. Values of the parameters used in the numerical calculations of Secs. V and VI.

239 104

( C,) ) = 104 245

50 52

Elastic compliances

53 —19

(s~) = —19 51
—12 —12

—12
—12 )&10 "N/m'
83

Inversion of the (C;J) matrix

Longitudinal strains at 20'C e ~

——( 1.2+0. 1) )& 10
e = —(0.6+0.1))&10

e3(0.4&(10 '

Ref. 26

Order-parameter amplitude

Coupling coefficients

p=7.07&10 ' kg'~2m'~ at 20'C

m, =(44+7))&10"s-'
( 4+]0)~ 1025 —2

m =(5 8+10)&(10 s

Ref. 12

Formula (25)

Other free-energy
coefficients

a=(2m) 1.5)&10 ' k 's
PI =15X10 '
P) = 17X 1O"

Ref. 3
Table V and Ref. 16

Formula (12)

M=m ~+mq ——(2.0+0.6) X10 s (26)

which matches the above-fitted value very well. This re-
sult shows that, in BSN as in gadolinum molybdate, the
same m; coupling coefficients can be used to account for
the measurements of three different quantities, namely the
expansion coefficients, the elastic constant C~&, and the
related damping constag. t y.

On the other hand, the relaxation time ~ can be com-
pared to the measurements of Young and Scott. ' Actual-
ly, these authors, using a scattering-angle-dependent Bril-
louin experiment, showed a dispersion of the yI mode in
the quadratic phase, characterized by a relaxation time (at
45 6Hz): 2m'=(13. 5+2) X 10 ' s, while we found
2m'=(16. 5+3)X 10 ' s.

The agreement is convincing since both values have
been estimated using very different methods. Besides, the
effective optic frequencies used in our approach are fre-
quency dependent [see Eq. (21)] because of their interac-
tion with the central mode. Therefore, our analysis shows
that the origin of the dispersion of the y& mode observed
by Young and Scott above T; lies in the indirect coupling
of these modes with the central component. Unfortunate-
ly, the width of this central peak had not been determined
by Schneck because of the lack of resolution (0.15 THz)
of the neutron apparatus used. A direct measurement
with improved resolution could confirm our analysis.

However, in BSN these effects are strongly influenced by
the defects; Hence, we shall distinguish both contribu-
tions in pure BSN crystals (without defects) and in real
samples.

A. Elastic anomalies in pure BSN samples

Below T; the OP-fluctuation contribution is given by
an expression similar to (18). However, the integrals in
this equation cannot be calculated in the INCP since no
experimental data are available on the characteristics of
the amplitude mode and of the phase mode. We can only
assume that the contributions of the fluctuations relative
to C~~ and to C22 are nearly equal and that their magni-
tude is comparable to the one calculated above T;. In
particular, since the NIT is continuous, we have
(EC&&)~=(EC2z)n-24X10 N/m close to T;. On cool-
ing, the frequencies of the soft excitations harden and the
fluctuation contributions decrease. Their inferred tem-
perature dependence is schematically plotted on Fig. 13(a).

The contribution of a static coupling with the ampli-
tude mode has been considered in Sec. D' of this paper.
However, the strongly overdamped behavior of this excita-
tion and the dispersion effects observed by Young and
Scott ' suggest that the static and the dynamic
amplitude-mode contributions differ significantly.

Below T;, the dynamic contribution is given by

VI. ACOUSTIC ANOMALIES BELO% T;

In this section we present a semiquantitative interpreta-
tion of the temperature dependences of C~l, and of C22
below the NIT. As has been invoked for several incom-
mensurate materials, we consider that the elastic
anomalies result from the superposition of two main con-
tributions: a coupling of the acoustic modes with the OP
fluctuations and a coupling with the amplitude mode.

1
AC;; —AC i 1+co 'Tg

(27)

where w, is the relaxation time of the amplitude mode.
The static step anomaly of the Landau theory (see Table
V),

2

5C'= —2
Pi



1706 G. ERRANDONEA, M. HEBBACHE, AND F. BONNOUVRIER 32

250-

240.-

230.-

(+)
& 220
C)

C22
z 0-
cA
& -10-0

C)
20 ~~J

(b)

UJ
240-

230.-

C2p

are totally symmetric with respect to the space group of
the prototype phase. This is not the case for e& and ez in
BSN, but, because of the unusual symmetry change of this
crystal at the NIT, the OP strain-coupling terms have the
same form in all these materials, i.e., they do not depend
on the OP phase. As a consequence, the same mecha-
nisms as those discussed above can be invoked to explain
the elastic anomalies. However, in the case of BSN, this
analysis does not provide a complete description of the ex-
perimental measurements [compare Figs. 13(c) and 9(a)]:
in particular, the temperature dependences of C» and Czz
on the cooling run'is not accounted for. Let us show that
the influence of the defects on the elastic properties ex-
plains this discrepancy.

Influence of the defects

220.(c) gf)

0 100 200 300 400 0 100 200 300 400
TEMPERATURE ( C)

FIG. 13. Estimated or calculated temperature dependences of
the various contributions to the elastic constants C«and C» in
a pure BSN crystal [(a)—(c)] and in a real sample [(d)—(f)]. (a)
and (d) represent the variations of the OP fluctuation contribu-
tion, (b) and (e) the static (dashed lines) and dynamic (solid lines)
responses to the coupling between the amplitude mode and the
strains, and (c) and (f) the sum of the various contributions.

is smeared out at the Brillouin frequency co.
Using the values of Table VII, we obtain

hC)) ——(22+7) X 10 N/m

ACzz & 2&10 N/m
(28)

Hence, the amplitude-mode contribution to Czz is at least
10 times smaller than the one to C&I and can be neglected.
To calculate the dynamical variations of C», one must
know the temperature dependence of the amplitude-mode
relaxation time. Young and Scott ' deduced it from their
Brillouin measurements of the frequency and of the
linewidth of the ) ~

acoustic mode, but they did not take
into account the contributions of the fluctuations and the
defects. Hence, we have simply assumed instead, accord-
ing to the Landau-Khalatnikov model, ' that the dynamic
anomaly of C» at 288'C (the temperature at which the
Brillouin linewidth is maximum) is half of the static step.

At the LIT we also assume that the step undergone by
the static elastic constant C~& (see Sec. IV) is rounded by
the dynamic effect, leading to the C» and Czz variations
shown in Fig. 13(b).

Besides these two main contributions examined above,
one may also consider the contributions of the phase
mode and high-degree coupling terms between the OP
and the strains (such as p e;,p e;, . . . ). These contribu-
tions induce a slight hardening of the elastic constants on
cooling which cannot be numerically calculated.

In Fig. 13(c), we have added these various contribu-
tions. The resulting variations of C» and of Czz resem-
ble those observed for the longitudinal elastic constants of
several incommensurate materials: NaNOz, KzSeO4, "
Sc(NH2)2, etc. In these compounds the related strains

It is now well established that a strong interaction be-
tween the incommensurate modulation and some mobile
defects plays an important role on the properties of BSN.
Its elastic properties are also affected by this interaction:
we showed that the C» and Czz measurements disclose
the existence of a memory effect, and also metastable
states, similar to those already observed in the study of
the optical birefringence or of diffraction satellites.

To relate, from a phenomenological point of view, the
influence of the defects on these different quantities, we
shall take into account two main effects induced by the
defects and revealed by the birefringence and the satellite
measurements: On one hand, a large thermal hysteresis
characterized by different transition temperatures on heat-
ing ( Tz -270'C, T; -310'C for a heating rate
-0.3'C/min) and on cooling (TL -225'C, T;-290 C
for the same rate), and on the other hand, a temperature
dependence of the OP amplitude different from the
behavior expected for a pure system. Actually, in the
framework of the Landau theory, we expect a linear tem-
perature dependence in the INCP for the quantities pro-
portional to the OP square, such as the spontaneous
birefringence, the spontaneous shear ez —e], or the inten-
sity of the incommensurate satellites. By contrast, the ob-
servations ' show that all these quantities increase very
slowly below T; and vanish at the NIT with a horizontal
slope (see Fig. 7). This phenomenon is particularly pro-
nounced on cooling.

Let us reexamine both the fluctuations and the
amplitude-mode contributions, taking into account these
two effects.

First, their temperature dependences are shifted by
nearly 20'C because of the hysteresis on the NIT tempera-
tures. This effect accounts for the thermal hysteresis ob-
served in the NP. Secondly, it is likely that the frequen-
cies of the soft excitations, amplitude mode and phase
modes which determine the magnitude of the fluctuations
effect in the INCP [formula (18)] increase very slowly
below the NIT as the OP amplitude does. Hence the fluc-
tuation integral decreases very slowly below T;. By con-
trast, below 290'C for the heating runs and below 270'C
for the cooling runs, the OP amplitude strongly increases
and the fluctuation contributions rapidly vary to become
equal near 215 C (at the end of the hysteresis observed on
the birefringence measurements). Its temperature depen-
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dence is sketched in Fig. 13(d). Thirdly, in the same
manner, the coupling between the amplitude mode and
the strain e& no 1onger induces any anomalies at the NIT,
but rather at lower temperatures when the OP undergoes
large variations. More precisely, the static amplitude-
mode contribution can be quantitatively determined with
the help of relation (A12), in which p, (T) no longer
represents the temperature dependence of the OP ampli-
tude of a pure system in the framework of the Landau
theory, but rather the one of a real BSN sample with a
large defect concentration. Using the data of Tables V
and VII and the birefringence measurements reported in
Fig. 7(b), we obtain the static elastic responses plotted
with dashed lines in Fig. 13(e). The sohd lines represent
the dynamic response of the system when we again as-
sume that the rapid variations of the static elastic con-
stant C» at the LIT are smeared out.

In Fig. 13(f), we have added the different contributions
influenced by the defects. The theoretical variations of
C» and Cz2 thus obtained are now in good agreement
with the experimental results. Let us note that a similar
analysis can be used to explain the temperature depen-
dence of C~~ observed after an annealing in the INCP
(memory effect). In this case, the temperature dependence
of the OP amplitude is changed. %'ith the help of the
birefringence data [dashed lines of Fig. 7(b)j, we can cal-
culate the new contribution of the coupling between e&

and the amplitude mode. This procedure leads to the C»
variations plotted in Fig. 14, in good agreement with the

240—

230

C)

220

UJ

I

200 300
TEMPERATURE (' C)

FIG. 14. Calculated temperature dependence of C» on a
usual heating-cooling cycle (solid line) or after a 24-h anneal at
275'C (dashed lines). For a comparison with the experimental
measurements, see Fig. 7.

measurements shown in Fig.7(a).
Therefore, the analysis reported in this section leads to

a satisfactory semiquantitative description of the experi-
mental data. It confirms the fundamental influence of the
defects on the properties of BSN.

VII. CQNCjLUSION

In this paper we have reported an experimental and
phenomenological study of the elastic properties of in-
commensurate BSN. The velocities, the linewidths of the
main acoustic modes propagating in the (001) plane, and
the related elastic constants C», C22, C», C4&, and C55
have been measured between 20 and 500 C in the normal
phase, the incommensurate phase, and the quasilocked
phase of BSN.

The main anomalies have been observed on C» and on
C22. Their form strongly depends on the experimental
conditions. In particular, a large thermal hysteresis
( —100 C) of a specific type and a memory effect have
been described. These effects are similar to those already
observed for other properties of BSN, such as the spon-
taneous optical birefringence, or the satellite characteris-
tics. They have been related to an interaction between the
incommensurate modulation and certain mobile defects.
A temperature-dependent background has been observed
on the totally symmetric Brillouin spectra, which has been
assigned to the overdamped amplitude mode, but no effect
related to a gapless phase mode has been detected, prob-
ably because of the presence of defects interacting with
the modulation.

From a theoretical point of view, we have shown that
the Landau theory of incommensurate transitions is insuf-
ficient to account for the variations of C~~ and of Cz2.
By contrast, an agreement with the experimental data is
obtained when we describe the elastic properties of real
BSN samples as the result of the superposition of two
types of responses: On one hand, the response of a stan-
dard (without defects) incommensurate crystal in which
the longitudinal strains are bilinearly coupled to the
square of the OP amplitude. In the NP we have quantita-
tively shown that the rounding of C~~ (=Czar) is induced
by the OP fluctuations. In the INCP this effect is the
main contribution to the variations of Cz2, while the tem-
perature dependence of C~ &

js also influenced by a
dynamical coupling between e& and the overdamped am-
plitude mode. On the other hand, the elastic properties of
real BSN samples are strongly influenced by defects.
They induce a large thermal hysteresis, an unusual tem-
perature dependence in the INCP, and an extreme sensi-
tivity to the experimental procedure. These anomalies
have been quantitatively correlated to the ones observed
on the birefringence measurements.

The nature of the involved mobile defects has not yet
been identified with certainty. However, on the basis of
structural arguments, as well as of birefringence measure-
ments performed on BSN samples with different off-
stoichiometry compositions, it seems likely that they have
an extrinsic origin, namely they are sodium vacancies. It
~ould be interesting to study the stoichiometry depen-
dence of the elastic properties in order to confirm our
analysis.
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APPENDIX: RELATIONS BETWEEN
THE ELASTIC CONSTANTS

AND THE ORDER-PARAMETER AMPLITUDE

In this appendix we derive the relations between the
elastic constants and the OP amplitude without the use of
the modulation-phase-only approximation. The deriva-
tion essentially lies on the fact, specific to BSN, that the
elastic strains are not coupled to the OP phases.

The minimization of the Gibbs energy,

Thus, it is obvious that the diagonal elastic constants
Ckk ( k =4, 5, or 6) are given by

Ckk Ckk +™kp0 2

To derive the other constants,

(A7)

Bo
CJ —— (ij =1, 2, or 3),

Be)
(AS)

we notice that the resolution of the system (A2)—(A6) in
the presence of longitudinal elastic stresses o.; is formally
identical to that of the free crystal. Actually, the elimina-
tion of e~ with the help of (A2),

3
2e =ps; (cr; —m;p ),

shows that p and P still verify the same equations as in
the free-crystal case, if we replace a in these equations by

6

G =F Jdu —go.;e; (A 1)
3

a(o;)=a+2 g spqmpoq (A9)

3

o;= g(C;fez)+m;p (i =1, 2, or 3),
j=1

g/, =(C/, /, +2mkp )e/, (k =4, 5 or 6),

(A2)

(A3)

leads to equations of states between the strains, the
stresses o.;, and the OP components in which the OP
moduli p and p' can be decoupled. For one family of fer-
roelastic domains (p'=0) with a modulation along the x
axis, we obtain

3
0 2 2 0

3

ej = Qs/j a& ™/pz T+ g spqmpcTq
i=1 a p, q=1

(A10)

The differentiation of this equation gives the elasticity
tensor components

Therefore, relation (AS) between the longitudinal
strains and their conjugated stresses becomes

B Bfi Bfi
+2pg m;e;+2p g mkek,

Bx B(Bp/Bx) Bp

Bf, Bf,
Bx B(By/Bx) By

(A4)

(A5)

0 2 dP ~ 0 0
SEJ SE~ sikskj'mkmk' &a dTkk,

and by inversion the elastic constants

(A 1 1 )

with

(XP + ~ ~ ~

1 2
(A6)

0CJ=CJ— 2mE mj
3

0 a2 ~ Skk mkmk-
k, k'=1 dp, /dT
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