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Ferromagnetic and transmission resonance in magnetic metal superlattices
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We have developed a mathematical formulation by which surface-impedance calculations of mag-
netic layered structures are significantly simplified and, hence, calculable. A transfer-function ma-
trix is introduced in order to relate the electric and magnetic fields at one surface of a magnetic met-
al layer to fields at the other surface. The surface impedance of a layered structure is then expressed
in terms of the four transfer-function matrix elements corresponding to surface fields of the layered
structure instead of internal microwave fields corresponding to all the layers within the layered
structure. The ferromagnetic resonance fields and line shapes are calculated for layered structures
containing alternating dielectric and iron magnetic layers. In addition, spin-pinning boundary con-
ditions are assumed at the surfaces of each iron layer. The calculations are of sufficient generality
so that the insulating dielectric layer may be replaced by a conductive metal layer. We find that
standing spin-wave resonance may be excited in the layered structure, even for zero spin pinning at
the iron-layer surfaces. From calculations of internal microwave fields within each layer, we deduce
that the spin-wave resonance is due to an asymmetrical magnetic field excitation of each iron layer,
although the layered structure as a whole is symmetrically excited. For iron-layer thicknesses of

0) 1500 A there is no discernible difference between the ferromagnetic resonance fields of the main
line and the first-spin-wave —resonance mode —an accidental degeneracy. If nonzero spin pinning is
assumed at each iron-layer surface, the accidental degeneracy is removed.

I. INTRODUCTION

With the advent of the so-called magnetic superlattice it
may now be possible to study properties of artificial,
periodic layered material structures whose separation be-
tween magnetic layers may be on the order of intra-atomic
distances. Magnetic superlattices are defined as periodic
layered structures with alternating layers having different
magnetic and/or electrical properties. In order to main-
tain periodicity in the layered structure the composition
and thickness of each layer is fixed. Precise periodic lay-
ered structures have been constructed' and this could only
be realized with recent improvements in metalization or
material-evaporation techniques.

Magnetic properties of layered structures are expected
to be different from properties of a single magnetic layer.
This difference may be accounted for by the fact that
neighboring layers couple to each other via the magnetos-
tatic and exchange interactions. In a microwave envi-
ronment as we are considering, the internal microwave
fields at a point in the layered structure are the result of
many electromagnetic interference effects caused by all
the layers within the layered structure and not simply by
interference from a particular layer containing the point
of interest. Hence, the microwave or dynamic properties
of a single layer are expected to be different from the
properties of layered structures.

Of the many analytical techniques by which one may
characterize the microwave properties of magnetic layered
structures, the technique of ferromagnetic resonance
(FMR) still remains a powerful analytical tool in explor-
ing new microwave properties of such structures. It is the
intent of this paper to develop a FMR analysis appropri-
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ate to periodic layered magnetic structures. Basically
there are two mathematical approaches by which FMR
fields and line shapes may be calculated. The first ap-
proach extends previous magnetic-metal-film calcula-
tions to the magnetic layered problem. This approach
matches the number of boundary-surface condition equa-
tions to the number of internal-field amplitudes. The sur-
face impedance, Z„may then be expressed in terms of
internal-field amplitudes. In these calculations the sur-
face impedance is calculated, since this quantity is mea-
sured directly in a FMR experiment.

In this paper we develop an alternative approach which
is more suitable to the calculation of Z, for layered struc-
tures. We introduce a transfer-function matrix which re-
lates the microwave fields at the two surfaces of a given
magnetic layer. Heaviside introduced the concept of
transfer function to be associated with linear systems con-
taining one allowable electromagnetic wave-propagation
constant. We extend this concept by defining a transfer-
function matrix for linear systems which can allow many
modes of electromagnetic wave propagation as in a mag-
netic medium, for example. Clearly, as in Heaviside
theorem the total transfer-function matrix of a layered
structure is the product of all the single-layer transfer-
function matrices. The total transfer-function matrix is a
(2)&2) matrix, since the surface fields are two dimension-
al, electric and magnetic microwave fields. Z, is ex-
pressed in terms of the four matrix elements correspond-
ing to the total transfer-function matrix of the layered
structure.

Specifically, we consider the following problem: We as-
sume normal incidence of an electromagnetic wave upon a
symmetric periodic magnetic layered structure composed
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two surfaces. The relationship between the microwave
surface fields and internal fields for H normal to a
magnetic-metal-film plane are given below. For detailed
derivation of these relationships see Ref. 5. They are as
follows:

d d, d d, d d,

1 2 3

d = MAGNETIC LAYER THICKNESS

d, = DIELECTRIC LAYER THICKNESS
H = STATIC MAGNETIC FIELD

N pairs+ 'I

2

e„= g Z„(h„+—h„),
n=1

2

h, i
——g (h„++h„),

n=1

(1a)

(lb)

FIG. 1. Periodic magnetic layered structure is composed of
alternating magnetic and dielectric layers. The magnetic layer is
characterized by conductivity o., exchange stiffness constant 2,
and permeability p. The dielectric layer is characterized by the
dielectric constant e.

of iron/dielectric/iron/dielectric/iron layers. The exter-
nal static magnetic field, H, is applied normal to the plane
of the layered structure, see Fig. 1. Each iron layer was
assumed to be 1000 A thick. It is further assumed that
the dielectric layer is characterized by a scalar dielectric
constant rather than a tensor quantity. This means that
the calculations are valid at relatively low inicrowave fre-
quencies ( & 100 GHz). The dielectric thickness was
varied between 100 and 10000 A. For these separation
distances the exchange coupling between iron layers is
very small in comparison to surface magnetic anisotropy
energies. The magnetostatic energy coupling between
layers is also ignored, since there is no microwave magnet-
ization component norinal to the plane of the layered
structure. The magnetization M, exchange-stiffness con-
stant A, g value, and the conductivity o of iron are well
known in the literature and we assume those values.
Spin-pinning boundary conditions at the surfaces of each
iron layer are also included in this analysis.

We predict the excitation of spin-wave spectra, even for
zero spin pinning of surface spins at each iron layer. The
spin-wave excitation-mode intensity increased as the num-
ber of iron layers was increased. Internal microwave field
solutions reveal that the microwave component of the
magnetization, m, was asymmetrically excited within
each iron layer, so that a net microwave absorption was
possible at magnetic fields below the resonant field of the
main FMR mode. In addition, we have calculated a
transmission maximum at fields below the FMR field of
the main line. This is a consequence of the fact that the
imaginary part of the characteristic propagation constant
of the layered structure exhibited a minimum (when plot-
ted as a function H) at transmission resonance. In Sec. II
the mathematical formalism is developed. In Secs. III
and IV computer numerical results and discussion of the
calculations are presented.

II. THEORETICAL FORMALISM

We require a transformation which expresses the inter-
nal fields of each layer in terms of the microwave electric
and magnetic fields at the two surfaces. It is then
mathematically convenient to define a matrix transfer
function which relates the microwave surface fields at the

2

e = g Z (h+e J"n h—e+j"n )
n=1

2

h, 2
——g (h„+e J"n +h„e+J n ),

n=1
2

0= g (P„h„++A„h-),

(ld)

(le)

2

0 g (g h+e —jknd+P h
—e+jknd)

n=1

The four surface fields of the metallic magnetic film or
layer are e, 1, h», e, 2, and h, 2, where the subscript 1

denotes one surface and 2 the other. The film thickness is
d. Equations ( la) —( 1d) represent the electromagnetic
field continuity equations at the two surfaces Equ. ations
(le) and (lf) represent the spin-pinning boundary condi-
tions. Equations (le) and (lfl may be derived from the
pinning-boundary condition:

+X,m =0,BNl

Bp

where K, is the surface uniaxial magnetic anisotropy ener-
gy parameter, m is the microwave component of the mag-
netization, and y is the coordinate normal to the film
plane. It can be shown from the application of Eq. (2)
that

P„=Q„(K,+jk„A)
and

R„=Q„(K,—jk„A),
where

r

Q„= 1 ——h,k„J 2 2

4m

and

2

5O-
27TCTCO

The Cxaussian system of units is used.
By coupling Maxwell's equations and the Landau-

Lifshitz equation of motion for the magnetization there
results a secular equation which is quartic in k, where k
is the propagation constant. It can be shown that for H
normal to a film plane there correspond only two mag-
netically resonant modes or allowable electromagnetic
wave-propagation constants, k„. For each k„(where
n = 1,2) mode there corresponds a forward (+ ) and a neg-
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+ + +
hn &n s2+Pn hs2 r (3)

where n= 1,2 and an
—and Pn

—may be expressed in terms
of magnetic parameters P„, R„, Q„, etc. (see the Appen-
dix). By substituting the solutions for h„- into Eqs. (la)
and (lb), e, l and h, l may then be related to e,2 and h, 2.
Finally, we may write

atively ( —) traveling electromagnetic wave and two inter-
nal magnetic fields (h„-). Hence, there are four internal-
field amplitudes. The two allowed propagation constants
k„are related to o, H, M, A, . . . via the secular equation
(see Ref. 5). Also, for each k„ there corresponds a charac-
teristic impedance, Z„,

k„
Zn=J

4

where c is the velocity of light and j=v' —1. The inter-
nal microwave fields as well as the surface fields are cir-
cularly polarized.

Using Eqs. (lc)—(ld) h„—may be solved in terms of e, 2

and h, 2. Thus, we may write

where ks=(co/C)V e, Z, =v'1/e, and the dielectric layer
thickness is d, . The above relations hold for linear as
well as circularly polarized internal fields.

Let us now define the "pair" transfer-function matrix C
of the metallic magnetic and dielectric layers as the prod-
uct of their respective transfer-function matrices. Thus,
we write

C11 C12

C21 C22
=aa'.

For the dielectric layer only one electromagnetic wave-
propagation constant is allowed, k„so that one may
make use of classical electromagnetic theory results for
the derivation of the transfer-function matrix of the
dielectric layer:

cos(k,d, ) jZ, sin(k, d, )

j sin(k, d, )
cos(k,d, )

e, 1

where

r

a11 a12 e 2

a21 a 22 h, 2

e$2
a

h $2

A. Transfer-function matrix of periodic layered structure

Assuming the thickness of each magnetic and dielectric
layer and their respective composition to be constant, the
total transfer-function matrix may be written as

a11 —— w=c~, (4)

a12 =
n=1

2

a2, ——g (a„++a„),
n=1

2

a» = y (n. +13;)

The matrix a is defined as the transfer-function matrix of
a single magnetic metal layer. Similarly, one may write

r

e$2 11 b 12 e$1 e$1
=—b

hs2 52] &22 hs 1 hs 1

The matrices a and b obey the following algebraic proper-
ties:

a b=I,
where I is the unit matrix. Thus, b =a '. Making use of
the identities a11a22 —a12a21 ——1 and b11b22 —b12b21 ——1

which are special properties of linear passive systems, it
can be shown that

b11=a22

b22=a»

b12= —a 12

b21 = —a21

I= UU

and

D=U 'CU .

D is a diagonal matrix with eigenvalues A, +.

C11 +C22 2 1/2~+
2

— [(c1 1 C22 ) +4c12C21 )

The unitary matrices which diagonalize the pair matrix C
are of the form (assuming no degeneracy)

—C12 —C12
U=

(A, —c22) (A, + —c22)

(A, + —C22) C12

(A, + —A, )C12
—(A, —C22) —C12

since the total transfer-function matrix 3 is obtained by
-multiplying the "pair" matrix C N times, where X is the
total number of magneto-dielectric pair layers. Equation
(4) occurs quite often in the field of solid-state physics.
Standard mathematical operations to Eq. (4) have been
applied in order to reduce the number of algebraic steps.
We briefly outline the procedure here.

A unitary matrix transformation U is introduced so
that Eq. (4) may be rewritten as follows:

A = U(U 'CUU 'CUU 'C. CU)U

U (Dlv) U —1

where
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Thus, A may be reduced to a single (2&&2) matrix or sim-

ply

+
A=V

0

Clearly, the A matrix relates the microwave surface
electric e» and magnetic Ii» fields of the first iron layer
to the surface electric (e,)v) and magnetic (h») fields of
the last dielectric layer. In order that we may consider a
symmetrical layered structure, where the first and last
layers are the same, the total transfer-function matrix is
simply the product of A and a or

~ T ——~Xa= (6a)
2& a22

where (2 is the (2)&2) transfer-function matrix of a single
iron layer which was previously defined. The subscript T
is to denote a symmetric layered structure or the total
transfer-function matrix. The inverse matrix 8 T may
simply be obtained from

pi=[Z; (1)—1]/(Z;„(1)+1),
PL ——[Z; (L)—1]/(Z; (L)+1),
Ti =(1+PL)[822+812/Z.«)]
Tz ——(1+PL )[811+821/Z;„(L)],

3 ——(1+Pi)[222 —3 iz/Z;„(1)],
T4 ——( 1+Pi )[A 11

—A 21/Z;n ( 1)],
where

Z;„(1)=(311+212)/(Azl +322),
Zi (L) (811 812)/(822 821)

Finally, the surface impedance at the two surfaces of the
layered structure are obtained form the ratio e, 1/h, 1 and
eL/Il L Ol'

Z, (1)= (1+Pl) (1+PL )[822+812/Zi (L)]
(8)(1—Pi)+(1 PL )[Bl1+—Bzi/Z;„(L)]

Z, (L)= (1+PL )—(1+Pi)[222—212/Z;„(1)]
(9)(1—PL )+(1—Pi)[A(1 —Azi/Z;„(1)]

B]2—1a,=W, = B (6b) A quick inspection of the above surface impedance ex-
pressions reveals that

h,L ——(1—PL)h;„,( )+T4h;„,(+) . (7d)

In the above expressions the surface fields are expressed in
terms of the incident electromagnetic magnetic fields
Ii;„,{+), where the subscripts (+) indicate forward (+ )
and negatively ( —) traveling incident waves. The in-
cident electric field is related to h;nc{+) by +Zo, where
Zo ——1 for free space (in Cxaussian units). The reflection
coefficients at the first (1) and last (L) iron layers are de-
fined as Pl and PL, respectively. Ti and Tz are the
transmission coefficients due only to a negatively travel-
ing incident wave and T3 and T4 due only to a forward
incident traveling wave. The surface electric field on ei-
ther surface is composed of the incident and reflected
electric field components from one incident wave and
transmitted electric field component due to the opposi-
tively traveling incident wave.

In calculating p], T3, and T4 we normalize h;„,~+] to 1

and h;„,~ ~
to 0. The opposite is assumed, when pL, , Tj,

and Tz are calculated. After few algebraic operations the
reflection and transmission coefficients may be expressed
in terms of the matrix elements of A T and 8 T. Hence,

A ~ and B T obey the same algebraic properties discussed
previously for the single-layer case.

B. Connection to surface impedance

Assuming symmetrical electromagnetic wave excitation
of the periodic layered structure, the surface fields may be
expressed in terms of the matrix elements of A T and 8 z.
Applying the superposition principle to surface mi-
crowave fields, we have

es 1 ( I+Pl+ inc{+)+Tlh inc{ —)

sl ( Pl)~inc(+) + Tz~inc( —)

esL (1+PL) linc( —)+ 3~inc(+)

Z, (1)= Z, (L), —
as it should be for the case of symmetrical excitation.

III. CALCULATIONAL RESULTS

Quantitative determination of Z, require computer aid,
since the complex algebra involved in the computations of
Z, can be tedious and laborious. Gne advantage of our
mathematical formalism is that we have reduced the
mathematical complexities of the periodic layered prob-
lem to manageable proportions. For example, we were
able to numerically calculate Z, for a layered structure
containing 100 layers of iron and dielectric materials in
very rapid computer execution time.

The following values of metallic iron parameters were
assumed in the calculations: M=1700 G, 3=1.9X10
ergs/cm, g=2.09, and (r=1.42&&10 mhos/cm, and the
magnetic damping parameter, A, = 10 Hz. The surface
uniaxial magnetic anisotropy, parameter, E,, was varied in
the calculations, since it is strongly dependent on surface
crystal symmetry as distorted by the dielectric layer. For
the dielectric layer, @=10—0.02j. In FMR experiments
usually the frequency is fixed and H is varied or swept
through the resonance. Hence Z, is calculated as a func-
tion of H, as in Fig. 2. The I.orentzian-shaped curve for
Re(Z, ) is typical of a FMR line shape. The value of H at
which Re(Z, ) is inaximum is defined as the FMR field.
The peak value itself is related to the resonance-mode in-
tensity strength or simply related to m. In Fig. 2, in
which we take Ls =0, Re(Z, ) is plotted as a function of
(H; —Lo/y) is the operating frequency and is fixed at 35
GHz in this calculation. H; =co/y or M =4aM+m/y is
recognized as the resonance field condition for uniform
spin precession.

For %= 1 (the single iron layer) only one FMR mode is
excited and the exchange-conductivity shifts from



32 1683ESONANCE ~RANSMISS&OAGNETIC ANFERROM

ers.

LU

M
lD

N

IX

z
N

tX

j

+)000
I

0—$000

~/y) (Oe)
I

, Z, ) isp lottedace impecdance Re s
ntconvenien y

f the su
sca, e is

2. R.eal pa
The vertica

th respect to

F~G
. Q)/fction of ~'

can be over y
FMR field

rla ed ~
as a func

h t each curve
~ ~/& is the

he

normaalized so
urpose '

~ represent
co~parison p

'
oments

ach other for .
Of magneti

P
recession .

er pairs
unif orm p

d' lectric lay'ron iember Of iotal number 0

~ a subjs jncreas~ . of
]' jb}e. As +

. The lntensl y

a ' '
for H~&

(Z);n re
FMR excatat&o

he peak valu
of magneto-

on occurs '
e of Re

~

]inc or t .
the number

tbjs subsjd1a~
1 here Ã is t '

e line jntensl-d' lectrjc laY r p
Thjs js understan a

'derablY after
ty rema

icrowave le
ains c tan

]ds attenuate cothat the m&cro

d be-
bout 5

kness of
1' h a dep5OO A n .

]jne upo
600 and

the subsidiary
A g 0, an

tween

tric thickness
FMR line shaP

In order to
11. T e

for various v
Z ) was norma

R ( Z ) ar
h ~ direct p

b superjmp

re shown
tl, Re( sline

h, they cou
„«he mainThe separation

to be jnversel) p
~e see that

(~=1 case ~

&ace and ~
=

h spin-wave s
ergs/cm a

difference bet
nd that of a

one su
tween t e

a thin
pg stand

er, the~~ .
the ]ayered

there are ~
ture excited

the thin f&lm

where
film.

apd on
s in-wave re

er, there are
se: the mains jn-waave mod . a„e mod~ .

h dje]ectrlc

~ '
S ln W

S Wlt
FMR and

]ternat ng
mmetrlca P

subsjdla y p
iron ]ayer

] s in-
The e e

ap earance
jn view o

e
f n assam]ayers ls . This ls no .

d rab]y a

jve t e ap
su rjslng

uated
condltlon

]ds are consl "'
idual ironjn eac

is asymm
the ]ayered

e]] known

]ayer ls
]d ]though t e

5. It is we& n
wave fje '

see I'&g '

ives r

cro .
d externals'

1 excitation g
f js

ca Y
its that asV

h half wavele

excite
mmetrlca

n th o m
thin fjlm re .

In fact, t
thickness.

s in-w
a] to

jtaiio»

ave excjtat&
the iron-laYe

as refiect-
ate]y equ

e mode exc
jcrowave

apprOxlm
d Spin-WaVe

erna] m'c
are no high -

f Re(Z ), zine
er-or er .

e the ind jn the P

LU

a
N

IX
Oz

300—
"e

I

+~000
It

0—1000
(H -~~y)

~ ~/p~ function '
is varied

I

is lotted as s
er thickness is v

FIG.
+ I l an

3 Re( Zs ~ ' P
d the iron-layFig. yn this plot

from 600 to 1500 A.

OOOO

d (A)

lotted asld expresse
f. t t~o rnoiron-layer

calculation.
ction of the

the t»n film
0 at the other.

func
=1 represents t

rface and 0 a
tations. &=

s/cm at onl.0 ergsgle layer, &~—



C. VITTORIA 32

d = d, = 1000 A
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N

FIG. 5. Amplitude of the internal microwave magnetic field
is plotted as a function of N. The incident microwave field is
normalized to 1. The total thickness of the layered structure is
X(d +d, )+d where N, d, arid d, have been defined in the text.

field is not efficiently coupled to high-order spin-wave
modes (see Fig. 5).

Another feature of the spin-wave excitation in the lay-
ered structure which contrasts with thin-film S%"R exci-
tations is that for d & 1500 A the FMR fields of the main
and first spin-wave modes occur at the same value —an
accidental degeneracy. Normally, for SWR excitation in a
thin film, the SWR fields of the first two modes are well
separated (even up to thicknesses of 2—3000 A). We find
that this degeneracy is removed, if we assume nonzero
spin pinning at the surfaces of each iron layer within the
layered structure. For example, by assuming symmetrical
spin-pinning condition with a typical L, value of 1.0
ergs/cm at both surfaces the difference in FMR fields
between the main and first spin-wave mode is about 120
Qe for d=1500 A.

Vfe have also calculated transmission resonance for the
same layered structure configuration as above. In the cal-

culation for electromagnetic transmission efficiency we
calculate the ratio of transmitted, h„magnetic field to the
incident, H;„„magnetic field, which is exactly the defini-
tion for either T2 or Tq. The relation for T2 was used in
obtaining Fig. 6. For this calculation we assume the same
paraineter values as before. In particular, in Fig. 6 the
transmitted amplitude of the microwave magnetic field is
plotted as a function of (H; —co/y). As we would expect
the transmitted amplitudes are small ( —10 ), since
transmission is through many iron layers. For our partic-
ular example, %=11. Transmission resonance occurs for
static magnetic fields below FMR of the main line.

This is a consequence of the fact that the Im(IC, ) is a
minimum at transmission resonance (see Fig. 7), where K,
is the characteristic electromagnetic propagation constant
of the layered structure and Im(K, ) is a measure of prop-
agation loss in the system. For example, Im(IC, ) is max-
imum at FMR. Thus, at FMR the amplitude of the
transmitted electromagnetic magnetic field reaches
a minimum. E, is calculated by setting 2 ~ &

——22&
=cos[X,(2%+1)d]. The off-diagonal elements of A T
may be related to the characteristic impedance, Z„as in
the definition of a . Z, is analogous to the Thevinin
equivalent impedance which is often used to represent all
of the source impedances in electrical circuits. In our case
Z, represents all of the natural characteristic impedances
associated with each allowable electromagnetic wave-
propagation constants in all the layers. There are no no-
ticeable transmission resonances at static magnetic fields,
where the so-called "subsidiary" spin-wave mode is excit-
ed, since Im(X, ) exhibits no special structure at these
field values. It is interesting to note that the transmission
resonance linewidth is about 50 Oe which is the intrinsic
limit value for the FMR linewidth of iron at 35 CxHz (ex-
cluding exchange-conductivity effects ). It is interesting
to point out that there are no conductivity effects in the
transmission resonance linewidth, although the signal is
attenuated because of conductivity.

15)—

10

iD
C)

0
(H;-cu/y) (oe)

f

+1000
0
1000

I

500

FIG. 6. Amplitude of the transmitted microwave magnetic
field is plotted as a function of H; —co/y. H; =co/y is the
FMR internal field for uniform magnetic resonance precession.
For this calculation N=11 and d =d, =1000 A.

(H;-op/y) (Oe)

FIG. 7. The characteristic propagation constant EC, of the
layered structure is plotted as a function of H; —co/y. For this
calculation N=11 and d =d, =1000 A.



32 FERROMAGNETIC AND TRANSMISSION RESONANCE IN. . . 1685

IV. DISCUSSION APPENDIX

The application of the transfer-function matrix to mag-
netic layered structures which contain metallic layers is
very useful. It allows for quick and exact quantitative
determinations of surface impedances of such structures.
Although we have applied this technique to a layered
structure in which the magnetic layer is characterized by
two allowable electromagnetic wave-propagation con-
stants, it will prove more useful to complicated magnetic
layer systems with many normal modes of wave propaga-
tions. For example, in a magnetoelastic conductive media
there are as many as seven allowable propagation con-
stants. It is clear that FMR techniques can be utilized to
study the magnetic properties of layered structures. The
surface uniaxial magnetic anisotropy param'eter exhibits a
strong influence on FMR. K, and exchange coupling be-
tween layers "play" a similar role in the FMR of layered
structures as expressed in the boundary equation below for
a given magnetic layer:

0m
A +E,m +A )phm =0 .

In this section we solve the expressions which relate the
internal magnetic fields h„- to the surface electric e,2 and
magnetic h, 2 fields for one magnetic layer. The subscript
n designates the number of allowable propagation con-
stants in the magnetic layer. In this case n =2. In genera)
we may write this relationship as follows:

+ + +h„-=a„-e,2+p„-h, 2 .

This expression is the same as Eq. (3). The superscript +
indicates positive (+) and negative ( —) propagation
direction of the internal electromagnetic field com-
ponents, h„-. Our purpose here is to solve a„—and p„- in

+ ~ + + ~

terms of parameters defined in Eqs. (lc)—(lf). Using Eqs.
(lc)—(1f), we find

~a1 P2( 1 P2)P(kl +k2)+R 1(P2 R2)

+R2(R2 Pi )F—(ki —k2)

The first two terms represent the spin-pinning surface
boundary condition of a single layer with no exchange
coupling between layers. The last term introduced here
includes the effect of exchange coupling between magnet-
ic layers on the spin-boundary condition. The exchange
coupling between surface magnetic moments is propor-
tional to 2 12, where 312 is in units of ergs/cm, and b,m
is the difference in the surface microwave magnetic mo-
ments at two adjacent nearest-neighbor layers. The. mag-
netic layers are assumed to be similar with respect to their
static field magnetic properties.

In the limit that the separation distance between mag-
netic layers is exactly zero, A &2 is maximum and equal to
A but b,m~O. Hence, the third term in Eq. (10) van-
ishes. In this limit simple layer film calculations are ap-
propriate. In the opposite limit (large separation between
layers) 212~0, but b.m&0 (the case considered in this
paper). Again the exchange interaction term in Eq. (10)
must vanish. Clearly, there is a separation distance for
which the exchange interaction term may be maximized.
This separation distance should be in the order of intra-
atomic distances. In this limit it is appropriate to desig-
nate the transfer-function matrix of each magnetic-
dielectric layer pair as C„;, since the transfer function
matrix of the magnetic layer a „; is different for each
magnetic layer, where ni indicates the particular layer in
the layered structure. This is due to the fact that the sur-
face magnetic moments are different at each magnetic
layer surface. Clearly, in this situation the overall
transfer-function matrix is the product of all the pair
transfer-function matrices and not simply C+. An itera-
tion procedure has been used in obtaining a consistent
solution for the surface magnetic moments and for Z, in
this case. %'e believe that this is an interesting regime to
explore in order to study fundamental effects of exchange
interaction in layered magnetic structures.

bP1+ ——Z2[P1P2F(k 1 + k2) R1(R2+—P2)

+P1R2F(k, —k2 )]

+ 1[RE(kl k2) 2+(kl +k2)]

Similarly,

a2 ——a 1-( 1~2),
P2 =Pi+(1

a1 ——ai+(P —+R;j—+ —j),
P1 =P1+(P

where

R]F)
6=det

I

Fi

P2 R) R2

R2Fz PiF j+. P2F2+

Z,F, -Z,F,+ -Z2F
F+ F+

+jk&d

+jk2d
F2 ——e

The propagation constants ki and k2 and the correspond-
ing characteristic impedance Zi and Z2 are defined in the
text. The parameters P„and R„are defined in the appli-
cation of the spin-pinning boundary candition; see Eq. (2)
and thereafter. The symbolic operation (1~2) requires
changing the subscripts of a particular function fram 1 to
2 in order to obtain a new function. For example,
a2+ =ai+(1~2) means that if we change the subscripts in
the expression for ai+ from 1 to 2, we obtain a2+.
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